高中数学教案

时间:2022-04-11 12:19:23 教案 投诉 投稿

高中数学教案

  在教学工作者开展教学活动前,通常需要用到教案来辅助教学,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?下面是小编帮大家整理的高中数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学教案

高中数学教案1

  高中数学趣味竞赛题(共10题)

  1 、撒谎的有几人

  5个高中生有,她们面对学校的新闻采访说了如下的话:

  爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”

  玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”

  千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?

  2、她们到底是谁

  有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。

  穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?

  3、半只小猫

  听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。

  “一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?

  4、被虫子吃掉的算式

  一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。

  那么,请问原来的算式是什么样子的呢?

  5、巧动火柴

  用16根火柴摆成5个正方形。请移动2根火柴,

  使

  正形变成4。

  6、折过来的角

  把正三角形的纸如图那样折过来时,角?的度数是多少度?

  7、星形角之和

  求星形尖端的.角度之和。

  8、啊!双胞胎?

  丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。

  结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?

  9、赠送和降价哪个更好?

  1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?

  10、折成15度

  用折纸做成45度很简单是吧。那么,请折成15度,你会吗?

高中数学教案2

  1.课题

  填写课题名称(高中代数类课题)

  2.教学目标

  (1)知识与技能:

  通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

  (2)过程与方法:

  通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

  (3)情感态度与价值观:

  通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

  3.教学重难点

  (1)教学重点:本节课的知识重点

  (2)教学难点:易错点、难以理解的知识点

  4.教学方法(一般从中选择3个就可以了)

  (1)讨论法

  (2)情景教学法

  (3)问答法

  (4)发现法

  (5)讲授法

  5.教学过程

  (1)导入

  简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

  (2)新授课程(一般分为三个小步骤)

  ①简单讲解本节课基础知识点(例:奇函数的定义)。

  ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

  ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

  (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

  (3)课堂小结

  教师提问,学生回答本节课的收获。

  (4)作业提高

  布置作业(尽量与实际生活相联系,有所创新)。

  6.教学板书

  2.高中数学教案格式

  一.课题(说明本课名称)

  二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)

  三.课型(说明属新授课,还是复习课)

  四.课时(说明属第几课时)

  五.教学重点(说明本课所必须解决的关键性问题)

  六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)

  七.教学方法要根据学生实际,注重引导自学,注重启发思维

  八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)

  九.作业处理(说明如何布置书面或口头作业)

  十.板书设计(说明上课时准备写在黑板上的内容)

  十一.教具(或称教具准备,说明辅助教学手段使用的工具)

  十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)

  3.高中数学教案范文

  【教学目标】

  1.知识与技能

  (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

  (2)账务等差数列的通项公式及其推导过程:

  (3)会应用等差数列通项公式解决简单问题。

  2.过程与方法

  在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

  3.情感、态度与价值观

  通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

  【教学重点】

  ①等差数列的概念;

  ②等差数列的通项公式

  【教学难点】

  ①理解等差数列“等差”的特点及通项公式的含义;

  ②等差数列的通项公式的推导过程.

  【学情分析】

  我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  【设计思路】

  1、教法

  ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

  ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

  ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

  2、学法

  引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的`特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

  【教学过程】

  一、创设情境,引入新课

  1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

  3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数.

  学生:

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

  二、观察归纳,形成定义

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

  (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

  三、举一反三,巩固定义

  1、判定下列数列是否为等差数列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.

  (设计意图:强化学生对等差数列“等差”特征的理解和应用).

  2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

  (设计意图:强化等差数列的证明定义法)

  四、利用定义,导出通项

  1、已知等差数列:8,5,2,…,求第200项?

  2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

  (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

  五、应用通项,解决问题

  1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

  2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差数列3,7,11,…的第4项和第10项

  教师:给出问题,让学生自己操练,教师巡视学生答题情况.

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

  (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

  六、反馈练习:教材13页练习1

  七、归纳总结:

  1、一个定义:

  等差数列的定义及定义表达式

  2、一个公式:

  等差数列的通项公式

  3、二个应用:

  定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出补充

  (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

  【设计反思】

  本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

高中数学教案3

  教学目标:

  1.结合实际问题情景,理解分层抽样的必要性和重要性;

  2.学会用分层抽样的方法从总体中抽取样本;

  3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

  教学重点:

  通过实例理解分层抽样的方法.

  教学难点:

  分层抽样的步骤.

  教学过程:

  一、问题情境

  1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

  2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

  二、学生活动

  能否用简单随机抽样或系统抽样进行抽样,为什么?

  指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

  由于样本的容量与总体的个体数的比为100∶2500=1∶25,

  所以在各年级抽取的个体数依次是,,,即40,32,28.

  三、建构数学

  1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的'各部分叫“层”.

  说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

  ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

  2.三种抽样方法对照表:

  类别

  共同点

  各自特点

  相互联系

  适用范围

  简单随机抽样

  抽样过程中每个个体被抽取的概率是相同的

  从总体中逐个抽取

  总体中的个体数较少

  系统抽样

  将总体均分成几个部分,按事先确定的规则在各部分抽取

  在第一部分抽样时采用简单随机抽样

  总体中的个体数较多

  分层抽样

  将总体分成几层,分层进行抽取

  各层抽样时采用简单随机抽样或系统

  总体由差异明显的几部分组成

  3.分层抽样的步骤:

  (1)分层:将总体按某种特征分成若干部分.

  (2)确定比例:计算各层的个体数与总体的个体数的比.

  (3)确定各层应抽取的样本容量.

  (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

  四、数学运用

  1.例题.

  例1(1)分层抽样中,在每一层进行抽样可用_________________.

  (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

  ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

  ③某班元旦聚会,要产生两名“幸运者”.

  对这三件事,合适的抽样方法为()

  A.分层抽样,分层抽样,简单随机抽样

  B.系统抽样,系统抽样,简单随机抽样

  C.分层抽样,简单随机抽样,简单随机抽样

  D.系统抽样,分层抽样,简单随机抽样

  例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

  很喜爱

  喜爱

  一般

  不喜爱

  2435

  4567

  3926

  1072

  电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

  解:抽取人数与总的比是60∶12000=1∶200,

  则各层抽取的人数依次是12.175,22.835,19.63,5.36,

  取近似值得各层人数分别是12,23,20,5.

  然后在各层用简单随机抽样方法抽取.

  答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

  数分别为12,23,20,5.

  说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

  (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

  分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

  (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

  (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.分层抽样的概念与特征;

  2.三种抽样方法相互之间的区别与联系.

高中数学教案4

  第一章:空间几何体

  1.1.1柱、锥、台、球的结构特征

  一、教学目标

  1.知识与技能

  (1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2.过程与方法

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3.情感态度与价值观

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

  二、教学重点、难点

  重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  难点:柱、锥、台、球的结构特征的概括。

  三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪

  四、教学思路

  (一)创设情景,揭示课题

  1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

  2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

  (二)、研探新知

  1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

  2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

  3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

  5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

  8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

  2.棱柱的何两个平面都可以作为棱柱的底面吗?

  3.课本P8,习题1.1A组第1题。

  4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  四、巩固深化

  练习:课本P7练习1、2(1)(2)

  课本P8习题1.1第2、3、4题

  五、归纳整理

  由学生整理学习了哪些内容

  六、布置作业

  课本P8练习题1.1B组第1题

  课外练习课本P8习题1.1B组第2题

  1.2.1空间几何体的三视图(1课时)

  一、教学目标

  1.知识与技能

  (1)掌握画三视图的基本技能

  (2)丰富学生的空间想象力

  2.过程与方法

  主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观

  (1)提高学生空间想象力

  (2)体会三视图的.作用

  二、教学重点、难点

  重点:画出简单组合体的三视图

  难点:识别三视图所表示的空间几何体

  三、学法与教学用具

  1.学法:观察、动手实践、讨论、类比

  2.教学用具:实物模型、三角板

  四、教学思路

  (一)创设情景,揭开课题

  “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

  在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

  (二)实践动手作图

  1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

  2.教师引导学生用类比方法画出简单组合体的三视图

  (1)画出球放在长方体上的三视图

  (2)画出矿泉水瓶(实物放在桌面上)的三视图

  学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

  作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

  3.三视图与几何体之间的相互转化。

  (1)投影出示图片(课本P10,图1.2-3)

  请同学们思考图中的三视图表示的几何体是什么?

  (2)你能画出圆台的三视图吗?

  (3)三视图对于认识空间几何体有何作用?你有何体会?

  教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

  4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

  (三)巩固练习

  课本P12练习1、2P18习题1.2A组1

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)课外练习

  1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

  2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

  1.2.2空间几何体的直观图(1课时)

  一、教学目标

  1.知识与技能

  (1)掌握斜二测画法画水平设置的平面图形的直观图。

  (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

  2.过程与方法

  学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

  3.情感态度与价值观

  (1)提高空间想象力与直观感受。

  (2)体会对比在学习中的作用。

  (3)感受几何作图在生产活动中的应用。

  二、教学重点、难点

  重点、难点:用斜二测画法画空间几何值的直观图。

  三、学法与教学用具

  1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

  2.教学用具:三角板、圆规

  四、教学思路

  (一)创设情景,揭示课题

  1.我们都学过画画,这节课我们画一物体:圆柱

  把实物圆柱放在讲台上让学生画。

  2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

  (二)研探新知

  1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

  画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

  练习反馈

  根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

  2.例2,用斜二测画法画水平放置的圆的直观图

  教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

  教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

  3.探求空间几何体的直观图的画法

  (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

  教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

  (2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

  4.平行投影与中心投影

  投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

  5.巩固练习,课本P16练习1(1),2,3,4

  三、归纳整理

  学生回顾斜二测画法的关键与步骤

  四、作业

  1.书画作业,课本P17练习第5题

  2.课外思考课本P16,探究(1)(2)

高中数学教案5

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的'已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

高中数学教案6

  一、自我介绍

  我姓x,是你们的数学老师,因为是数学老师所以在自我介绍的时候喜欢给出自己的数字特征,也是希望通过这些方式能拓宽与大家交流的平台,希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者。

  二、相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。

  (一)为什么要学习数学

  相信高一的第一节课是各位科任老师各显神通的时候,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字说明问题。大家知道北大最的院系是什么系吗?早在蔡元培先生任北大校长时,就列数学系为北大第一系,这种传统一直保持到现在。为什么数学系在高校中有如此重要的地位?课本主编寄语是这样描述的:数学是有用的,数学有助于提高能力。

  数学家华罗庚在《人民日报》精彩描述了数学在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁"等方面无处不有重要贡献。

  问题1:大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的?

  海王星的发现是在数学计算过程中发现的,天文望远镜的观测只是验证了人们的推论。

  1812年,法国人布瓦德在计算天王星的运动轨道时,发现理论计算值同观测资料发生了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一个未知的引力的存在相关。也就是说有一个未知的天体作用于天王星。1846年9月23日。柏林天文台收到来自法国巴黎的一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座8星东约5度的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新的8等星。又过了-天,再次找到了这颗8等星,它的位置比前一天后退了70角秒。这与勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建议,按天文学惯例,用神话里的名字把这颗星命名为"海王星"。

  1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测和计算,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,"冥王星是大行星"早已被写入教科书,以后也就将错就错了。经过多年的争论,国际天文学联合会通过投票表决做出最终决定,取消冥王星的行星资格。8月24日据国际天文学联合会宣布,冥王星将被排除在行星行列之外,从而太阳系行星的数量将由九颗减为八颗。事实上,位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。

  马克思说:"一种科学只有在成功运用数学时,才算达到了真正完善的地步。"正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问题。

  其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。

  问题2:徒认为上帝是万能的。你们认为呢?如何来证明你的结论呢?(让同学发言)

  我的观点:上帝不是万能的。为什么呢?仔细听我讲来。

  证明:(反证法)假如上帝是万能的

  那么他能够制作出一块无论什么力量都搬不动的石头

  根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头

  这与"无论什么力量都搬不动的石头"相矛盾

  所以假设不成立

  所以上帝不是万能的。问题3:抓阄对个人来说公平吗?5张票中有一张奖票,那么先抽还是后抽对个人还说公平吗?

  当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:"读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明…",也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。

  故事一:据说国际象棋是古印度的一位宰相发明的`。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,"我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。"国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。

  人们通常凭借自己掌握的数学知识耍些小聪明,使问题妙不可言。

  数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。

  数学思想:退到最简单、最特殊的地方。

  故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展-圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就德育不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?

  渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。

  学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造……

  (二)如何学好数学

  高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。同时要注意以下几点:

  第一:对数学学科特点有清楚的认识

  主编寄语里是这样描述数学的特征的:数学是自然的。数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是"想当然"的话,那就学不下去了。

  第二:要改变一个观念。

  有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。过去的几年里我分别带过五十一中和一中的学生,两边学生的课堂感觉差不多,应该说接受能力不相上下,有的时候我会选择在五十一中开公开课,因为课堂气氛活跃、轻松,但是成绩差异却是很大,原因在于我们同学外课自主时间的投入太少,学习习惯不太好。

  第三:学数学要摸索自己的学习方法

  学习、掌握并能灵活应用数学的途径有千万条,每个人都可以有与众不同的数学学习方法。做习题、用数学解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。此外,还要发挥问题的作用,学会提问,热心帮助别人解决问题,用自己的问题和别人的问题带动自己的学习。同时,注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。

  第四:养成良好的学习习惯(与一中学生相比较)

  ㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。

  ㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。

  ㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。我的办公室在二楼二号,欢迎大家前来交流

  ㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。

  好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。

高中数学教案7

  猴子搬香蕉

  一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。

  河岸的距离

  两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?

  解答:

  当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度

  等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。

  变量交换

  不使用任何其他变量,交换a,b变量的值?

  分析与解答

  a = a+b

  b = a-b

  a= a-b

  步行时间

  某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。

  有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到

  他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟??”。温斯顿步行了多长时间?

  解答:

  假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。

  因此,温斯顿步行了26分钟。

  付清欠款

  有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;

  贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?

  解答:

  贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。

  贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。

  一美元纸币

  注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。

  一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:

  (1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。

  (2)这四人中没有一人能够兑开任何一枚硬币。

  (3)一个叫卢的男士要付的`账单款额最大,一位叫莫的男士要

  付的帐单款额其次,一个叫内德的男士要付的账单款额最小。

  (4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。

  (5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。

  (6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。

  (7)随着事情的进一步发展,又出现如下的情况:

  (8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。

  现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?

  解答:

  对题意的以下两点这样理解:

  (2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。

  (6)中指如果A,B换过,并且A,C换过,这就是两次交换。

高中数学教案8

  【课题名称】

  《等差数列》的导入

  【授课年级】

  高中二年级

  【教学重点】

  理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。

  【教学难点】

  等差数列的性质、等差数列“等差”特点的理解,

  【教具准备】多媒体课件、投影仪

  【三维目标】

  ㈠知识目标:

  了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;

  ㈡能力目标:

  通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;

  ㈢情感目标:

  通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。

  【教学过程】

  导入新课

  师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:

  (1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()

  (2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的`数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?

  (3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?

  (4)10072,10144,10216,(),10360

  请同学们回答以上的四个问题

  生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。

  师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。

  生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.

  师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。

  生1:相邻的两项的差都等于同一个常数。

  师:很好!那作差是否有顺序?是否可以颠倒?

  生2:作差的顺序是后项减去前项,不能颠倒!

  师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。

  推进新课

  等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。

  师:有哪个同学知道定义中的关键字是什么?

  生2:“从第二项起”和“同一个常数”

高中数学教案9

  教材分析:

  三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

  教案背景:

  通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

  教学方法:

  以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

  教学目标:

  借助单位圆探究诱导公式。

  能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

  教学重点:

  诱导公式(三)的推导及应用。

  教学难点:

  诱导公式的应用。

  教学手段:

  多媒体。

  教学情景设计:

  一.复习回顾:

  1. 诱导公式(一)(二)。

  2. 角 (终边在一条直线上)

  3. 思考:下列一组角有什么特征?( )能否用式子来表示?

  二.新课:

  已知 由

  可知

  而 (课件演示,学生发现)

  所以

  于是可得: (三)

  设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

  由公式(一)(三)可以看出,角 角 相等。即:

  .

  公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

  设计意图:结合学过的公式(一)(二),发现特点,总结公式。

  1. 练习

  (1)

  设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

  (学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

  三.例题

  例3:求下列各三角函数值:

  (1)

  (2)

  (3)

  (4)

  例4:化简

  设计意图:利用公式解决问题。

  练习:

  (1)

  (2) (学生板演,师生点评)

  设计意图:观察公式特点,选择公式解决问题。

  四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

  五.课后作业:课后练习A、B组

  六.课后反思与交流

  很荣幸大家来听我的课,通过这课,我学习到如下的东西:

  1.要认真的研读新课标,对教学的目标,重难点把握要到位

  2.注意板书设计,注重细节的东西,语速需要改正

  3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作

  4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

  5.上课的生动化,形象化需要加强

  听课者评价:

  1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

  2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

  3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

  4.评议者:引导学生通过网络进行探究。

  建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

  ( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

  ( 2)这样子的教学可以提高上课效率,让学生更多的时间思考

  ( 3)网络平台的使用,使得学生的.参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

  ( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

  ( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

  ( 6)让学生多探究,课堂会更热闹

  ( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

  ( 8)教学模式相对简单重复

  ( 9)思路较为清晰,规范化的推理

高中数学教案10

  一、教学目标:

  掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  二、教学重点:

  向量的性质及相关知识的综合应用。

  三、教学过程:

  (一)主要知识:

  1、掌握向量的'概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  (二)例题分析:略

  四、小结:

  1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

  2、渗透数学建模的思想,切实培养分析和解决问题的能力。

  五、作业:

  略

高中数学教案11

  教学目标:

  1、理解并掌握曲线在某一点处的切线的概念;

  2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

  3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

  问题的能力及数形结合思想。

  教学重点:

  理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

  教学难点:

  用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

  教学过程:

  一、问题情境

  1、问题情境。

  如何精确地刻画曲线上某一点处的变化趋势呢?

  如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。

  如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。

  因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的.范围内以直代曲)。

  2、探究活动。

  如图所示,直线l1,l2为经过曲线上一点P的两条直线,

  (1)试判断哪一条直线在点P附近更加逼近曲线;

  (2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?

  (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

  二、建构数学

  切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。

  思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  三、数学运用

  例1 试求在点(2,4)处的切线斜率。

  解法一 分析:设P(2,4),Q(xQ,f(xQ)),

  则割线PQ的斜率为:

  当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;

  当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

  从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

  解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

  练习 试求在x=1处的切线斜率。

  解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

  小结 求曲线上一点处的切线斜率的一般步骤:

  (1)找到定点P的坐标,设出动点Q的坐标;

  (2)求出割线PQ的斜率;

  (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

  思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  解 设

  所以,当无限趋近于0时,无限趋近于点处的切线的斜率。

  变式训练

  1。已知,求曲线在处的切线斜率和切线方程;

  2。已知,求曲线在处的切线斜率和切线方程;

  3。已知,求曲线在处的切线斜率和切线方程。

  课堂练习

  已知,求曲线在处的切线斜率和切线方程。

  四、回顾小结

  1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

  2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

  五、课外作业

高中数学教案12

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一 、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的',那么我们怎样用平面上的点来表示复数呢?

  问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

  6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

  四、数学应用

  例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习 课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考 任意两个复数都可以比较大小吗?

  例4 设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

高中数学教案13

  教学目的:掌握圆的标准方程,并能解决与之有关的问题

  教学重点:圆的标准方程及有关运用

  教学难点:标准方程的灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:⒈说出下列圆的方程

  ⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x-2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2-6x+4y+12=0

  ⒊判断3x-4y-10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的'方程

  三、引伸提高,讲解例题

  例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

  练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

高中数学教案14

  教学准备

  1.教学目标

  1、知识与技能:

  函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

  赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

  2、过程与方法:

  (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示函数的定义域;

  3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

  教学重点/难点

  重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

  难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学用具

  多媒体

  4.标签

  函数及其表示

  教学过程

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

  3、分析、归纳以上三个实例,它们有什么共同点;

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

  师:归纳总结

  (三)质疑答辩,排难解惑,发展思维。

  1、如何求函数的定义域

  例1:已知函数f(x)=+

  (1)求函数的定义域;

  (2)求f(-3),f()的值;

  (3)当a>0时,求f(a),f(a-1)的值.

  分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的`实数的集合,函数的定义域、值域要写成集合或区间的形式.

  例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

  分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引导学生小结几类函数的定义域:

  (1)如果f(x)是整式,那么函数的定义域是实数集R.

  2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

  (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

  (5)满足实际问题有意义.

  巩固练习:课本P19第1

  2、如何判断两个函数是否为同一函数

  例3、下列函数中哪个与函数y=x相等?

  分析:

  1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  解:

  课本P18例2

  (四)归纳小结

  ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

  (五)设置问题,留下悬念

  1、课本P24习题1.2(A组)第1—7题(B组)第1题

  2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

  课堂小结

高中数学教案15

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的单调性的探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的`过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的单调性以及三角函数值的取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

【高中数学教案】相关文章:

高中数学教案模板02-02

高中数学教案(精选20篇)01-29

高中数学教案(15篇)07-21

高中数学教案精选15篇01-29

高中数学教案(精选15篇)02-04

高中数学教案15篇07-20

高中数学教案(集锦15篇)12-30

高中数学教案通用15篇01-11

高中数学教案(合集15篇)02-27