高中数学教案(通用15篇)
作为一位不辞辛劳的人民教师,编写教案是必不可少的,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?以下是小编为大家收集的高中数学教案,欢迎大家分享。
高中数学教案1
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的'角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”.
“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
对“或”的理解,可联想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.
对“且”的理解,可联想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 这两个条件都要满足的意思.
对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .
命题可分为简单命题和复合命题.
不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
(4)命题的表示:用 , , , ,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式.
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
(1) ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若 ,则 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
例3 写出下表中各给定语的否定语(用课件打出来).
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
至多有个
其否定语分别为
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有 个”的否定语是“至少有 个”.
(如果时间宽裕,可让学生讨论后得出结论.)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
4.课堂练习:第26页练习1
5.课外作业:第29页习题1.6
高中数学教案2
教学目标:
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义。
(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力。
教学重点:
子集、补集的概念
教学难点:
弄清元素与子集、属于与包含之间的区别
教学用具:
幻灯机
教学过程设计
(一)导入新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。
【提出问题】(投影打出)
已知xx,xx,xx,问:
1、哪些集合表示方法是列举法。
2、哪些集合表示方法是描述法。
3、将集M、集从集P用图示法表示。
4、分别说出各集合中的元素。
5、将每个集合中的元素与该集合的关系用符号表示出来、将集N中元素3与集M的关系用符号表示出来。
6、集M中元素与集N有何关系、集M中元素与集P有何关系。
【找学生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(笔练结合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、xx,xx,xx,xx,xx,xx,xx,xx(笔练结合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题、
(二)新授知识
1、子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作:xx读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:AxxB或BxxA、
性质:①xx(任何一个集合是它本身的子集)
②xx(空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合。
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的空集也是B的子集,而这个集合中并不含有B中的元素、由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的。
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例:xx,可见,集合xx,是指A、B的所有元素完全相同。
(3)真子集:对于两个集合A与B,如果xx,并且xx,我们就说集合A是集合B的真子集,记作:xx(或xx),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的.真子集。”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B。
【提问】
(1)xx写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2)xx判断下列写法是否正确
①xxAxx②xxAxx③xx④AxxA
性质:
(1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,则xxA;
(2)如果xx,xx,则xx。
例1xx写出集合xx的所有子集,并指出其中哪些是它的真子集、
解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“xx”与“xx”:元素与集合之间是属于关系;集合与集合之间是包含关系。如xxR,{1}xx{1,2,3}
②{0}与xx:{0}是含有一个元素0的集合,xx是不含任何元素的集合。
如:xx{0}。不能写成xx={0},xx∈{0}
例2xx见教材P8(解略)
例3xx判断下列说法是否正确,如果不正确,请加以改正、
(1)xx表示空集;
(2)空集是任何集合的真子集;
(3)xx不是xx;
(4)xx的所有子集是xx;
(5)如果xx且xx,那么B必是A的真子集;
(6)xx与xx不能同时成立、
解:(1)xx不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确、空集是任何非空集合的真子集;
(3)不正确、xx与xx表示同一集合;
(4)不正确、xx的所有子集是xx;
(5)正确
(6)不正确、当xx时,xx与xx能同时成立、
例4xx用适当的符号(xx,xx)填空:
(1)xx;xx;xx;
(2)xx;xx;
(3)xx;
(4)设xx,xx,xx,则AxxBxxC、
解:(1)0xx0xx;
(2)xx=xx,xx;
(3)xx,xx∴xx;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C、
【练习】教材P9
用适当的符号(xx,xx)填空:
(1)xx;xx(5)xx;
(2)xx;xx(6)xx;
(3)xx;xx(7)xx;
(4)xx;xx(8)xx、
解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、
提问:见教材P9例子
(二)xx全集与补集
1、补集:一般地,设S是一个集合,A是S的一个子集(即xx),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作xx,即
、
A在S中的补集xx可用右图中阴影部分表示、
性质:xxS(xxSA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则xxSA={2,4,6};
(2)若A={0},则xxNA=N;
(3)xxRQ是无理数集。
2、全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用xx表示。
注:xx是对于给定的全集xx而言的,当全集不同时,补集也会不同。
例如:若xx,当xx时,xx;当xx时,则xx。
例5xx设全集xx,xx,xx,判断xx与xx之间的关系。
解:
练习:见教材P10练习
1、填空:
xx,xx,那么xx,xx。
解:xx,
2、填空:
(1)如果全集xx,那么N的补集xx;
(2)如果全集,xx,那么xx的补集xx(xx)=xx、
解:(1)xx;(2)xx。
(三)小结:本节课学习了以下内容:
1、五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)
2、五条性质
(1)空集是任何集合的子集。ΦxxA
(2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)
(3)任何一个集合是它本身的子集。
(4)如果xx,xx,则xx、
(5)xxS(xxSA)=A
3、两组易混符号:(1)“xx”与“xx”:(2){0}与
(四)课后作业:见教材P10习题1、2
高中数学教案3
1.教学目标
(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.
(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2.教学重点.难点
(1)教学重点:圆的标准方程的求法及其应用.
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题.
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)
将x=2.7代入,得 .
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的'方程?
答:x2 y2=r2
2.如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为 ①
把①式两边平方,得(x―a)2 (y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在 ,半径为 ;
(3)经过点 ,圆心在点 .
2.根据圆的方程写出圆心和半径
(1) ; (2) .
ii.灵活应用(提升能力)
问题四:1.求以 为圆心,并且和直线 相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆.
2.已知圆的方程为 ,求过圆上一点 的切线方程.
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是 ,经过圆上一点 的切线的方程是: .
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.
3.求圆x2 y2=13过点(-2,3)的切线方程.
4.已知圆的方程为 ,求过点 的切线方程.
高中数学教案4
高中数学趣味竞赛题(共10题)
1 、撒谎的有几人
5个高中生有,她们面对学校的新闻采访说了如下的话:
爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”
玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”
千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?
2、她们到底是谁
有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?
3、半只小猫
听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。
“一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?
4、被虫子吃掉的算式
一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。
那么,请问原来的算式是什么样子的呢?
5、巧动火柴
用16根火柴摆成5个正方形。请移动2根火柴,
使
正形变成4。
6、折过来的角
把正三角形的`纸如图那样折过来时,角?的度数是多少度?
7、星形角之和
求星形尖端的角度之和。
8、啊!双胞胎?
丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。
结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?
9、赠送和降价哪个更好?
1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?
10、折成15度
用折纸做成45度很简单是吧。那么,请折成15度,你会吗?
高中数学教案5
一、教学目标
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的`单调性以及三角函数值的取值范围过程。
三、教学过程
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
高中数学教案6
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的'书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
高中数学教案7
教学目标:
1。了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。
2。会求一些简单函数的反函数。
3。在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。
4。进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。
教学重点:
求反函数的方法。
教学难点:
反函数的概念。
教学过程:
教学活动
设计意图一、创设情境,引入新课
1。复习提问
①函数的概念
②y=f(x)中各变量的意义
2。同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。
3。板书课题
由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。
二、实例分析,组织探究
1。问题组一:
(用投影给出函数与;与()的图象)
(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)
(2)由,已知y能否求x?
(3)是否是一个函数?它与有何关系?
(4)与有何联系?
2。问题组二:
(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(3)函数 ()的定义域与函数()的.值域有什么关系?
3。渗透反函数的概念。
(教师点明这样的函数即互为反函数,然后师生共同探究其特点)
从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。
通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。
三、师生互动,归纳定义
1。(根据上述实例,教师与学生共同归纳出反函数的定义)
函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。
2。引导分析:
1)反函数也是函数;
2)对应法则为互逆运算;
3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;
4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;
5)函数y=f(x)与x=f(y)互为反函数;
6)要理解好符号f;
7)交换变量x、y的原因。
3。两次转换x、y的对应关系
(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)
4。函数与其反函数的关系
函数y=f(x)
函数
定义域
A
C
值 域
C
A
四、应用解题,总结步骤
1。(投影例题)
【例1】求下列函数的反函数
(1)y=3x—1 (2)y=x 1
【例2】求函数的反函数。
(教师板书例题过程后,由学生总结求反函数步骤。)
2。总结求函数反函数的步骤:
1° 由y=f(x)反解出x=f(y)。
2° 把x=f(y)中 x与y互换得。
3° 写出反函数的定义域。
(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?
(2)的反函数是________。
(3)(x<0)的反函数是__________。
在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。
通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。
通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。
题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。
五、巩固强化,评价反馈
1。已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)
(1)y=—2x 3(xR) (2)y=—(xR,且x)
( 3 ) y=(xR,且x)
2。已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。
五、反思小结,再度设疑
本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。
(让学生谈一下本节课的学习体会,教师适时点拨)
进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。
六、作业
习题2。4 第1题,第2题
进一步巩固所学的知识。
教学设计说明
"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。
高中数学教案8
内容分析:
1、 集合是中学数学的一个重要的基本概念
在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础
例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明
然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的.引言和集合的基本概念
学习引言是引发学生的学习兴趣,使学生认识学习本章的意义
本节课的教学重点是集合的基本概念。
集合是集合论中的原始的、不定义的概念
在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识
教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集
”这句话,只是对集合概念的描述性说明。
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)。
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}
(2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…}
(3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}
(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}
(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集,记作N*或N+
Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写。
高中数学教案9
教学目的:掌握圆的标准方程,并能解决与之有关的问题
教学重点:圆的标准方程及有关运用
教学难点:标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:⒈说出下列圆的方程
⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3
⒉指出下列圆的'圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判断3x-4y-10=0和x2+y2=4的位置关系
⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高中数学教案10
【课题名称】
《等差数列》的导入
【授课年级】
高中二年级
【教学重点】
理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。
【教学难点】
等差数列的性质、等差数列“等差”特点的理解,
【教具准备】多媒体课件、投影仪
【三维目标】
㈠知识目标:
了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;
㈡能力目标:
通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;
㈢情感目标:
通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。
【教学过程】
导入新课
师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:
(1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()
(2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的.数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?
(3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?
(4)10072,10144,10216,(),10360
请同学们回答以上的四个问题
生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。
师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。
生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.
师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。
生1:相邻的两项的差都等于同一个常数。
师:很好!那作差是否有顺序?是否可以颠倒?
生2:作差的顺序是后项减去前项,不能颠倒!
师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。
推进新课
等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。
师:有哪个同学知道定义中的关键字是什么?
生2:“从第二项起”和“同一个常数”
高中数学教案11
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练.
[字幕]例1 列举从4个元素 中任取2个元素的所有组合.
例2 计算:(1) ;(2) .
(学生活动)板演、示范.
(教师活动)讲评并指出用两种方法计算例2的第2小题.
[字幕]例3 已知 ,求 的.所有值.
(学生活动)思考分析.
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择.
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.
【反馈练习 学会应用】
(教师活动)给出练习,学生解答,教师点评.
[课堂练习]课本P99练习第2,5,6题.
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答.
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
高中数学教案12
一、课程性质与任务
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的`学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)
第2单元不等式(8学时)
第3单元函数(12学时)
第4单元指数函数与对数函数(12学时)
第5单元三角函数(18学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第9单元立体几何(14学时)
第10单元概率与统计初步(16学时)
2.职业模块
第1单元三角计算及其应用(16学时)
第2单元坐标变换与参数方程(12学时)
第3单元复数及其应用(10学时)
高中数学教案13
教学准备
1.教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依
赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示函数的定义域;
3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.
教学重点/难点
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学用具
多媒体
4.标签
函数及其表示
教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的.变化关系问题.
3、分析、归纳以上三个实例,它们有什么共同点;
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f(x)=+
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.
所以s==(40-x)x(0<x<40)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
分析:
1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:
课本P18例2
(四)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.
(五)设置问题,留下悬念
1、课本P24习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.
课堂小结
高中数学教案14
1. 你能遵守学校的规章制度,按时上学,按时完成作业,书写比较端正,课堂上你也坐得比较端正。如果在学习上能够更加主动一些,寻找适合自己的学习
2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。
3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。
4. 你热情大方,为人豪爽,身上透露出女生少有的霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!
5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!
6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!
7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!
8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的'学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!
9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。
10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。
高中数学教案15
1. 该生能以校规班规严格要求自己。有较强的集体荣誉感,学习态度认真,能吃苦,肯下功夫,成绩稳定。生活艰苦朴素,待人热情大方,是个基础扎实,品德兼优的好学生。
2. 该生能严格遵守学校的规章制度。尊敬师长,团结同学。热爱集体,积极配合其他同学搞好班务工作,劳动积极肯干。学习刻苦认真,勤学好问,学习成绩稳定,学风和工作作风都较为踏实,坚持出满勤,并能积极参加社会实践和文体活动,劳动积极。是一位发展全面的好学生。
3. 你是同学拥护、老师信任的班委,乖巧懂事、伶俐开朗、自信大方、乐观合群,是同学们学习的榜样。你爱护集体荣誉,有很强的工作能力,总是及时协助老师完成班务工作,是老师的得力帮手。你心性坦荡,个性鲜明,能大胆说出自己的想法,难能可贵。而你在运动场上的爆发力更让老师同学们惊叹!潜力深厚,希望在高中时期能逐渐发掘出来!
4. 你是个做事小心翼翼,感情细腻丰富的女孩,每次看你认真的样子老师都很感动。你也是幸运的,周边有很多人都在关爱着你,所以,对他们,尤其是父母,记得不要太莽撞,不要太任性,要学着体谅,学着换位思考,学着懂事。另外,今后要多运动、多锻炼,有健康才能成就美好未来!
5. 你坚强勇敢、乐观大方的性格让老师非常欣赏。学习上始终保持着上进好学的决心和韧性,生活中始终能做到豁达开朗,还有着良好的审美和绘画的专长,令人钦佩!以入世的态度做事,以出世的态度做人,这是我送你的一句话,希望你保持好心态,迎接新的学习生活。
6. 最有希望得成功者,并不是才干出众的人,而是那些最善于利用时机去努力开创的人。你是很有才华的孩子,老师希望你能把握好机会,求得上进。你聪明,但也有着许多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,坚定目标致力于学习,定能大限度地发挥你的聪明才智!
7. 该生遵纪守法,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。是一位诚实守信,思想上进,尊敬老师,团结同学,热心助人,积极参加班集体活动,有体育特长,学习认真,具有较好综合素质的优秀学生。
8. 你聪颖活泼,浑身洋溢青春气息。你爱好广泛,善钻精思,具备一定能力,潜质无限。但是在有些时候,在面临一些问题的时候,你总表现得太过紧张,其实,征服畏惧、建立自信的最快最确实的方法,就是大胆地去做你认为害怕的事,直到你获得成功的经验。继续努力!
9. 你是对3班这个集体的成长贡献很大的孩子,是老师的得力帮手。你干练沉稳,坚强隐忍,能从大局出发考虑问题,在很多时候能独当一面。你独立能力强,能够吃苦,但在进入高中的学习上却显得有些吃力。其实你还有很深的潜力尚未挖掘,找对方法,好好加油,世上没有绝望的处境,只有对处境绝望的人,请乐观一点,踏实地走好接下来的每一步!
10. 你是个能独立、有主见的女孩,有自己的想法,有一定的决断力。但是独立不代表乖张,有想法不代表恣意妄为。令人高兴的是,你在这点上做的还是不错的。晟君,老师希望你能一如既往地关注于学习而不懈怠,能坚持怀揣着平和感恩的心态简单快乐地生活。
11. 你给我的第一印象是有些沉默,其实和朋友在一起时还是很有自己想法的对吧?你看,你布置的新年教室多么出彩!请继续秀出真实而精彩的你!这半个学期的学习有点力不从心,请保持谨慎和细心,保持好的学习习惯,及时弥补所缺漏的环节,大步向前进!
12. 该生认真遵守学校的规章制度,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。尊敬师长,团结同学。学习态度认真,能吃苦,肯下功夫,成绩稳定上升。是有理想有抱负,基础扎实,心理素质过硬、全面发展的优秀学生。
13. 你是一个真诚待人、温柔可爱的女生。也许是因为你有些不紧不慢的性格,所以在学习上有时候行动力不够坚决,造成了学习成绩的不稳定。请多利用假期时间好好补缺补漏,向上的姿态才是最重要的!
14. 老师同学们都在说你是个很有责任心和上进心的孩子,在班级需要的时候,你承担了劳动委员的重任,经常最后一个离开,就为了班级能有个整洁的环境。老师很感谢你!而更可贵的是,你懂得安排自己的时间,在工作的空隙抓紧时间做作业。希望下学期你的学习成绩也能随你的毅力和执着步步攀升,加油,羽腾!
15. 其实你拥有你自己都不确知的才华,从你的文字中可以读出这样的信息:你时常沉醉在自己的小世界中,做自己喜欢做的事情。老师希望你能敞开心扉,多与旁人交流你快乐的体验和想法,不要吝啬展示自己!还有,成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。请务必抓紧每寸光阴,努力学习!
16. 你知道吗?在世界上那些最容易的事情中,拖延时间是最不费力的。而学习却是艰辛的劳动过程。表面安静的你其实心里有着自己的想法和烦忧。于是在不经意间,精力被不自觉地转移到一些琐事上,却总无法完全集中心智于学业。也许你也已经意识到,也有了些许进步,那么请千万记住要持之以恒,要付出比别人更多倍的努力!
17. 你是班级的数学科代表,老师很高兴选择你担任这个职务,不仅能促进自己的进步,而且也展现了你负责工作的一面。但是学习是要和工作一样,需要一丝不苟的态度,包括上课的听讲是否及时而有效,包括功课的完成是否严谨而认真。下学期,愿看到一个更加全神贯注更加专心致志的你!
18. 我一直难忘在运动会上你担任前导牌的样子,为班级添光增彩了不少!你有着绘画的特长,是个善良、真诚的女孩,有着细腻丰富的内心,也许只需一点鼓励,你便会勇敢走下去,希望能在平时多听见你爽朗的笑声!
19. 可爱、热情、谨小慎微,这都是你的代名词。你略为腼腆的微笑让人印象深刻。老师一直认为你是能够认真仔细地作好每一件事情、成就每一个细节的,因此,希望你能珍惜时间,提高效率,在学习上狠狠加油!
20. 其实,任何事都是有重量的,那么,就看你把它变成压力还是重力了。在这个方面,我很高兴地看到你做的很好,你学习自觉,成绩便是努力的证明。老师安排你做物理科代表就是希望能多培养你的责任意识、大局意识和管理能力,希望以后在这方面能看到你更加出色的表现!
21. 你是个可爱善良,懂事乖巧的女孩。作为语文科代表,兢兢业业,一丝不苟。你对人也是特别真诚热情,偶尔透露出的忧郁是旁人不易察觉的。但是你知道,成长就是破蛹成蝶的过程,高中是人生的重要阶段,勇敢地迈好每一步吧,享受成长带来的所有痛苦和快乐!
22. 你很有能力,也很潜力,但欠缺的却是耐力和毅力。君子厚积而薄发,希望你能振作精神,跟上进度,迎头赶上,期待你获得更大的进步!
23. 你曾经和我说过你的理想,但你对理想的憧憬和你所付出的努力程度却总是难成正比。若现在你觉得有障碍挡在前行之路上,那就说明你还没有把目标看的足够清楚。宁在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在临事时无法适从。你现在欠缺的就是对自己发狠奋进的恒心,柏宇,“要想人前显贵,必定人后受罪”,成功要靠实践去争取,而不是光靠几句好听的决心话!
24. 你乖巧大方,组织能力一流,但在学习上总显得有些力不从心。快马加鞭迎头赶上固然是必需,但也别太心急,要知道,欲速则不达,只要踏实努力,不懂就问,采用适合自己的.学习方法,就会看到进步。也许刚开始的时候进步很小,小到你看不见,但是不要灰心,万事开头难!将事前的忧虑,换为事前的思考和计划,彻底放松,加强锻炼,养足精神再迎战!你能做到的,蔡炜,加油!
25. 该生能遵守校纪班规,尊敬师长,能与同学和睦相处,勤学好问,有较强的独立钻研能力,分析问题比较深入、全面,在某些问题上有独特的见解,学习成绩在班上一直能保持前茅,乐于助人,能帮助学习有困难的同学。
26. 不论在体育场还是教室里,看到你神采奕奕的样子,总让人联想到“英姿飒爽”这四个字。这确是一个高中生应该有的精神面貌。你做事认真,顾全大局,真的非常难得。希望能保持这样良好的状态,继续前进!也希望能够多和老师同学交流,多提些对班集体建设的好建议!
27. 该生能以校规班规严格要求自己,积极参加社会实践和文体活动。尊敬师长,团结同学。集体观念强,劳动积极肯干。积极参加各种集体活动和社会实践活动。学习目的明确,刻苦认真,成绩稳定,是一个有理想、有抱负,基础扎实,心理素质过硬,全面发展的优秀学生。
28. 我很高兴看到你是个有上进心,有责任感,能够让家人、师长宽慰的孩子。有努力就有回报,你下半学期的表现不就证明了这一点吗?进步是随着时间节节上升的,不要太过急躁,要知道,若你不给自己设限,则人生中就没有限制你发挥的藩篱。新学期要重整旗鼓,再接再励!
29. ××× 独立性较强,对自己的能力也有准确的定位。建议今后学习上要养成勤思爱问的习惯,不能做井底之蛙,满足于现状,要充分利用他人的智慧,最后达到“好风凭借力,送我上青云”的目的。
30. ××× 每天在教室,都能看到你埋头苦读的身影,可见读书的态度很端正;而你每一次考试的成绩虽然不拔尖,却是在稳步前进,可见读书的效率还不错。请继续保持这种虚心求学、稳步前进的态势,相信一年半以后的高考,你必将崭露头角,脱颖而出。
【高中数学教案】相关文章:
高中数学教案04-11
高中数学教案模板02-02
高中数学教案(精选20篇)01-29
高中数学教案精选15篇01-29
高中数学教案(精选15篇)02-04
高中数学教案15篇07-20
高中数学教案(15篇)07-21
高中数学教案(汇编15篇)01-22
高中数学教案通用15篇01-11
高中数学教案(集锦15篇)12-30