圆柱和圆锥教案

时间:2022-08-29 10:10:21 教案 投诉 投稿

圆柱和圆锥教案

  作为一名教职工,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。那么写教案需要注意哪些问题呢?下面是小编精心整理的圆柱和圆锥教案,希望能够帮助到大家。

圆柱和圆锥教案

圆柱和圆锥教案1

  教学内容:

  教材第25~26页练习与应用第7~11题、探索与实践12~14题、评价与反思。

  教学目标:

  1.使学生进步掌握圆柱、圆锥体积计算方法,沟通已经学过的一些形体体积计算之间的联系。

  2.培养学生综合运用知识和解决简单实际问题的能力。

  教学重点:

  沟通已经学过的一些形体体积计算之间的联系。

  教学难点:

  综合运用知识和解决简单实际问题。

  教学过程:

  一、揭示课题

  我们已经复习了圆柱的表面积、圆柱和圆锥体积的计算。这节课继续复习这方面的知识,特别是表面积、体积计算知识的实际应用。(板书课题)通过复习,使学生进一步掌握表面积、体积的'汁算方法,提高应用知识的能力。

  二、复习体积计算

  1.复习公式。

  提问:长方体、正方体的体积怎样计算?(板书时出示相应图形)为什么正方体体积等于边长a的立方?圆柱体积计算公式是怎样的?这个公式怎样得到的?圆锥的体积公式是怎样的?为什么要乘以1/3 ?

  2.做复习第7题。

  让学生在练习本上独立计算。

  三、知识应用复习

  我们掌握了这些基础知识,可以解决生产、生活中的一些实际问题。

  1.做练习四第8题。

  引导学生把新知与旧知有机结合起来进行比较。

  2.做练习四第9题。

  结合画图演示水流的速度就是圆柱的高,每分钟的高在每秒的基础上乘以60。

  3.做练习四第10题。

  提问:用这堆沙子去填长方体的沙坑哪一个量是相等的?(体积)接着学生计算。

  4.做练习四第11题。

  出示题目

  结合题目和图形理解长方体纸箱的长、宽、高与每个圆柱体饮料罐相相关数据的关系。接下来学生自主完成。(教师要注意后进生的辅导)

  5.做练习四第12题。

  可以先举例说明,再概括。

  6.做练习四第13题。

  提问:要求圆柱体饮料罐的容积需要测量哪些数据?(要注意从它的里面测量)

  通过计算再与商标纸上标出的容积比一比,你发现什么?加强学生把数学与生活有效结合起来。

  7.做练习四第14题。

  先让学生动手操作,再交流。

  8.评价与反思:结合3个方面让学生自主评价。

  9.让学生了解你知道吗?

  四、课堂小结

  通过这节课复习,你进一步明确了哪些知识?

  五、课堂作业

  基础训练

圆柱和圆锥教案2

  教学内容:

  教材分四段进行教学。第一段,认识圆柱和圆锥的基本特征;第二段,探索并掌握圆柱侧面积和表面积的计算方法,解决相关的一些简单的实际问题;第三段,探索并掌握圆柱的体积计算公式,并运用此体积公式解决一些简单的实际问题;第四段,探索并掌握圆锥的体积公式,并应用体积公式解决相关的实际问题。最后,对本单元的学习内容进行了整理与练习,沟通知识间的联系,进一步提高综合应用数学知识解决实际问题的能力。

  教材分析:

  本单元内容是在学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的`特征,以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。前面的学习内容既为新知识的学习奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。学习了新知,既是学生认识上的一次飞跃,又拓宽了学习空间,知识结构得到了进一步的完善,为今后学习其它的立体图形打好了基础。

  教学目标:

  1、使学生通过观察、操作等活动认识圆柱和圆锥,知道圆柱和圆锥底面、侧面和高的含义,掌握圆柱和圆锥的基本特征。

  2、使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。

  3、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考,培养初步的分析、综合、比较、抽象、概括和简单的判断、推理能力。

  4、使学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

  教学重点:使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。

  教学难点:应用圆柱和圆锥的有关知识,灵活、合理地解决一些实际问题。使学生在活动中进一步积累空间与图形的学习经验,增强空间观念。

  课时安排:圆柱和圆锥(11课时)

圆柱和圆锥教案3

  单元教学要求:

  1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

  2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

  3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

  单元教学重点:

  圆柱体积计算公式的推导和应用。

  单元教学难点:

  灵活运用知识,解决实际问题。

  (一)圆柱的认识

  教学内容:

  教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。

  教学要求:

  1、使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。

  2、使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

  教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。

  教学重点:

  认识圆柱的特征,掌握圆柱侧面积的计算方法。

  教学难点:

  认识圆柱的侧面。

  教学过程:

  一、复习旧知

  1、提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?

  2、引入新课。

  出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)

  二、教学新课

  1、认识圆柱的特征。

  请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的`圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?

  2、认识圆柱各部分名称。

  (1)认识底面。

  出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)

  (2)认识侧面。

  请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)

  (3)认识圆柱图形。

  请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

  说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。

  在说明的基础上画出下面的立体图形:

  (4)认识高。

  长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)

  3、巩固特征的认识。

  (1)提问:你见过哪些物体是圆柱形的?

  (2)做练习一第1题。

  指名学生口答,不是圆柱的要求说明理由。

  (3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……

  4、教学侧面积计算。

  (1)认识侧面的形状。

  教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?

  (2)侧面积计算方法。

  ①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。

  ②得出计算方法。

  提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)

  (3)教学例1

  出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。

  三、巩固练习

  1、提问:这节课学习了什么内容?

  2、做圆柱体。

  让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。

  3、做“练一练”第3题。

  指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。

  4、思考:

  如果圆柱的底面周长和高相等,侧面展开是什么形状,

  四、布置作业

  课堂作业:练习一第2题。

  家庭作业:练习一第3题。

圆柱和圆锥教案4

  教学内容:

  第24页回顾与整理、练习与应用第1~6题。

  教学目标:

  1.使学生进一步认识圆柱、圆锥的特点。能判断一个物体或立体图形是不是圆柱或圆锥。

  2.使学生进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法,并提高灵活应用计算方法解决一些实际问题的能力。

  教学重点:

  进一步认识圆柱、圆锥的特点。

  教学难点:

  进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法。

  教学过程:

  一、揭示课题

  我们已经学完了圆柱和圆锥这一单元,今天开始复习圆柱和圆锥。(板书课题)通过复习,一方面,要进一步认识圆柱和圆锥的特征,熟悉圆柱和圆锥各部分的名称;另一方面,要进一步掌握圆柱表面积、圆柱和圆锥体积(包括容积)的汁算方法,提高解决实际问题的能力。

  二、复习特征

  1.说出物体名称。

  出示一些圆柱和圆锥的物体和模型,让学生说一说各是什么形体。

  2.复习特征。

  (1)同时出示圆柱和圆锥的图形。

  指名学生说出各图的名称。(板书:圆柱、圆锥)

  (2)提问:谁能拿出圆柱和圆锥,说出各部分的名称?(在图中板书)圆锥的高怎样测量,试着量一量你手里圆锥的高。

  (3)提问:哪位同学来说说圆柱有什么特征?哪位同学来说说圆锥有什么特征?

  三、复习计算

  1.练习与应用第1题。

  出示表格,说明要求,让学生计算,填在表格里。学生口答结果,老师板书填表。

  提问:圆柱的表面积怎样计算的?(板书:圆柱表面积=侧面积+两个底面积)圆柱的侧面积怎样计算?为什么用底面周长乘以高? 这两题计算时有什么不同的地方?圆柱的体积怎样计算的,圆柱的体积计算公式是怎样得到的?(强调把个新知识转化成旧知识,得出新的结论)圆锥的体积怎样计算的?圆锥的'体积计算公式又是怎样得到的?这两题计算过程完全一样吗?为什么不一样?

  2.练习与应用第2题。

  提问:压路机前轮是什么形状的?前轮滚动一周所形成的面的大小相当于前轮的哪一部分面积?接下来学生独立完成。

  3.练习与应用第3题。

  引导思考:水桶底部的铁箍大约长15.7分米就是圆柱的底面周长。求做这个水桶至少要用木板多少平方分米就是圆柱水桶的哪些面的面积之和。这个水桶能盛120升水吗?要拿什么和120升比较?学生自主完成。

  4.练习与应用第4题。

  联系实际解决问题,要求得数保留整数。

  四、课堂小结

  通过这节课的复习,你有哪些收获?

  五、课堂作业

  练习与应用第5~6题。

圆柱和圆锥教案5

  教学内容:完成“练习与应用”的第6、7题,“拓展与实践”,“反思”等。

  教学目标:

  1、使学生系统地掌握长方体、正方体、圆柱体、圆锥体的体积公式,理解这些体积公式之间的内在联系。

  2、熟练地针对不同的情况运用不同的公式进行计算,使学生运用知识解决实际问题的能力有进一步的提高。

  3、在合作交流的过程中培养学生的合作意识和创新能力。

  教学重点:灵活运用所学知识解决有关实际问题。

  教学难点:培养学生的空间想象能力和创新意识。

  教学过程:

  一、导入

  1、提问,引导学生讨论:

  (1)长方体、正方体、圆柱体、圆锥体的体积公式各是什么?它们的体积之间有什么关系?

  (2)长方体、正方体、圆柱体、圆锥体的底面积相等、高也相等它们的体积之间有什么关系?

  (3),板书关系.

  2、基本练习:

  将一个正方体木料加工成最大的圆柱体木料、圆柱体与正方体有那些相等的关系?如果将一个正方体木料加工成一个最大的圆锥体木料、正方体木料和圆锥体木料又有那些相等的`关系?

  通过上述两题的比较,让学生理解底面积相等、高相等与底面直径相等高相等之间的区别。

  3、公式推导的深化理解。

  (1)提问:在圆柱体的推导过程中,圆柱体分成若干等份后拼成的长方体的表面积和圆柱体的表面积相比是如何变化的?如果圆柱体的高为4分米、拼成长方体以后表面积增加了48平方分米,原来圆柱体的体积是多少立方分米?

  (2)学生交流发言。

  (3)教师引导:回忆推导过程,有什么收获?

  二、实践应用

  1、实际生活中的问题与数学知识的合理搭配。

  (1)一个圆柱体的罐头盒外面贴商标纸,求商标纸的面积是求什么?你还知道生活中有那些地方是求物体的侧面积的?

  (2)要做一个圆柱底面油桶现在已经有了一块长25.12分米,宽5分米的铁皮,现在要给它配上合适的底和盖,需要边长几分米的正方形几块?做成的圆柱体的容积是多少?

  2、先实际测量,再运用所学的知识计算。

  分小组测量并计算。

  (1)每组先出示一个茶杯,量出有关的数据,算出茶杯的容积。

  (2)给每组一个土豆,利用刚才的茶杯让学生想办法测量出土豆的体积。

  3、解决问题。

  讨论解决第6题。

  根据学生的解答教师质疑:

  除了题目中画图的摆的方法外有没有其它方法?你能算一算其他方法摆时纸箱的长、宽、高各是多少吗?

  题目中所用的方法是不是用的硬纸板最少?

  学生交流

  讨论解决第7题。

  评议、交流

  4、完成探索与实践

  探讨、交流

  三、

  你有何收获?反思

  学生交流

  四、作业

  完成《练习与测试》相关作业

  板书设计

  与练习

圆柱和圆锥教案6

  一.教材地位

  本单元是在学生掌握了圆、长方体、正方体等有关知识的基础上进行教学的,是小学阶段几何知识学习的最后一部分内容,是以后进一步学习几何知识(立体几何、三视图)的基础。圆柱和圆锥(教材中的圆柱体指的是直圆柱,简称圆柱;圆锥指的也是直圆锥)的侧面是曲面,本单元的学习会使学生对立体图形的认识更深入,更全面,有利于进一步发展学生的空间观念。

  二.单元教学目标

  1.在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握它们的特征。

  2.结合具体情境,通过探索与发现,理解并掌握圆柱的侧面积、表面积和圆柱、圆锥体积的计算方法,并能解决简单的实际问题。

  3.经历探索圆柱、圆锥有关知识的过程,进一步发展空间观念。

  4.在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解掌握一些数学方法。

  三.单元教学内容

  信息窗

  主题

  知识点

  信息窗一

  冰淇淋盒

  圆柱和圆锥的认识

  信息窗二

  制作圆柱形纸筒

  圆柱的侧面积和表面积

  信息窗三

  冰淇淋包装盒容积

  圆柱和圆锥的体积

  四.单元编写突出特点

  1.打破了传统的知识编排顺序,加强了圆柱和圆锥的对比和联系。

  本单元的教材编排了三个信息窗,分别是圆柱、圆锥的认识,圆柱的表面积,圆柱、圆锥的体积。在信息窗1里,同时安排了圆柱和圆锥的认识,学生可以通过对圆柱和圆锥模型的观察、操作和比较,更清晰地了解它们之间的联系和区别,发现并掌握圆柱和圆锥的特征。在信息窗3里,在学习圆锥的体积之后,又以对话的形式展示学生的猜想:圆锥的体积与圆柱有关。引导学生用实验的方法探索圆锥和圆柱体积之间的关系。这样将圆柱和圆锥编排在一起进行教学,打破了传统的逐一学习的格局,加强了圆柱和圆锥的对比,更有利于学生通过发现、探索,理解和掌握圆柱和圆锥的有关知识。

  2.体现从猜想到验证的学习过程,渗透研究数学问题的与方法。

  本单元教材编写,重视对数学与方法的引领,如:第三个信息窗对圆柱体积计算方法的探索,很好地体现了这一点。教材了这样的思路:由回忆圆的面积公式的推导方法为切入点(化圆为方),实现思维上的迁移,猜想:圆柱的体积公式可能是把圆柱转化成长方体来推导。这样的编写,有利于帮助学生了解研究数学问题的思路与方法,提升学生研究数学问题的能力。

  五.单元课时统筹

  信息窗一

  信息窗二

  信息窗三

  回顾

  圆柱、圆锥认识、练习:1课时

  圆柱的表面积探索、基本练习:1课时

  圆柱的`体积探索、基本练习:1课时

  回顾、练习:1课时

  巩固练习:2课时

  圆柱体积巩固练习:1课时

  综合练习:1课时

  圆锥体积探索、基本练习:1课时

  圆柱和圆锥体积巩固练习:2课时

  六.教学建议

  信息窗一:冰淇淋盒

  1、教学内容:.圆柱和圆锥的特征

  2、信息窗的介绍:图中为我们了两种不同形状的冰淇淋包装盒。

  例题的设置:

  第一个红点:初步认识圆柱和圆锥。

  第二个红点:学习圆柱和圆锥的特征。

  3、信息窗教学建议:

  第一、老师要注重学生已有的生活经验。

  圆柱和圆锥对学生来说,并不陌生。如何让高年级学生充分借助已有知识经验,综合自己所掌握的各项技能,对圆柱的特征产生深刻的感性认识,建立“圆柱”的表象,是教师备课中应考虑的。因此在教学过程中,教师要让学生广泛地找一找生活中经常见到的圆柱和圆锥的物体,同时可以提前让学生自己先回去做一个圆柱,课中让学生结合自己做图形说一说,对于这两种形体自己有哪些了解。

  第二、多给学生一些动手操作的机会。

  立体几何图形的学习关键是学生要有空间观念,而培养学生空间观念的最佳途径就是要动手操作,因此在课堂上要让学生反复地摸一摸、量一量、比一比,从而归纳出圆柱圆锥的特征。

  第三、注重多媒体的应用,培养学生的空间观念。

  让学生把眼中的实物抽象出几何体,让学生认识圆柱圆锥的高。都有一定的难度,教师可以充分借用媒体,来化解这一难点。特别是要利用多媒体帮助学生区分出高和母线。条件不具备的学校要借助于教具,让学生认真观察、充分地展开想象,达到上述目的。

  4、练习的分析:

  练习要注意让学生在动手操作的基础上培养学生的空间观念。

  自主练习第3题是培养学生想象能力、建立空间观念的题目,同时也为学生进一步学习表面积做铺垫。练习时,可以让学生先想一想,再连线。还可以作为学生动手操作的题目,让学生按照图中所示,找一些实物,沿着高剪开,初步认识圆柱和圆锥的侧面展开图。实际是为下一窗口学习圆柱的侧面积做铺垫,结合学生的想象,对于理解困难的学生,教师要让学生亲身动手操作,以加深理解。这一部分好多题目要加强实际操作,象练习中的第四题也要让学生亲自动手做一做。

  第5题也是对学生空间观念进一步培养的题目,练习时可以先让学生进行想象,然后在想象不是非常清晰的情况下,让学生进行实验,然后抛开实验,进一步进行想象,这样一步步加深理解。

  第6题要让学生明白两点:一是彩带的长度与圆柱的直径和高之间的关系,第二点要让学生发现圆柱底面也有与上面重复的彩带。

  “课外实践”是让学生到生活中寻找圆柱形和圆锥形的物体并测量底面直径和高。教师要注意引导学生掌握测量圆锥高的正确测量方法:(1)先把圆锥的底面放平;(2)用一块木板水平地放在圆锥的顶点上面;(3)竖直地量出平板和底面之间的距离。(教参中所述的页码不对,是49页)

  信息窗二:制作圆柱形纸筒

  1、教学内容:圆柱的侧面积和表面积

  2、信息窗的介绍:图中左侧呈现的是圆柱形纸筒制作车间生产纸筒的情境,右侧的纸筒标示出了底面直径和高。

  3、信息窗的教学建议:

  第一、加强直观操作,让学生直观理解圆柱的表面积与侧面积。

  这里所说的操作,应是两点,一指课前操作。教师课前让学生们自己动手做一个圆柱形的纸筒,结合自己做纸筒的过程,交流自己是怎么做出来的。根据学生的回答课件出示纸筒制作车间做纸筒的过程。从而使学生更清晰了解纸筒的制作过程。从而让学生认识到圆柱的表面积是两个圆面积和一个侧面的面积。二指课中操作,重点解决侧面面积的计算方法,教师让学生通过剪一剪、拼一拼,认识到圆柱的侧面展开实际是一个长方形,而这个长方形的长和宽分别应该是底面的周长和高,这是学生非常难理解的,在这里要借助反复地操作和多媒体课件的展示学生理解。从而得到侧面积应该是底面周长×高。

  第二、注重几个概念的区分。

  这一窗口涉及到了好几个概念,如侧面积、表面积、底面积、底面周长等等。很多教过五年级的教师都有这种感触,学习这一部分知识时,一个知识点一个知识点地进行,学生们掌握得不错,但当把所有的知识点合到一起的时候,学生都乱套了,为什么,主要原因学生对这几个概念的理解。到底求什么要用到底面周长,求什么要用到底面积,让学生头脑清晰一些。

  4、练习的分析:

  自主练习第2题是教师要让学生明白求商标的面积实际上就是求圆柱的侧面积,同时注意该题的结果要用到“进一法”取近似值。

  第3题学生理解起来比较难,因此练习时,要让学生用圆柱代替压路机的前轮,让学生通过演示明白,压路机转一周得到的是一个长方形,而求压路机转动一周的长,实际上就是求压路机的侧面积。如果学生不能理解可以用课件进一步强化对这一生活现象的理解。

  第5题实际上是对圆柱表面积的一个深入理解题,这道题教师要让学生明白理解思路:第一看到长方形,我要怎样把长方形围起来,围起来以后谁做了底面的周长?第二底面周长知道了,那么怎样计算它的底面直径?从而根据底面直径对下面几种底面进行相应的选择。

  第8~10题都是解决生活中的实际问题,练习时,建议把第8题或者第9题做为半例题处理,第10题应该提醒学生单位的转化。通过练习,进一步巩固圆柱的侧面积、表面积的计算方法,提高学生解决现实问题的能力。先让学生根据实际问题的特点,明确是求的哪些面的面积,再具体问题灵活解决,防止生搬硬套。

  第12题是一道思考题可以根据本班的实际情况,先让学生独立完成,然后交流、反馈,也可以让学生动手操作体验一下,然后再解答,通过交流,使学生知道每截一次,表面积就增加两个底面的面积,该木料截成4段,需要截3次,增加了6个面,面积是36平方米。

  信息窗三:冰淇淋包装盒容积

  1、教学内容:圆柱和圆锥的体积

  2、信息窗的介绍:这幅图呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。

  例题的设置。这里有两个红点,红点一是学习圆柱的体积。红点二是学习圆锥的体积。

  3、信息窗教学建议:

  第一、启发诱导学生,回忆以往解决数学问题的和方法,通过猜想和操作,找到圆柱体积的计算方法,引领学生实现方法的迁移。

  怎样求圆柱的体积,对于学生来说比较难于想象,这时教师可以让学生通过回忆以往解决数学问题的方法,从而让学生产生了要转化圆柱想法。联想到了圆面积公式的推导,脑子里出现圆面积推导的方法,将圆转化成长方体,圆柱与圆有着类似的地方,想到可能是把圆柱转化成长方体。有了这个猜想,就要去进一步验证。

  第二、让学生在操作中理解圆柱、圆锥的体积。

  教学圆柱的体积时,教师可以为学生准备一些圆柱形状的实物,如萝卜等,让学生以小组为单位试一试,怎么把圆柱转化为长方体,结合学生的操作,教师也可以用多媒体或教具再现这个过程,让学生更形象直观的看到这个转化的过程。通过这种操作进一步让学生体会转化的数学,要注意引导学生理解长方体与圆柱之间的关系,进而推导出圆柱的体积公式。(解释教材中为什么将体积的立方厘米转化成了毫升)。

  圆锥的体积学生理解不是很难,教师在教学时根据教材中所的思路,首先引导学生进行猜想,圆锥的体积可能与什么有关系?有怎样的关系?其次,让学生设计实验进行操作,通过验证得出结论。第三、在操作的过程中让学生亲身体会到三分之一。在应用过程中,学生容易出的错是漏写1/3,为解决这一难点,教师在教学过程中,尽可能让学生通过实验理解圆锥与它等底等高的圆柱的关系,让学生亲身经历这一过程,以加深印象。教材呈现的实验只是一般的一个实验,教学时可以设计其它的实验。(可以补充讨论时的问题及想到的)

  4、练习分析

  圆柱和圆锥的体积放到一起时学生有些时候很容易混淆,要让学生反复加强基础练习。

  第12题练习时,首先要让学生明确把圆柱捏成圆锥,体积是不发生变化的,得到了圆锥的体积和它的底面半径,就可以利用算术式或者是方程得到圆锥的高度。进一步观察学生也可以从圆柱和圆锥的关系中找到他们之间高的关系。由此可以让学生进一步研究等体积等高,底面直径的关系等。

  第13题难度较大,学生必须有空间观念,在脑子中知道我这个圆柱是怎么样折成的,哪里做了底面周长,哪里做了高,这样才能算出正确的结果,如果学生想象不出来,一定要让学生用纸亲自折一折,这样进一步明确圆柱的底面周长和高。加强空间观念。

  第※14题是一道有一定难度、综合性比较强的题目。练习时,要先使学生明确:三种图形的体积都可以用“底面积×高”计算,因为它们的高相等,所以只需比较底面积的大小即可。然后进一步引导学生思考:当周长相等时,圆、正方形、长方形,谁的面积最大?这一问题。可让学生把它们的周长假设成一个具体的数(如:31.4),再通过计算比较面积的大小;也可以给学生一段绳子,通过围一围、量一量、算一算,找到答案:当周长相等时,圆的面积最大,正方形的面积次之,长方形的面积最小。从而得到最后的答案:圆柱的体积最大。(计算时可用计算器)

  “聪明小屋”这一题,难点是让学生理解表面积。教学过程中,教师要充分借助学具让学生理解。要让学生充分理解所谓的表面积就是表面的面积,所以应该是长方体的表面积去掉两个底面圆的面积。再加上圆柱的侧面积。学生理解起来比较困难,可以借助实物让学生来进一步理解。同时可以出示其它形状,让学生来说一说它们的表面积和体积。

  回顾有两部分,上半部分是对本单元学过的知识进行梳理,圆柱和圆锥是以表格的形式让学生回顾圆柱和圆锥的特征和体积公式。下半部分是研究问题的方法。

  第一种:自主式回顾。

  青岛版教材在回顾方面从低中年级就比较注重,到了高年级,学生完全有能力进行自主地回顾与。可以让学生独立或者是小组合作交流,在交流中对本单元学了哪些知识进行回顾。

  第二种:回顾时,教师可重点对研究问题的过程与方法进行引领。

  综合练习第3题学生会感到很陌生,因为对雨量器学生并不了解,所以首先要结合图意让学生明白雨量器是怎样的结构,并结合要解决的问题让学生明白第一个问题,求做一个雨量器的外壳至少要用多少平方厘米的材料这是求雨量器的表面积(只有一个底面)。第二个问题求储水瓶里一共接了多少雨水?这是求一段圆柱的体积。在学生明确了这个以后再让学生自己来进行计算。

圆柱和圆锥教案7

  教学目标:

  【知识与技能目标】

  通过自主整理,能够清晰的了解圆柱、圆锥单元的三大知识系统,即特征、表面积、体积。

  【过程与方法目标】

  通过复习,对有关计算公式的推导过程进一步明晰,能够熟练的运用计算公式解决实际问题

  【情感与态度目标】

  在复习中,通过小组合作、精巧的练习设计等,体会到解决问题的乐趣,增强学好数学的信心。

  教学重点:

  圆柱、圆锥的表面积、体积复习及有关计算。

  教学难点:

  圆柱、圆锥知识的综合运用。

  教学准备:

  多媒体。

  教学过程:

  一、回忆知识,并自主整理

  1.揭示课题:复习圆柱和圆锥

  师:请同学回忆一下,在圆柱、圆锥单元,我们学习了哪些知识?你能有序的将它们整理吗?。

  出示整理要求:

  (1)把本单元的知识点,有序的整理在练习纸上。

  (2)整理好后,在小组内交流自己的想法以及各知识点的具体内容。

  2.指名汇报整理结果,使用展示

  (1)学生分别汇报圆柱、圆锥的特征。

  (2)圆柱表面积怎样计算?(板书)生活中还有一些实际运用的例子,你能举一些吗?(制作油桶多少铁皮,通风管等[这是生活中的实际运用])怎样求圆柱的侧面积?(板书计算公式)出示自制的长方体通风管,让学生思考如何计算铁皮?

  (3)圆柱和圆锥的体积计算公式是什么?用字母怎样表示?圆柱的体积计算怎样推导来的?

  (4)圆锥的体积计算公式,又是怎样推导来的呢?(生口述推导过程)这里的圆柱和圆锥容器有怎样的关系,缺少这样的联系,能够推导出圆锥体积公式吗?

  圆柱的特征:

  圆柱表面积=1个侧面积+2个底面积

  圆柱体积=底面积×高

  圆柱侧面积=底面周长×高 V=sh

  圆锥的特征 :

  圆锥体积=底面积×高×1/3 V=1/3sh

  二、巩固知识 分层训练

  师:正所谓学以致用,能用整理的这些知识解决问题吗?

  (一)填空

  1.一个圆柱的侧面展开图是一个正方体,这个圆柱体的底面半径是4厘米,它的高是( )厘米.

  2.一个圆柱的体积是120立方厘米,比它等底等高的圆锥的体积大( )立方厘米

  3. 一个圆柱的底面半径和高都是5厘米,它一的侧面积是( ),表面积是( )。

  4.一个圆柱和一个圆锥等地等高,体积和是60立方厘米,圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米.

  5.一个圆柱的高不变,底面半径扩大3倍,它的侧面积比原来扩大( )倍,增加( )培.体积比原来扩大( )倍,增加( )倍.

  6.一个圆柱的侧面积展开图是正方形,这个圆柱的底面直径与高的比是( )

  以上练习采用学生口答的形式。

  (二)判断

  1.圆锥的体积等于圆柱体积的1/3.( )

  2.圆柱的体积大于圆锥的体积.( )

  3.圆柱的底面半径扩大2倍,高缩小2倍,它的侧面积不变.( )

  4.圆柱的体积比与它等底等高的圆锥的体积多2/3.( )

  手势判断,并说明错误原因。

  (三)选择

  1.冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指( ).

  A.底面积 B.侧面积 C.表面积 D.体积

  2.甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的'方法围成一个圆柱体(接头处不重叠),那么围成的圆柱( ).

  A.高一定相等

  B.侧面积一定相等

  C.侧面积和高都相等

  D.侧面积和高都不相等

  3.一个圆柱形水池的容积是18.84立方米,池底直径是 4米,水池的深度是( )

  A.3 B.1.5 C.4 D.3.14

  4.一个圆锥的体积是a立方米,和它等底等高的圆柱体的体积是( )立方米.

  A. a÷3 B. 2a C. 3a D. a⒊

  5.把一个棱长是2分米的正方体削成一个最大的圆柱体,它的侧面积是( )平方厘米。

  A.6.28 B.12.56

  C.18.84 D. 25.12

  学生独立完成,集体订正。

  (四)解决问题

  1.一个圆柱形的木棒,底面直径4厘米,高10厘米,在地面上滚动一周后前进了多少米?压过的面积是多少平方厘米?

  2.一根圆柱形木材长20分米, 分成4个相等的圆柱体. 表面积增加了18.84平方分米,截后每段圆柱体积是多少?

  学生独立完成,集体订正。

  三、布置作业

  1.把一个底面直径为8分米,高3分米的圆柱形钢材,熔成一个直径为12分米的圆锥形,能熔多高?

  2.星期六笑笑请6位朋友来家做客,她选用一盒长方体包装的牛奶招待好朋友,给每位好朋友倒上一满杯后,她自己还有牛奶喝吗?

  四、总结知识

  今天这节课你都有哪些收获?找学生谈一谈。

  【板书设计】

  圆柱和圆锥的整理和复习

  圆柱的特征:

  圆柱表面积=1个侧面积+2个底面积

  圆柱体积=底面积×高

  圆柱侧面积=底面周长×高 V=sh

  圆锥的特征:

  圆锥体积=底面积×高×1/3 V=1/3sh

圆柱和圆锥教案8

  圆柱、圆锥、圆台和球

  总 课 题

  空间几何体

  总课时

  第2课时

  分 课 题

  圆柱、圆锥、圆台和球

  分课时

  第2课时

  目标

  了解圆柱、圆锥、圆台和球的有关概念.认识圆柱、圆锥、圆台和球及其简单组合体的机构特征.

  重点难点

  圆柱、圆锥、圆台和球的概念的理解.

  1引入新课

  1.下面几何体有什么共同特点或生成规律?

  这些几何体都可看做是一个平面图形绕某一直线旋转而成的.

  2.圆柱、圆锥、圆台和球的有关概念.

  3.圆柱、圆锥、圆台和球的表示.

  4.旋转体的有关概念.

  1例题剖析

  例1

  如图,将直角梯形 绕 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的`?

  例2 指出图 、图 中的几何体是由哪些简单的几何体构成的.

  图 图

  例3

  直角三角形 中, ,将三角形 分别绕边 , , 三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?

  1巩固练习

  1.指出下列几何体分别由哪些简单几何体构成.

  2.如图,将平行四边形 绕 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?

  3.充满气的车轮内胎可以通过什么图形旋转生成?

  1课堂小结

  圆柱、圆锥、圆台和球的有关概念及图形特征.1课后训练

  一 基础题

  1.下列几何体中不是旋转体的是( )

  2.图中的几何体可由一平面图形绕轴旋转 形成,该平面图形是( )

  ABCD

  3.用平行与圆柱底面的平面截圆柱,截面是_____________________________________.

  4._____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体.

  5.用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是_________.

  6.如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的.

  二 提高题

  7.请指出图中的几何体是由哪些简单几何体构成的.

  三 能力题

  8.如图,将直角梯形 绕 、 边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?

  ADCB图1A图2DBC

圆柱和圆锥教案9

  教学内容:

  教材第9~10页的例1和第10页的练一练,完成练习二第1~3题。

  教学目标:

  1、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高.

  2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

  3、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

  教学重点:

  掌握圆柱、圆锥的特征。

  教学难点:

  掌握圆柱、圆锥的特征及空间观念的形成。

  教学资源:

  课件、学生每人准备一个圆柱或一个圆锥形实物。

  教学过程:

  一、创设情境,初步感知。

  1、课件出示:圆柱、圆锥、正方体、长方体等立体图形的示意图

  2、教师:这么多物品,你知道它们各是什么形状吗?

  指名学生分别说。

  谈话:回忆一下学过的图形各有什么特征?学生回答。

  谈话:不论长方体还是正方体,它们都是由一些平面图形围成的立体图形,你知道图(4)是什么形状吗?学生回答,教师板书:圆柱

  图(5)是什么形状?板书:圆锥

  你能说一说日常生活中你见过那些圆柱和圆锥?(指名学生说,如铅笔、烟囱、套管、铅锤等)

  这节课就让我们一起进一步认识圆柱、圆锥。

  二、合作探究,认识特征

  (一)认识圆柱的特征

  1、激发兴趣、提出问题

  谈话:对于圆柱和圆锥,你想知道有关它们的'哪些问题?

  学生回答,教师把有关圆柱、圆锥的问题写在黑板上。

  谈话:同学们真聪明,提了这么多有价值的问题,今天这节课我们先来研究一下圆柱、圆锥的特点,其它问题我们以后再来研究,好吗?

  2、认识圆柱的底面和侧面

  教师出示圆柱实物并将直尺靠在圆柱实物边上,告诉学生上下粗细相同的圆柱叫直圆柱。

  谈话:请同学们拿出自己准备的圆柱实物,仔细看一看。

  ①先看一看,你认为它有几个面?

  ②再摸一摸每个面有什么特征?

  ③然后小组内互相说一说自己手中的实物和同学的实物有什么特点?

圆柱和圆锥教案10

  教学内容:

  P29页第1——3题,完成练习五。

  教学目标:

  1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

  2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

  教学重点:

  圆柱、圆锥表面积、体积的计算

  教学难点:

  圆柱、圆锥的特征和它们的体积之间的联系与区别

  教学过程:

  一、复习圆柱与圆锥的特征

  1、圆柱的特征

  (1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?

  (圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的.距离叫做高.有无数条高。)

  2、圆锥的特征

  (1)圆锥有哪几个部分?有什么特点?

  (是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)

  (2)做第29页第1题

  二、圆柱的表面积

  1、出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答

  圆柱的侧面是指哪一部分?它是什么形状的?

  (长方形或正方形)

  圆柱的侧面积怎样计算?

  (底面的周长高)

  为什么要这样计算?

  (因为:底面的周长=长方形的长,高=长方形的宽)

  2、表面积是由哪几部分组成的?

  (圆柱的侧面积+两个底面的面积)

  3、第29页第2题中求圆柱表面积的部分。

  三、圆柱和圆锥的体积

  1、圆柱的体积怎样计算?

  (底面积高)计算公式是怎样推导出来的?

  (把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积高,推出圆柱体的体积=底面积高)圆柱体的体积计算的字母公式是什么?(V=Sh)

  2、圆锥的体积怎样计算?

  (用底面积高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

圆柱和圆锥教案11

  教学目标:

  1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。

  2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。

  3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。

  教具学具:

  1、教师准备大小不同的圆柱和圆锥以及其他几种形体的实物及模型。

  2、学生准备圆柱和圆锥实物。

  3、教师准备长方形、直角三角形和半圆形、梯形的小旗。

  教学过程:

  一、创设情境 导入新课

  做你来说我来猜的游戏。(就是中央电视台幸运52的记时抢答)随着屏幕上出现一组漂亮的几何图形,一名同学根据已有知识在描述着它的特征,另一名同学在认真的猜着,复习长方体和正方体。然后屏幕上出现圆柱体和圆锥体,由于学生还没学圆柱和圆锥。造成下面的学生无法猜出。此时学生自然会产生想深刻认识圆柱体圆锥的特征这一要求。

  (同学们知道的真不少),这节课我们再来进一步了解圆柱和圆锥。

  板书课题:圆柱和圆锥的认识。

  二、教学新课

  ㈠认识圆柱、圆锥。

  1、请同学们把自己准备的实物中的圆柱形物体和圆锥形物体分开。

  2、仔细观察这些物体的形状,你能在纸上把他们画出来吗?谁愿意把

  自己的作品展示给大家看!

  (贴出学生画的立体图)

  教师:比较这几个同学的画法,你有什么想说的吗?

  3、教师:刚才同学们通过观察、想象,画出圆柱和圆锥的立体图形。那

  么,你还能回想一下,生活中还有哪些物体的形状是圆柱或圆锥吗?

  (二)探究圆柱和圆锥的特征。

  圆柱的特征.

  教师:通过刚才的交流,可以看出大家对圆柱、圆锥已经有了进一步的认识,那么接下来咱们再一起来探讨圆柱和圆锥的'特征。

  1、请你拿起桌上的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。

  (教师在学生交流时,深入到学生中,倾听孩子不同的见解,做到心中有数)。

  2、集体交流:(学生交流时语言可能不严密,教师随时正确引导)

  谁想把自己的发现告诉大家!学生交流,教师系统整理。

  ⑴圆柱的上下两个面是面积相等的圆,这两个圆面就叫做底面。

  ⑵圆柱还有一个曲面,这个曲面叫做侧面。想一想,这个曲面展开会是什么形状?想个法子试一试!

  (3)上下两个底面之间的距离叫做圆柱的高。想一想,圆柱的高有多少条?

  认识圆锥的特征

  教师:刚才同学们用不同的方法,发现了圆柱体的特征,那么大家能不能继续努力,来寻找圆锥体的特征呢?

  1、拿出桌上的圆锥形实物,摸一摸、看一看、比一比,你又有什么发现?将自己的发现与同桌交流。

  2、集体交流:

  ⑴圆锥的底面是一个圆形,圆锥的侧面是一个曲面。猜想一下,圆锥的侧面展开又会是什么图形?试试看!

  ⑵从圆锥的顶点到底面圆心的距离是圆锥的高。想一想圆锥的高有几条?

  三、巩固练习

  同学们通过努力,找到了圆柱和圆锥的特征。下面做一组练习题看看大家对刚才的知识掌握的怎么样。请打开课本翻到48页,看第一题。

  1、完成自主练习第1、2题。(注意倾听学生不同的意见,并让他们说出自己判断的理由。)

  2、完成自主练习5。(利用课前准备的各种小旗)。

  3、完成自主练习4,6。

  四、实践。

  1、让学生动手量圆柱、圆锥的高。

圆柱和圆锥教案12

  教学目标

  1.联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。

  2.通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。

  教学重、难点

  理解并掌握圆柱、圆锥的基本特征。

  教学过程

  一、情境导入

  1.教师拿一根一头拴着一个小球的绳子甩动,问:你们看到了什么? 再让学生结合书第2页2、3题,想一想你发现了什么?

  最后总结出点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体的'结论。

  2.教师出示一个袋子,里面装着各种物体(长方体、正方体、球、圆柱、圆锥、圆台)

  游戏规则:一人上台摸,并描述你摸到的这个物体的最典型的特征,使下面同学能在最短的时间内猜出你摸的这个物体的名称。

  师生共同活动。在摸出物体后,教师让学生回忆一下以前学过的长方体、正方体的特征。

  引出这节课要探究圆柱和圆锥。板书课题:圆柱和圆锥

  二、 探究圆柱和圆锥的特征

  1.从生活的实景图中发现圆柱和圆锥。

  从书第2页找一找的实景图,找出我们学过的立体图形,与同伴互相指一指,哪些是圆柱和圆锥,并指名回答。

  2.小组合作学习,探究圆柱、圆锥的特征。

  用各种方法,如摸、量、画等,观察带来的圆柱、圆锥形实物,你们有哪些发现?用手中的工具验证你们的猜想。并填写小组合作学习的报告。

  小组合作学习表格:

  研究对象

  你们猜想它有哪些特征?

  你们是用怎样的方法验证你们的猜想的?把验证方法记录下来,与同学交流。

  3.小组汇报反馈。

  教师抓住几个关键点进行引导:

  圆柱的特征:

  ⑴两个底面、一个侧面。底面是由两个大小完全相等的圆组成。侧面是一个弯曲的面。

  ⑵认识圆柱的高,并会测量圆柱的高。如果没有学生探究这个问题,教师要示范两个底面大小差不多的圆柱,让学生观察它们的高不同,从而引导学生关注圆柱的高(圆柱两个底面的距离叫做高)。圆柱有无数条高,每条高的长度相等。

  圆锥的特征:

  ⑴由一个底面(圆)、一个侧面(曲面)组成。

  ⑵从圆锥的顶点到底面圆心的距离是圆锥的高。引导学生掌握测量圆锥的高的方法。

  小结:通过刚才的合作学习和交流,我们更进一步认识了圆柱和圆锥的特征。你能说一说你现在知道了圆柱和圆锥有哪些特征吗?

  4.说一说

  课本3页,让学生再次系统地看一看圆柱和圆锥各部分的名称。拿一个你准备好的圆柱和圆锥,同桌互相说一说它们各部分的名称。

  说一说,在生活中见到的哪些物体的形状像圆柱、圆锥?指名回答。

圆柱和圆锥教案13

  教学目标:

  1.使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图。

  2.认识圆柱和圆锥的底面、侧面和高,并会测量高。

  教学重点:

  1.让学生从整体上体会圆柱和圆锥的特征,了解围成圆柱或圆锥的各个面。

  2.认识圆柱和圆锥的高,并会测量高。

  教学难点:

  认识圆锥的高。

  教具准备:

  教师准备圆柱体、圆锥体的物体,让学生收集一些圆柱体、圆锥体的实物。同时让学生将教科书第125、127页上的图沿边剪下来做成圆柱体、圆锥体。

  一、前提准备

  1、出示圆柱,圆锥模型,提问,这是什么形体?

  指出:圆柱体简称圆柱,圆锥体简称圆锥。

  2、举例:在生活中见过哪些物体的形状是圆柱,哪些物体的形状是圆锥?(学生举例)

  3、师出示挂图,提问,生活中的例子很多,你看这张图上哪些物体的形状是圆柱,哪些物体的形状是圆锥?

  4、揭题:今天我们就来研究这样的直圆柱和直圆锥。(板书课题:圆柱和圆锥的认识)

  二、自主探究,认识圆柱和圆锥的特征。

  1、认识圆柱

  ⑴谈话,请看挂图,仔细观察这些圆柱,你发现这些大小不一的圆柱有什么共同点? ⑵验证发现:上下面是两个完全相同的圆

  刚才同学说上下两个面是完全相同的圆,请你想办法证明一下,这个猜想是否正确?

  学生可能:用线绕、用尺量圆的直径

  侧面是弯曲的:把你手中的圆柱摸一摸,滚一滚,你发现它的这个面与桌面有什么不同?侧面滚一滚,滚出一个什么形状?

  ⑶师指出:这是沿着圆柱形物体的轮廓画下来的圆柱的平面图

  圆柱上下两个面叫做圆柱的底面 围成圆柱的曲面叫做圆柱的侧面

  圆柱两个底面之间的距离叫做圆柱的高 提问:圆柱的高有多少条?它们之间有什么关系?

  验证圆柱的高都相等:把圆柱放在桌角量高,变换角度量高,量出的结果一样吗?

  ⑷练习:说说师手中的杯子,方便面碗是不是圆柱,为什么?指出自己手中圆柱的各部分名称,指出下列圆柱各部分名称

  2、认识圆锥

  ⑴谈话:某些建筑物的顶部,吃的蛋筒,这些物体的形状都是圆锥体,请你观察这些圆锥,说说它们有什么共同点?(学生自由交流,师适当板书)

  有一个顶点,底面是一个圆形,侧面是一个曲面

  ⑵看书对照你的发现是否正确

  ⑶师指出:图锥的'底面是一个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。(边说边在图上标出来)

  提问,圆锥的高有几条?

  滚动圆锥,你有什么发现?

  辨析,这是圆锥的高吗?那你认为怎样测量圆锥的高?师出示图

  ⑷指出你手中圆锥各部分名称

  3、比较:观察圆柱和圆锥有什么不同之处?

  师可引导提问:圆柱和圆柱都有一个侧面,侧面都是一个曲面,为什么圆柱滚动侧面时与圆锥滚动侧面的感觉不一样?

  三、拓展应用

  1、练一练:判断哪些物体的形状是圆柱,哪些物体的形状是圆锥?

  2、练习五第二题,连一连。

  3、练习五第三题:先让学生根据题意转一转,想象一下,再交流。

  圆柱的底面半径与高与长方形小旗有什么关系?

  4、拿出硬纸做的圆柱和圆锥,想办法量出它们的底面直径和高,记录再自备本上,

  四、总结评价

  这节课你有什么收获?

圆柱和圆锥教案14

  教学内容:教材第18-20页圆柱和圆锥、练一练以及练习五的全部习题。

  教学目标:

  1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。

  2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。

  3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。

  教具学具:

  1、 教师准备大小不同的圆柱和圆锥实物及模型。

  2、 学生准备圆柱和圆锥实物以及自制的圆柱和圆锥。

  3、 长方形、直角三角形和半圆形的小旗。

  教学过程:

  一、创设情境 导入新课

  出示一组图形(长方体、正方体、圆柱、圆锥)。

  提问学生:你能说出这些图形的名称吗?

  师说明:这些形体有些是我们已认识的长方体、正方体,还有就是我们今天要学习的新的立体图形:圆柱和圆锥体。 (板书课题)

  二、教学新课

  ㈠认识圆柱的特征。

  1、出示例1请同学们仔细观察上面哪些是圆柱形的?

  2、你还能举出其他例子吗?

  3、请你拿出自己准备好的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。

  4、集体交流:

  ⑴上下两个面是面积相等的圆,叫做圆柱的底面。

  ⑵有一个曲面叫做圆柱的侧面。

  ⑶上下两个底面之间的距离叫做圆柱的高。

  教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。

  5、让学生动手量圆柱的高。

  讨论:⑴怎样量更准确?

  ⑵如果我们换个地方量,它的高会变成多少?这说明什么?(圆柱的高有无数条)

  6、师小结圆柱的特征。

  ㈡认识圆锥的特征

  1、出示圆锥的实物,这些物体的形状是圆锥形的',简称圆锥。我们教材所讲的圆锥都是直圆锥。

  2、在日常生活中,你还见过哪些圆锥形的物体?

  3、利用学生课前做好的圆锥,让学生摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。

  4、集体交流:

  ⑴圆锥的底面是一个圆形,圆锥的侧面是一个曲面。

  ⑵从圆锥的顶点到底面圆心的距离是圆锥的高。

  5、测量圆锥的高。

  ⑴引导学生讨论:圆锥有几条高?

  ⑵用直尺和三角板如何测量圆柱的高。(学生自己操作)

  ㈢比较圆柱和圆锥

  生拿出课前准备好的圆柱和圆锥学具,指出它们的底面和侧面。(练习五第1题)

  三、巩固练习

  1、完成练一练。

  2、练习五第2题。从正面、上面和侧面看圆柱和圆锥,看到的是什么形状?充分让学生自己观察。

  3、开放练习,拓展延伸。

  ⑴将课前做的长方形、直角三角形和半圆形的小旗快速旋转一周,观察并想象一下各能成什么形状?

  ⑵师演示。

  ⑶自己设计小旗的形状,旋转小棒观察并想象一下所形成的形状,在小组内交流。

  四、课堂小结

  今天这节课你学到了哪些知识?圆锥体和圆柱体有哪些特征?

  《圆柱和圆锥的认识》的教学反思

  本课教学层次清楚,注重学生学法指导,注重联系生活实际,由实物抽象出几何形体,圆柱和圆锥,接着让学生举生活实例,你在周围见过哪些这样的物体?然后由学生自主交流,观察自带的圆柱和圆锥,引导学生发现特征,你发现了什么?由学生自己概括出特征.特别是教学圆柱的高有无数条,圆锥的高只有一条,这两个知识点时,由学生通过测量它们的高,并经过对比,得出结论.让学生亲生经历了知识的形成过程.

  但本节课也存在许多不足,

  (1)课前检查没有做,如果在课前花1分钟时间,让学生展示自己准备的立体图形,让学生体验成功的快乐,并把这种情绪带到新课的学习中,本节课的效果会更好。

  (2)作业设计不科学,偏重操作,思维密度不强,容易让学生产生思维疲劳。

圆柱和圆锥教案15

  一、教学内容

  学生已经掌握了长方体和正方体的特征、表面积与体积的计算方法,还直观认识了圆柱。在这些知识的基础上,本单元教学圆柱和圆锥,主要内容有:圆柱和圆锥的特征,圆柱的侧面积与表面积,圆柱和圆锥的体积计算。

  全单元编排了5道例题、四个练习以及整理与练习,大致分成五段教学。

  例1、练习五,圆柱和圆锥的形状特征;

  例2、例3、练习六,圆柱的侧面积和表面积;

  例4、练习七,圆柱的体积;

  例5、练习八,圆锥的体积;

  整理与练习综合应用全单元的知识,实践活动扩展知识、开拓视眼。

  二、教材编写特点和教学建议

  1.按整体-部分-整体的线索,分别教学圆柱和圆锥的结构特点。

  学生认识几何体一般先整体感知形状,再仔细研究结构与特征,在此基础上归纳描述,建立形体概念。

  例1先教学圆柱的特征,再教学圆锥的特征。这是因为学生对圆柱已有直观感受,对圆锥比较陌生。圆柱和圆锥的形状虽然有明显的区别,但它们都有圆形底面、弯曲的侧面。先认识圆柱,有利于认识圆锥。

  在现实的情境中初步认识圆柱和圆锥。例题在图画里呈现许多圆柱、圆锥形状的物体,让学生从中找出圆柱形状物体,告诉他们有些物体的形状是圆锥,还要回忆生活中的其他例子,体会这两种形状的物体是比较常见的,为认识圆柱和圆锥的特征搜集了丰富的材料。

  观察交流,分别描述圆柱和圆锥的结构特点。教材要求学生仔细观察圆柱和圆锥,发现它们的特征。圆柱的特征突出三点:从上到下始终一样粗;两个底面是相同的圆形;侧面是一个曲面。圆锥的特征也突出三点;有一个顶点;一个底面是圆形;侧面是一个曲面。在学生交流的基础上,出现圆柱和圆锥的几何图形,图文结合指出圆柱和圆锥的底面侧面和高。这些都是与形状特征有关的概念,还是继续教学侧面积、表面积、体积必需的基础知识。

  圆柱与圆锥的高都是特定的概念,圆柱的高是它两个底面之间的距离,圆锥的高是它顶点到底面圆心的距离。教材在圆柱和圆锥的几何图形里用虚线画出了圆柱两个底面圆心间的线段,圆锥顶点到底面圆心的线段,还在图形外面标注高,让学生理解圆柱和圆锥的高分别是这两条线段的长,还暗示了测量圆柱、圆锥的高的方法。

  通过识别加强形体概念。第19页练一练找出圆柱形或圆锥形的物体,进一步突出圆柱和圆锥的特征,加强形体概念。有些物体的底面是多边形,不是圆形;有些物体的两个底面都是圆形,但大小不同;有些物体的两个底面虽然是相同的圆,但两底之间不一样粗,它们都不是圆柱形的物体。

  在练习里发展空间观念。练习五第1题巩固有关圆柱、圆锥特征的基础知识。第2题指出圆柱、圆锥的三视图,体会从正面、侧面看到的形状要用平面图形来表示。第3、4题体会形旋转成体,形的尺寸决定体的底面大小和高的长短。第5题利用教科书提供的材料制作圆柱、圆锥,体会侧面是平面图形卷成的曲面,学会测量底面直径和高的方法,计算底面周长和面积,复习圆的知识。学生的空间观念在观察、操作、制作的过程中得到发展。

  2.展开圆柱的侧面、表面、研究侧面积和表面积的计算方法。

  例2教学圆柱的侧面积,例3教学圆柱的表面积。这样安排,符合知识间的关系,突出侧面积是认知的重点。

  指导展开圆柱侧面的方法,理解侧面展开后的形状。例2计算圆柱形罐头侧面的商标纸的面积,在问题情境里,学生知道商标纸是围到圆柱侧面上的,于是产生把商标纸展开的愿望。教材指导沿着接缝剪开,接缝的长是圆柱的高,沿着接缝剪就是沿着高剪,展开是一张长方形纸。学生在围-剪-展-围的活动中,体会了圆柱侧面展开是一个长方形。

  指点方向,探索侧面积的算法。计算长方形面积的方法是长宽,怎样利用圆柱的底面直径和高计算侧面积?需要解决的问题是长方形的长和宽与圆柱有什么关系。教材让学生研究这些关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高。这样,圆柱的侧面积就可以通过底面周长高计算。得出侧面积算法是推理的结果,在推理过程中,形象思维和抽象思维都得到锻炼,空间观念得到培养。

  画出表面展开图,研究表面积的算法。学生有计算长方体、正方体的表面积的经验,知道表面积是物体各个面的面积总和。例3教学圆柱的表面积,创造已有知识、经验迁移的氛围,要求学生在方格纸上画出一个圆柱的展开图。为了能顺利地画图,例题的第一个问题是沿高展开侧面,得到的长方形长和宽各是几厘米?指导学生应用圆柱侧面积知识,先画出侧面的展开图。第二个问题是两个底面分别是多大的圆?指导学生根据圆柱立体图形里的底面直径,画出两个底面圆。通过画图,看到圆柱的展开图是一个侧面(长方形)和两个底面(圆形)组成的,由此得出圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。在小组里讨论怎样计算圆柱的表面积,一要理出解决问题的思路和步骤,二要根据已知的圆柱的有关条件,说说侧面积与底面积的算法。由于圆柱表面积计算比较复杂,一般分步解答。

  灵活应用侧面积、表面积知识,解决实际问题。练习六是圆柱侧面积、表面积的实际应用,解答问题要重视数学化,把实际问题抽象成计算侧面积、底面积或表面积的数学问题。如第1题求铝皮面积是计算圆柱形队鼓的侧面积,计算羊皮面积是求圆柱形队鼓的两个底面积。再如通风管是没有底面的,彩纸糊的灯笼只有下底和侧面。另外,计算圆柱的侧面积和表面积,经常要进行繁琐的乘法运算。为此,本单元提倡学生使用计算器,把精力用于数学化上,用于规划解决问题的步骤上。

  3.应用转化策略,教学圆柱的.体积计算公式。

  把未知转化成已知是解决新颖问题的常用策略,也是创新精神、实践能力的表现。教学圆柱的体积公式,运用了转化策略,分三步进行。

  建立等底等高概念,形成等积猜想。例4教学圆柱体积的计算方法,首先出示一个长方体、一个正方体、一个圆锥,图文结合指出它们的底面积相等、高也相等。因为圆柱的体积计算公式是转化成等底、等高的长方体后推导的,学生需要形成等底等高概念。然后从长方体、正方体的体积都可以底面积高计算,得到等底、等高的长方体与正方体的体积相等。由此猜想,圆柱的体积也与等底、等高的长方体相等,形成了研究圆柱体积算法的思路。

  割、拼圆柱,转化成长方体。圆柱的体积是否与等底、等高的长方体相等,要看它能不能转化成相应的长方体。学生有圆转化成长方形的经验,以此为基础,把圆柱的底面平均分成16份,切开后拼成了一个近似的长方体。这里讲近似,是因为拼成的物体的长是8段弧组成的曲线。由此想像,如果把圆柱的底面平均分成32份、64份......切开后拼成的物体的长越来越接近线段,拼成的物体越来越接近长方体。在切、拼操作以及想像中,实现了圆柱转化成长方体。

  通过推理,得到圆柱体积计算公式。切、拼把圆柱转化成长方体,圆柱的体积公式还要通过推理得到。教材先指导学生研究拼成的长方体与原来的圆柱的关系,看到两个物体的体积相等、底面积相等、高也相等。再体会底面积高既是计算长方体的体积,也算得了圆柱的体积。由此得出圆柱的体积公式,并用字母表示,便于记忆和应用。

  4.估计-验证探索圆锥的体积公式。

  就小学生现有的知识,把圆锥转化成体积相等的其他物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同

  认识等底、等高的圆锥与圆柱,估计圆锥体积是圆柱的几分之几。例5图示了一个圆柱和一个圆锥,指出它们的底面积相等,高也相等。从图画直观,学生能确定圆锥的体积比圆柱小,教材让学生估计这个圆锥的体积是圆柱的几分之几。这里的估计不要求准确,也不要求全体学生有相同的答案,说成、或其他分数都允许。估计要经过验证才能确认或修正,估计-验证是解决问题的一种策略。

  通过实验,发现等底等高的圆柱与圆锥的体积关系。首先准备器材,找等底等高的圆柱、圆锥容器各一个,教材图示了比较底面积和比较高的方法。然后在圆锥容器里装满沙子,倒入空的圆柱容器里,看看几次正好倒满。从倒沙子实验得出圆锥体积是等底等高圆柱体积的,确认或者修正原来的估计。

  利用圆柱体积算圆锥体积,推导圆锥的体积公式。上面实验的结论可以用数学式子表示:圆锥的体积=等底等高圆柱的体积。圆柱的体积通过底面积高计算,所以圆锥的体积=底面积高。

  编排等底等高圆柱与圆锥的体积关系的专项练习。掌握圆锥体积计算方法的关键在理解和应用等底等高圆锥、圆柱的体积关系,即圆柱的体积是等底等高圆锥的3倍,圆锥的体积是等底等高圆柱的。练习八里有这方面的专项训练,如第2题、第4题、第5题等。第2题在圆锥容器里注满水倒入等底等高的空圆柱容器,水只占圆柱容器空间的。因此,水面的高只是圆柱高的。第5题里的圆锥只与底面直径9厘米、高4厘米的圆柱的体积相等。圆锥与底面直径3厘米、高9厘米的圆柱的体积不相等,因为圆锥的底面积不是圆柱底面积的3倍。

  5.测量形状不规则的物体的体积。

  生活中有大量形状不规则的物体,它们的体积如何测量?实践活动《测量物体的体积》解决这个问题。

  转化成圆柱算体积。把土豆放入存水的圆柱容器,能测量体积。教材安排小组合作学习,先测量圆柱容器的底面积,以及放入土豆前的水面高度;再把土豆放进去,测量放土豆后的水面高度。学生能够从水面上升,体会那段圆柱的体积就是土豆的体积。进行这项活动要注意两点,一是在圆柱容器的里面测量它的底面直径和水面高度,并算出底面积。二是帮助学生理解水面高度变化与土豆体积的关系。

  利用质量与体积的比值算体积。同一种材料,物体的质量与体积的比值(即比重)是一定的,物体的质量除以比重的商是物体的体积。如铁的比重是每立方厘米7.8克,一块质量为780克的铁块的体积是7807.8=100(立方厘米)。这次实践活动的第二个内容就是应用这种关系算体积,分三步进行。第一步用测量土豆体积的方法分别测量两块铁块的体积,用天平称出这两块铁块的质量。第二步把两块铁块的体积和质量填入教材设计的表格,分别算出质量与体积的比值,发现比值是相同的。第三步用天平称出另一块铁块的质量,通过质量除以比重求出体积。开展这项活动也要注意两点,一是先测量的两块铁块的体积要尽量准确,否则,得不到质量与体积的比值一定。二是帮助学生理解质量除以比重的商是体积。

【圆柱和圆锥教案】相关文章:

圆柱和圆锥教案03-08

圆柱和圆锥教学反思02-19

《圆柱和圆锥的认识》的教学设计04-20

小学六年级数学圆柱与圆锥教案07-18

《圆锥》教案01-23

小学六年级下册《圆柱与圆锥》教案优质通用10-28

认识圆柱体和球体大班教案11-19

圆锥的体积教案02-13

大班主题圆柱体和球体教案03-10