老人与海读后感1000字

时间:2024-07-18 09:44:15 读后感1000字 投诉 投稿
  • 相关推荐

老人与海读后感1000字精选15篇

  当认真看完一本名著后,相信大家一定领会了不少东西,记录下来很重要哦,一起来写一篇读后感吧。怎样写读后感才能避免写成“流水账”呢?以下是小编整理的老人与海读后感1000字,仅供参考,希望能够帮助到大家。

老人与海读后感1000字精选15篇

老人与海读后感1000字1

  不等式与不等式组

  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的'公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

老人与海读后感1000字2

  1、解直角三角形

  锐角三角函数

  锐角a的正弦、余弦和正切统称∠a的三角函数。

  如果∠a是Rt△ABC的一个锐角,则有

  锐角三角函数的计算

  解直角三角形

  在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

  2、直线与圆的位置关系

  直线与圆的位置关系

  当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

  直线与圆的位置关系有以下定理:

  直线与圆相切的判定定理:

  经过半径的外端并且垂直这条半径的直线是圆的切线。

  圆的切线性质:

  经过切点的半径垂直于圆的切线。

  切线长定理

  从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

  切线长定理:过圆外一点所作的圆的两条切线长相等。

  三角形的内切圆

  与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的'交点。

  3、三视图与表面展开图

  投影

  物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

  可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

  简单几何体的三视图

  物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

  主视图、左视图和俯视图合称三视图。

  产生主视图的投影线方向也叫做主视方向。

  由三视图描述几何体

  三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

  简单几何体的表面展开图

  将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

  圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

  圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

老人与海读后感1000字3

  第一章实数

  考点一、实数的概念及分类(3分)

  1、实数的分类

  正有理数

  有理数零有限小数和无限循环小数实数负有理数正无理数

  无理数无限不循环小数负无理数

  整数包括正整数、零、负整数。

  正整数又叫自然数。

  正整数、零、负整数、正分数、负分数统称为有理数。

  2、无理数

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  (1)开方开不尽的数,如7,32等;

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如

  (3)有特定结构的数,如0.1010010001等;

  (4)某些三角函数,如sin60o等

  考点二、实数的倒数、相反数和绝对值(3分)

  1、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。

  2、绝对值

  一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

  3、倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  考点三、平方根、算数平方根和立方根(310分)

  1、平方根

  如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a的平方根记做“。a”

  π+8等;

  2、算术平方根

  正数a的正的平方根叫做a的算术平方根,记作“a”。正数和零的算术平方根都只有一个,零的算术平方根是零。a(a0)a0

  a2a;注意a的双重非负性:

  -a(a考点六、实数的运算(做题的基础,分值相当大)

  1、加法交换律abba

  2、加法结合律(ab)ca(bc)

  3、乘法交换律abba

  4、乘法结合律(ab)ca(bc)

  5、乘法对加法的分配律a(bc)abac

  6、实数混合运算时,对于运算顺序有什么规定?

  实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。

  7、有理数除法运算法则就什么?

  两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。

  8、什么叫有理数的乘方?幂?底数?指数?

  相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作:an

  9、有理数乘方运算的法则是什么?

  负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。

  10、加括号和去括号时各项的符号的变化规律是什么?

  去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。

  平行线与相交线

  知识要点

  一.余角、补角、对顶角

  1,余角:如果两个角的和是直角,那么称这两个角互为余角.

  2,补角:如果两个角的和是平角,那么称这两个角互为补角.

  3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.

  4,互为余角的有关性质:

  ①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,

  则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3.

  5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.

  ②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.

  6,对顶角的性质:对顶角相等.

  二.同位角、内错角、同旁内角的认识及平行线的性质

  7,同一平面内两条直线的位置关系是:相交或平行.

  8,“三线八角”的识别:

  三线八角指的是两条直线被第三条直线所截而成的八个角.

  正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.三.平行线的性质与判定

  9,平行线的'定义:在同一平面内,不相交的两条直线是平行线.

  10,平行线的性质:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.

  11,过直线外一点有且只有一条直线和已知直线平行.

  12,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.

  13,如果两条直线都与第三条直线平行,那么这两条直线互相平行.

  14,平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.

  15,常见的几种两条直线平行的结论:

  (1)两条平行线被第三条直线所截,一组同位角的角平分线平行;

  (2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.

  四.尺规作图

  16,只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差.

老人与海读后感1000字4

  1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

  2、逆定理:平分弦不是直径的直径垂直于弦,并且平分弦所对的2条弧。

  3、有关圆周角和圆心角的性质和定理

  ①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

  ②一条弧所对的圆周角等于它所对的圆心角的一半。

  直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  圆心角计算公式:θ=L/2πr×360°=180°L/πr=L/r弧度

  即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

  ③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

  4、有关外接圆和内切圆的性质和定理

  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

  ③R=2S△÷LR:内切圆半径,S:三角形面积,L:三角形周长。

  ④两相切圆的连心线过切点连心线:两个圆心相连的直线。

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  5、如果两圆相交,那么连接两圆圆心的线段直线也可垂直平分公共弦。

  6、弦切角的度数等于它所夹的弧的度数的一半。

  7、圆内角的度数等于这个角所对的弧的度数之和的一半。

  8、圆外角的度数等于这个角所截两段弧的度数之差的一半。

  9、周长相等,圆面积比长方形、正方形、三角形的面积大。

  10、形如y=k/x(k≠0)或y=kx^—1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^—1表示负一次。

  11、在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

  12、在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的.增大而增大,则k的取值范围是k<0。

  13、设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。

  14、如果两个数的比值与另两个数的比值相等,就说这四个数成比例。

  15、如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。

  16、一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。(如果是线段的话,只能取正的,如果是数,正负都可以)

  17、黄金分割:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5—1)/2,取其前三位数字的近似值是0.618。

  18、证明三角形相似的方法:

  (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。照我们老师的方法来说就是A字型和8字型。

  (2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

  (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

  (4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

  (5)对应角相等,对应边成比例的两个三角形叫做相似。

  19、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。

  20、二次根式比较大小的方法:

  (1)利用近似值比大小。

  (2)把二次根式的系数移入二次根号内,然后比大小。

  (3)分别平方,然后比大小。

  21、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

  22、分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

  23、最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式。

  ①被开方数的因数是整数,因式是整式。

  ②被开方数中不含能开的尽的因数或因式。

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

  (4)二次根式计算的最后结果必须化为最简二次根式。

老人与海读后感1000字5

  重要考点

  1.相似三角形(7个考点)

  考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

  考核要求:

  (1)理解相似形的概念;

  (2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

  考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

  考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

  注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

  考点3:相似三角形的概念

  考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

  考点4:相似三角形的判定和性质及其应用

  考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

  考点5:三角形的重心

  考核要求:知道重心的定义并初步应用。

  考点6:向量的有关概念

  考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

  考核要求:掌握实数与向量相乘、向量的线性运算

  5个重要考点

  2.锐角三角形(2个考点)

  考点1:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

  考点2:解直角三角形及其应用

  考核要求:

  (1)理解解直角三角形的意义;

  (2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

  3.二次函数(4个考点)

  考点1:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

  考核要求:

  (1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;

  (2)知道常值函数;

  (3)知道函数的表示方法,知道符号的意义。

  考点2:用待定系数法求二次函数的解析式

  考核要求:

  (1)掌握求函数解析式的方法;

  (2)在求函数解析式中熟练运用待定系数法。

  注意求函数解析式的步骤:一设、二代、三列、四还原。

  考点3:画二次函数的图像

  考核要求:

  (1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像

  (2)理解二次函数的图像,体会数形结合思想;

  (3)会画二次函数的大致图像。

  考点4:二次函数的图像及其基本性质

  考核要求:

  (1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;

  (2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

  注意:

  (1)解题时要数形结合;

  (2)二次函数的平移要化成顶点式。

  4.圆的相关概念(6个考点)

  考点1:圆心角、弦、弦心距的概念

  考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

  考点2:圆心角、弧、弦、弦心距之间的关系

  考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

  考点3:垂径定理及其推论

  垂径定理及其推论是圆这一板块中最重要的知识点之一。

  考点4:直线与圆、圆与圆的位置关系及其相应的数量关系

  直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

  考点5:正多边形的有关概念和基本性质

  考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

  考点6:画正三、四、六边形。

  考核要求:能用基本作图工具,正确作出正三、四、六边形。

  5.数据整理和概率统计(9个考点)

  考点1:确定事件和随机事件

  考核要求:

  (1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

  (2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

  考点2:事件发生的可能性大小,事件的概率

  考核要求:

  (1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

  (2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

  (3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

  注意:

  (1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

  (2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

  考点3:等可能试验中事件的概率问题及概率计算

  考核要求

  (1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的`概率;

  (2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

  (3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

  注意:

  (1)计算前要先确定是否为可能事件;

  (2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

  考点4:数据整理与统计图表

  考核要求:

  (1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

  (2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

  考点5:统计的含义

  考核要求:

  (1)知道统计的意义和一般研究过程;

  (2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

  考点6:平均数、加权平均数的概念和计算

  考核要求:

  (1)理解平均数、加权平均数的概念;

  (2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

  考点7:中位数、众数、方差、标准差的概念和计算

  考核要求:

  (1)知道中位数、众数、方差、标准差的概念;

  (2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

  注意:

  (1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

  (2)求中位数之前必须先将数据排序。

  考点8:频数、频率的意义,画频数分布直方图和频率分布直方图

  考核要求:

  (1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

  (2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.

  考点9:中位数、众数、方差、标准差、频数、频率的应用

  考核要求:

  (1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;

  (2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

  (3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

老人与海读后感1000字6

  一、重要概念

  1、数的分类及概念

  数系表:

  说明:“分类”的原则:1)相称(不重、不漏)

  2)有标准

  2、非负数:正实数与零的统称。(表为:x≥0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  3、倒数:①定义及表示法

  ②性质:≠1/a(a≠±1);中,a≠0;a1时,1/a1;D。积为1。

  4、相反数:①定义及表示法

  ②性质:≠0时,a≠—a;与—a在数轴上的位置;C。和为0,商为—1。

  5、数轴:①定义(“三要素”)

  ②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。

  6、奇数、偶数、质数、合数(正整数—自然数)

  定义及表示:

  奇数:2n—1

  偶数:2n(n为自然数)

  7、绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的'几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

老人与海读后感1000字7

  数学是研究数量结构、变化、以及空间模型等概念的科学。它是物理、化学等学科的基础,而且与我们的生活息息相关。所以说,学好数学对于我们每个同学来说都是非常重要的。下面我向大家介绍一下初中数学的学习方法与技巧:

  一、平时的数学学习:

  1、课前认真预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。在时间允许的情况下,还可以将练习册做完。

  2、让数学课学与练结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。

  3、课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的`课外题。可以根据自己的需要选择适合自己的课外书。其课外题内容大概就是今天上的课。

  4、单元测验是为了检测近期的学习情况。其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好。老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。

  二、期中期末数学复习:

  要将平时的单元检测卷订成册,并且将错题再做一遍。如果整张试卷考得都不好,那么可以复印将试卷重做一遍。除试卷外,还可以将作业上的错题、难题、易错题重做一遍。另外,自己还可以做2——3张期末模拟卷。

  三、数学考试技巧:

  如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容。在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空。这些条件都对你的解题有很大帮助。在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功。大概留35分钟的时间检查。

  最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐。

老人与海读后感1000字8

  中考数学知识点:分式混合运算法则

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.

  分式混合运算法则:

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简.

  中考数学二次根式的加减法知识点总结

  二次根式的加减法

  知识点1:同类二次根式

  (Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。

  (Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

  知识点2:合并同类二次根式的方法

  合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。

  知识点3:二次根式的加减法则

  二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。

  知识点4:二次根式的混合运算方法和顺序

  运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。

  知识点5:二次根式的加减法则与乘除法则的区别

  乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。

  中考数学知识点:直角三角形

  ★重点★解直角三角形

  ☆内容提要☆

  一、三角函数

  1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

  2.特殊角的三角函数值:

  0°30°45°60°90°

  sinα

  cosα

  tgα/

  ctgα/

  3.互余两角的三角函数关系:sin(90°-α)=cosα;…

  4.三角函数值随角度变化的关系

  5.查三角函数表

  二、解直角三角形

  1.定义:已知边和角(两个,其中必有一边)→所有未知的.边和角。

  2.依据:①边的关系:

  ②角的关系:A+B=90°

  ③边角关系:三角函数的定义。

  注意:尽量避免使用中间数据和除法。

  三、对实际问题的处理

  1.俯、仰角:2.方位角、象限角:3.坡度:

  4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

老人与海读后感1000字9

  一、 重要概念

  1。数的分类及概念

  数系表:

  说明:“分类”的原则:1)相称(不重、不漏)

  2)有标准

  2。非负数:正实数与零的统称。(表为:x≥0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  3。倒数: ①定义及表示法

  ②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1时,1/a1;D。积为1。

  4。相反数: ①定义及表示法

  ②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C。和为0,商为-1。

  5。数轴:①定义(“三要素”)

  ②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。

  6。奇数、偶数、质数、合数(正整数—自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7。绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的`点到原点的距离。

  ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

老人与海读后感1000字10

  1. 因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

  3.公因式的确定:系数的最大公约数?相同因式的最低次幂.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的`公式:

  (1)平方差公式: a2-b2=(a+ b)(a- b);

  (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事项:

  (1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;

  (2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

  (3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

  (4)因式分解的最后结果要求每一个因式的首项符号为正;

  (5)因式分解的最后结果要求加以整理;

  (6)因式分解的最后结果要求相同因式写成乘方的形式.

  6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

  7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

老人与海读后感1000字11

  圆的初步认识

  一、圆及圆的相关量的定义(28个)

  1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

  2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

  3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

  5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

  6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

  7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的.母线。

  二、有关圆的字母表示方法(7个)

  圆--⊙ 半径r 弧--⌒ 直径d

  扇形弧长/圆锥母线l 周长C 面积S三、有关圆的基本性质与定理(27个)

  1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

  P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO

  2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

  3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

  4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

  5.一条弧所对的圆周角等于它所对的圆心角的一半。

  6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  7.不在同一直线上的3个点确定一个圆。

  8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

  9.直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):

  AB与⊙O相离,POAB与⊙O相切,PO=r;AB与⊙O相交,PO

  10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

  11.圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P):

  外离P外切P=R+r;相交R-r

  三、有关圆的计算公式

  1.圆的周长C=2d 2.圆的面积S=s=3.扇形弧长l=nr/180

  4.扇形面积S=n/360=rl/2 5.圆锥侧面积S=rl

  四、圆的方程

  1.圆的标准方程

  在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

  (x-a)^2+(y-b)^2=r^2

  2.圆的一般方程

  把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

  相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

  五、圆与直线的位置关系判断

  链接:圆与直线的位置关系(一.5)

  平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

  讨论如下2种情况:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

  利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

  如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

  如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离

  (2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)

  将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

  令y=b,求出此时的两个x值x1,x2,并且我们规定x1

  当x=-C/Ax2时,直线与圆相离

  当x1

  当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

  圆的定理:

  1不在同一直线上的三点确定一个圆。

  2垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2

  1圆的两条平行弦所夹的弧相等

  3圆是以圆心为对称中心的中心对称图形

  4圆是定点的距离等于定长的点的集合

  5圆的内部可以看作是圆心的距离小于半径的点的集合

  6圆的外部可以看作是圆心的距离大于半径的点的集合

  希望这篇20xx中考数学知识点汇总,可以帮助更好的迎接即将到来的考试!

老人与海读后感1000字12

  圆的定理:

  1不在同一直线上的三点确定一个圆。

  2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3圆是以圆心为对称中心的中心对称图形

  4圆是定点的距离等于定长的点的集合

  5圆的内部可以看作是圆心的距离小于半径的点的集合

  6圆的外部可以看作是圆心的距离大于半径的点的集合

  7同圆或等圆的半径相等

  8到定点的距离等于定长的点的`轨迹,是以定点为圆心,定长为半径的圆

  9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  中考数学知识点复习口诀

  有理数的加法运算

  同号相加一边倒;异号相加“大”减“小”,

  符号跟着大的跑;绝对值相等“零”正好。

  合并同类项

  合并同类项,法则不能忘,只求系数和,字母、指数不变样。

  去、添括号法则

  去括号、添括号,关键看符号,

  括号前面是正号,去、添括号不变号,

  括号前面是负号,去、添括号都变号。

  一元一次方程

  已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

  平方差公式

  平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  完全平方公式

  完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;

  首±尾括号带平方,尾项符号随中央。

  因式分解

  一提(公因式)二套(公式)三分组,细看几项不离谱,

  两项只用平方差,三项十字相乘法,阵法熟练不马虎,

  四项仔细看清楚,若有三个平方数(项),

  就用一三来分组,否则二二去分组,

  五项、六项更多项,二三、三三试分组,

  以上若都行不通,拆项、添项看清楚。

  单项式运算

  加、减、乘、除、乘(开)方,三级运算分得清,

  系数进行同级(运)算,指数运算降级(进)行。

  一元一次不等式解题步骤

  去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,

  两边除(以)负数时,不等号改向别忘了。

  一元一次不等式组的解集

  大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。

  一元二次不等式、一元一次绝对值不等式的解集

  大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

  分式混合运算法则

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简。

  中考数学知识点归纳:平面直角坐标系

  平面直角坐标系

  1、平面直角坐标系

  在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

  其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

  为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

  注意:x轴和y轴上的点,不属于任何象限。

  2、点的坐标的概念

  点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

老人与海读后感1000字13

  圆的定理:

  1不在同一直线上的三点确定一个圆。

  2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3圆是以圆心为对称中心的中心对称图形

  4圆是定点的距离等于定长的点的集合

  5圆的内部可以看作是圆心的距离小于半径的点的集合

  6圆的外部可以看作是圆心的距离大于半径的点的集合

  7同圆或等圆的半径相等

  8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  中考数学知识点复习口诀

  有理数的加法运算

  同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。

  合并同类项

  合并同类项,法则不能忘,只求系数和,字母、指数不变样。

  去、添括号法则

  去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

  一元一次方程

  已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

  平方差公式

  平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  完全平方公式

  完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;

  首±尾括号带平方,尾项符号随中央。

  因式分解

  一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

  单项式运算

  加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

  一元一次不等式解题步骤

  去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

  一元一次不等式组的解集

  大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。

  一元二次不等式、一元一次绝对值不等式的解集

  大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

  分式混合运算法则

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简。

  中考数学知识点归纳:平面直角坐标系

  平面直角坐标系

  1、平面直角坐标系

  在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

  其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

  为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

  注意:x轴和y轴上的点,不属于任何象限。

  2、点的坐标的概念

  点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

  中考数学知识点的总结整理2

  函数

  ①位置的确定与平面直角坐标系

  位置的确定

  坐标变换

  平面直角坐标系内点的特征

  平面直角坐标系内点坐标的符号与点的象限位置

  对称问题:P(x,y)→Q(x,- y)关于x轴对称P(x,y)→Q(- x,y)关于y轴对称P(x,y)→Q(- x,-y)关于原点对称

  变量、自变量、因变量、函数的定义

  函数自变量、因变量的取值范围(使式子有意义的条件、图象法) 56、函数的图象:变量的变化趋势描述

  ②一次函数与正比例函数

  一次函数的定义与正比例函数的定义

  一次函数的图象:直线,画法

  一次函数的性质(增减性)

  一次函数y=kx+b(k≠0)中k、b符号与图象位置

  待定系数法求一次函数的解析式(一设二列三解四回)

  一次函数的平移问题

  一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)

  一次函数的实际应用

  一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合

  中考数学知识点的总结整理3

  中考难点数学知识点

  三角函数关系

  倒数关系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函数关系六角形记忆法

  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

  倒数关系

  对角线上两个函数互为倒数;

  商数关系

  六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

  平方关系

  在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

  中考数学最易出错的知识点

  数与式

  易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。

  易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

  易错点3:平方根、算术平方根、立方根的区别。填空题必考。

  易错点4:求分式值为零时学生易忽略分母不能为零。

  易错点5:分式运算时要注意运算法则和符号的'变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。

  易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

  易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

  易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!

  易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。

  方程(组)与不等式(组)

  易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

  易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带X公因式要回头检验!

  易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

  易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

  易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

  易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

  易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

  易错点8:利用函数图象求不等式的解集和方程的解。

  中考数学易出错的知识点

  函数

  易错点1:各个待定系数表示的的意义。

  易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

  易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

  易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

  易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

  易错点6:与坐标轴交点坐标一定要会求。面积值的求解方法,距离之和的最小值的求解方法,距离之差值的求解方法。

  易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

  易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

  中考数学知识点的总结整理4

  中考数学较难的知识点

  一元二次方程的基本概念

  1.一元二次方程3x2+5x-2=0的常数项是-2.

  2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

  3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

  4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.

  知识点2:直角坐标系与点的位置

  1.直角坐标系中,点A(3,0)在y轴上。

  2.直角坐标系中,x轴上的任意点的横坐标为0.

  3.直角坐标系中,点A(1,1)在第一象限。

  4.直角坐标系中,点A(-2,3)在第四象限。

  5.直角坐标系中,点A(-2,1)在第二象限。

  知识点3:已知自变量的值求函数值

  1.当x=2时,函数y=的值为1.

  2.当x=3时,函数y=的值为1.

  3.当x=-1时,函数y=的值为1.

  知识点4:基本函数的概念及性质

  1.函数y=-8x是一次函数。

  2.函数y=4x+1是正比例函数。

  3.函数是反比例函数。

  4.抛物线y=-3(x-2)2-5的开口向下。

  5.抛物线y=4(x-3)2-10的对称轴是x=3.

  6.抛物线的顶点坐标是(1,2)。

  7.反比例函数的图象在第一、三象限。

  知识点5:数据的平均数中位数与众数

  1.数据13,10,12,8,7的平均数是10.

  2.数据3,4,2,4,4的众数是4.

  3.数据1,2,3,4,5的中位数是3.

  知识点6:特殊三角函数值

  30°=根号3/2 。

  260°+ cos260°= 1.

  3.2sin30°+ tan45°= 2.

  45°= 1.

  60°+ sin30°= 1.

  中考数学难点知识点总结《几何》

  初中几何公式:线

  1.同角或等角的余角相等

  2.过一点有且只有一条直线和已知直线垂直

  3.过两点有且只有一条直线

  4.两点之间线段最短

  5.同角或等角的补角相等

  6.直线外一点与直线上各点连接的所有线段中,垂线段最短

  7.平行公理经过直线外一点,有且只有一条直线与这条直线平行

  8.如果两条直线都和第三条直线平行,这两条直线也互相平行

  初中几何公式:角

  9.同位角相等,两直线平行

  10.内错角相等,两直线平行

  11.同旁内角互补,两直线平行

  12.两直线平行,同位角相等

  13.两直线平行,内错角相等

  14.两直线平行,同旁内角互补

  初中几何公式:三角形

  15.定理三角形两边的和大于第三边

  16.推论三角形两边的差小于第三边

  17.三角形内角和定理三角形三个内角的和等于180°

  18.推论1直角三角形的两个锐角互余

  19.推论2三角形的一个外角等于和它不相邻的两个内角的和

  20.推论3三角形的一个外角大于任何一个和它不相邻的内角

  21.全等三角形的对应边、对应角相等

  22.边角边公理有两边和它们的夹角对应相等的两个三角形全等

  23.角边角公理有两角和它们的夹边对应相等的两个三角形全等

  24.推论有两角和其中一角的对边对应相等的两个三角形全等

  25.边边边公理有三边对应相等的两个三角形全等

  26.斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

  27.定理1在角的平分线上的点到这个角的两边的距离相等

  28.定理2到一个角的两边的距离相同的点,在这个角的平分线上

  29.角的平分线是到角的两边距离相等的所有点的集合

  中考数学备考难点:分式方程

  分式方程

  1、分式方程

  分母里含有未知数的方程叫做分式方程。

  2、分式方程的一般方法

  解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:

  (1)去分母,方程两边都乘以最简公分母

  (2)解所得的整式方程

  (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

  3、分式方程的特殊解法

  换元法:

  换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  中考数学知识点的总结整理5

  1.数轴

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

  数轴的三要素:原点,单位长度,正方向。

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  重点知识:

  初中数学第一课,认识正数与负数!新初一的来~

  2.相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  3.绝对值

  1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

  ①互为相反数的两个数绝对值相等;

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  ③有理数的绝对值都是非负数.

  2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:

  ①当a是正有理数时,a的绝对值是它本身a;

  ②当a是负有理数时,a的绝对值是它的相反数﹣a;

  ③当a是零时,a的绝对值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  中考数学知识点

  1、反比例函数的概念

  一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

  2、反比例函数的图像

  反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

  3、反比例函数的性质

  反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,y的取值范围是y0;

  ②当k>0时,函数图像的两个分支分别

  在第一、三象限。在每个象限内,y

  随x的增大而减小。

  ①x的取值范围是x0,y的取值范围是y0;

  ②当k<0时,函数图像的两个分支分别

  在第二、四象限。在每个象限内,y

  随x的增大而增大。

  4、反比例函数解析式的确定

  确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

  5、反比例函数的几何意义

  设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

  (1)△OPA的面积.

  (2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

  矩形PCEF面积=,平行四边形PDEA面积=

  二次函数中考数学知识点

  二次函数的解析式有三种形式:

  (1)一般式:

  (2)顶点式:

  (3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

  注意:抛物线位置由决定.

  (1)决定抛物线的开口方向

  ①开口向上.

  ②开口向下.

  (2)决定抛物线与y轴交点的位置.

  ①图象与y轴交点在x轴上方.

  ②图象过原点.

  ③图象与y轴交点在x轴下方.

  (3)决定抛物线对称轴的位置(对称轴:)

  ①同号对称轴在y轴左侧.

  ②对称轴是y轴.

  ③异号对称轴在y轴右侧.

  (4)顶点坐标.

  (5)决定抛物线与x轴的交点情况.

  ①△>0抛物线与x轴有两个不同交点.

  ②△=0抛物线与x轴有的公共点(相切).

  ③△<0抛物线与x轴无公共点.

  (6)二次函数是否具有、最小值由a判断.

  ①当a>0时,抛物线有最低点,函数有最小值.

  ②当a<0时,抛物线有点,函数有值.

  (7)的符号的判定:

  表达式,请代值,对应y值定正负;

  对称轴,用处多,三种式子相约;

  轴两侧判,左同右异中为0;

  1的两侧判,左同右异中为0;

  -1两侧判,左异右同中为0.

  (8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。

  (9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。

  (10)结论:

  ①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;

  ②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;

  ③二次函数(经过原点,则。

  (11)二次函数的解析式:

  ①一般式:(,用于已知三点。

  ②顶点式:,用于已知顶点坐标或最值或对称轴。

  (3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。

  圆柱体要领:如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。

  圆柱体的定义

  1、旋转定义法:一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。

  2、平移定义法:以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。

  性质 1.圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。

  2.圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。

  3.圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形或正方形。

  圆柱的侧面积=底面周长x高,即:

  S侧面积=Ch=2πrh

  底面周长C=2πr=πd

  圆柱的表面积=侧面积+底面积x2=2πr2+Ch=2πr(r+h)

  4.圆柱的体积=底面积x高

  即V=S底面积×h=(π×r×r)h

  5.等底等高的圆柱的体积是圆锥的3倍6.圆柱体可以用一个平行四边形围成

  圆柱的表面积=圆柱的表面积=侧面积+底面积x2

  6.把圆柱沿底面直径分成两个同样的部分,每一个部分叫半圆柱。这时与原来的圆柱比较,体积不变、表面积增加两个直径X高的长方形。

  7.圆柱的轴截面是直径x高的长方形,横截面是与底面相同的圆。

老人与海读后感1000字14

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①整数②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的'特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

老人与海读后感1000字15

  一、代数式

  1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。

  2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。

  二、整式

  单项式和多项式统称为整式。

  1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

  2) 单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。

  3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  2. 多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

  2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

  3. 多项式的排列:

  1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

  2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

  由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

  三、整式的运算

  1. 同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。

  2. 合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  3. 整式的加减:有括号的先算括号里面的,然后再合并同类项。

  4. 幂的运算:

  5. 整式的乘法:

  1) 单项式与单项式相乘法则:把它们的`系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

  2) 单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

  3) 多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  6. 整式的除法

  1) 单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

  2) 多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

  四、因式分解——把一个多项式化成几个整式的积的形式

  1) 提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。 取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。

  2) 公式法:A.平方差公式; B.完全平方公式

【老人与海读后感1000字】相关文章:

老人与海读书心得 读书心得《老人与海》09-20

《老人与海鸥》读后感10-07

《老人与海》的读后感10-06

老人与海读后感09-28

老人与海读后感07-28

《老人与海鸥》读后感10-19

《老人与海》读后感06-15

《老人与海》的读后感02-11

[经典]老人与海读后感03-30

《老人与海》读后感07-12