《广角》教案
作为一名无私奉献的老师,通常需要用到教案来辅助教学,教案是教学活动的总的组织纲领和行动方案。如何把教案做到重点突出呢?下面是小编帮大家整理的《广角》教案,欢迎阅读与收藏。
《广角》教案1
教学目标:
1、通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义,初步获得一些简单推理的经验。
2、能借助连线、列表等方式整理信息,并按一定的方法进行推理。
3、在简单推理的过程中,培养学生初步的观察、分析、推理和有条理地进行数学表达的能力。
4、使学生感受推理在生活中的广泛应用,初步培养学生有顺序地、全面地思考问题的意识。
教学重点:理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单推理的经验。
教学难点:初步培养学生有序地、全面思考问题及数学表达的能力。
教学准备:
课件
教学过程:
一、新课导入(猜一猜)
1、提问后学生回答(课件演示)。
2、教师谈话,导入新课。
通过刚才的.猜一猜,我们知道要猜出准确的答案,必须要找到有利于猜想的依据或线索,那么怎样才能找到这些依据和线索呢?我相信通过今天的学习后,同学们一定会明白。
二、新知探究
今天老师还给你们带来了3位小朋友,来和我们一起学习,
你们想知道是谁吗?
1、出示便1(课件演示)
有语文、数学和品德与生活三本书,下面三人各拿一本。小刚拿的是什么书?小丽呢?
2、学生回答问题并说出理由:
①请同学们仔细读题,说说你都知道了什么?
②要解决这两个问题,我们该如何思考呢?
A、从三个已知的信息,你能猜出小红拿的是什么书吗?
B、从小丽说:“我拿的不是数学书”这句话能分析推理出什么?
③通过刚才的分析、推理我们已经知道了这三位同学各拿了什么书,那么现在该如何解决这个问题呢?
④用什么方法来解答呢?(学生说教师板书后再演示课件)
⑤回顾刚才的分析过程再次加深理解。
已知小红拿的是语文书。
又知小丽没拿数学书,肯定拿了品德与生活书。
那么,小刚拿的一定是数学书。
小刚拿的是( )书,小丽拿的是( )书。
3、教师小结:像这样,通过分析同学们说的话,推理得出正确的答案,这种思考问题的方法,就叫做简单的推理,换句话说,推理就是依据所给的条件通过分析、推理、判断出正确的答案。
4、质疑提问:像上面的例题中,如果我们只分析小丽说的话而不看小红说的话,能得出正确答案吗?
由此可见,在简单的推理时,一定要全面地分析,仔细推敲才能准确判断出正确答案。
通过刚才的学习,同学们知道了什么是推理,并且学会了怎样运用已知的条件推理得出未知的结果。下面老师要考考大家,检查一下同学们学得怎样?敢接受老师的检查吗?
三、应用提升(闯三关)
1、讨论完成P109“做一做”(第一关)。
2、猜一猜,猜图形(先猜再出示课件)(第二关)。
3、连线(第三关)。
四、拓展思维
恭喜同学们顺利的闯过了三关,我想同学们对我们今天学的推理这一数学知识已经有了更深的理解,那你们知道在我们的日常生活中什么职业什么人对推理这一数学知识运用的最多吗?今天老师还带来了一位有名的侦探,想知道是谁吗?请听黑猫警长告诉我们什么?那你们想当小侦探吗?现在我们就一起去当小侦探吧!
五、课堂总结
今天我们学习了什么?你有什么收获?
《广角》教案2
数学广角
【 新知识点】
利用天平找出5 件物品中的1 件次品
数学广角
利用天平找出多件物品中的1 件次品
【 教学要求】
1 .通过观察、猜想、实验、推理等活动,体会解决问题战略的多样性和运用优化的方法解决问题的有效性。
2 .感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养同学的应用意识和解决实际问题的能力。
【 教学建议】
1 .加强同学的试验、操作活动。
本单元内容的`活动性和操作性比较强,大都可以采取同学动手实践、小组讨论、探究的方式教学。实际教学时,可先多给同学一些时间,让他们充沛地操作、实验、讨论、研究,找到解决问题的多种战略。
2 .重视培养同学的猜想、推理能力和探索精神。
组织同学进行实验操作活动,仅仅是本单元教学内容的基础或前奏,教学的重点在于活动后的猜想、归纳、推理活动,由此促进同学养成勤于考虑、勇于探索的精神。操作活动中,同学往往会得出多种解题战略。教学时,老师应引导同学从这些纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决战略。
《广角》教案3
一、教学内容
简单的排列组合
二、教学目标
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
三、编排特点
1.借助操作活动或学生易于理解的事例来帮助学生找出排列数或组合数。
2.利用学生已有的知识让学生逐步建构新的知识。
衣服搭配、摆几位数、求比赛场次等例子在二年级上册都出现过。
3.利用直观图示帮助学生有序地、不重不漏地找出排列数或组合数。
四、具体编排
1.例1(简单的组合)
(1)隐含了分步计数的原理,但这儿不要求用分步计数的方法(乘法)来求组合数。只要能用图示的方法来求出组合数就可以了。
(2)教材上提供了两种图示表示法,引导学生用画简图的方式来表示抽象的数学知识。实际上还有其他的方法,例如每条裙子或裤子分别可以搭配两件上衣(分步时,可以把确定上衣作为第一步,也可以把确定裙子和裤子作为第一步),教学时要充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示衣服,圆形表示裙子和裤子,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
通过活动的方式让学生不重不漏地把所有两位数写出来。
3.例2(简单的排列)
学生已经有了拿三张数字卡片摆两位数的经验,摆三位数可以用类推的方式让学生自己解决。在这儿的重点是引导学生有序地思考,怎样摆才能不重不漏。学生一开始可能是无规律地摆,但经过一定的观察后,会逐渐走向有序。要让学生经历一个从无序到有序、从实际摆卡片到脱离卡片直接写出这些三位数的过程。
4.“做一做”
借助学生喜爱的西游记的故事情境让学生直观地找出排列数。
5.例3(简单的组合,两两组合)
(1)利用20xx年世界杯足球赛的题材,除了教学组合知识以外,还可以适当进行爱国主义教育。
(2)用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。(原来教材上是有的,但由于版面的原因,送审后删去了。)
6.练习二十五
设计丰富的情境让学生练习,巩固排列和组合的知识。
五、教学要求
1.要借助于操作活动帮助学生求排列数或组合数。
排列、组合是很抽象的数学知识,要用操作活动把这些抽象的知识直观化、具体化。
2.注意把握教学要求。
在这儿还只是用图示的方式把所有的排列或组合情况罗列出来(即有哪些排列或组合),不是抽象地计算一共有多少种排列数或组合数。要允许学生用自己喜欢的方式去求排列数、组合数。至于排列、组合等名词,排列与组合的区别,分类计数原理、分步计数原理等,都不要求学生掌握。
实践活动掷一掷
一、利用的数学知识
1.组合(两个骰子上的数字之和)
2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的.和可能是2至12的所有数,不可能是1或13等数。)
3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的。)
二、活动步骤
(一)示范游戏
1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)
2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。
3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。
(二)小组内游戏,探索结论。
通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。
(三)理论验证
通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。
《广角》教案4
教学内容:
集合的有关思想(课本第108页的例、练习二十四的第l、2题)。
教学目标:
1、使学生能借助具体内容,初步体会集合的思想方法。
2、使学生能利用集合的思想方法解决简单的实际问题。
教学重难点:
被学生初步体会集合的'有关思想方法。
教具准备:
利用教具,学具等教学辅助手段帮助学生理解。
教学过程:
一、导入谈话
今天老师将把同学们带人“数学广角”,让同学们去认识体会一些有趣的数学问题。
二、探究新知
1、教学例1
(1)读懂统计表。
教师用电脑课件出示统计表,列出参加语文兴趣小组和数学兴趣的学生名单。
说一说:从统计表中,你收集到哪些信息?
议一议:三(1)班共有多少人参加了这两个课外兴趣小组?
教师引导:看来同学们已经发现了问题,那么如何解决这一问题呢?我们可以用圈来表示:
(2)认识集合圈。
①用多媒体课件分别出示两个集合圈。
②让学生先在练习本上画出集合圈,填上相应的学生姓名,然后再汇报结果。教师根据学生汇报,多媒体显示填写内容。并让学生说一说两个图中所表示的意义。
③提出问题:
有的学生姓名在两个集合中都有,应该如何来表示才能更直观、更形象、更简单呢?
教师利用电脑课件再出来二个空白集合,并填上学生姓名再合并。
问:你们知道这个图的意思吗?(让学生大胆猜想,说出自己的想法)。
填写完成后,再让学生说一说不同位置所表示的不同意义,然后再引导学生将集合圈和统计表进行比较。
(3)列式计算。
通过以上分析、讨论,学生已经明白杨明、李芳、刘红这三位学生既参加了语文兴趣小组又参加了数学兴趣小组,所以是重复的,在计算点人数时只能计算一次。
学生列式计算,并说说算式的意义。
三、巩固运用
1、课内外作业:
练习二十四的第1、2题。
第1题,首先要求学生根据动物的不同属性“"会游泳的”和“会飞的”把它们进行分类。然后再要说一说中间位置“表示什么”。
第2题,可以引导学生先把两天进的货中重复的部分找出来,然后再计算两天一共进了多少种货。学生计算的时候可以用加法进行计算,也可以直接点数。
四、课堂小结
本节课我们学习了什么?你有什么收获?
《广角》教案5
【教材分析】
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
【学情分析】
学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
【教学目标】
1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的`问题。
2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的问题。
【教学重难点】
重点:理解集合图的各部分意义,能用集合图分析生活中简单的有重复部分的问题。
难点:借助直观图解决集合问题。
【教学准备】
课件。
【教学流程】
【情境导入】
1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?
师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)
【探究新知】
1.巧妙设疑,直观感悟,初步感知重复现象。
(1)调查本班学生参加数学小组、作文小组的情况。
(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。
问题:当有同学既参加数学小组,又参加作文小组时怎么站?
引出问题,学生想办法解决。
(3)说说呼啦圈里各部分学生所表示的意思。
2.自主绘图,加深理解。
课件出示:
三(1)班参加数学、作文课外小组的学生情况表
数学
小明丁旭小小小强小兵小东张伟赵军
作文
小平刘红小东于丽小史陶伟小小卢强小光
(1)提问:参加数学课外小组的学生有几人?参加作文课外小组的学生有几人?参加数学、作文课外小组的学生共有多少人?(学生意见不统一,请学生说说理由)
师:能不能设计一幅图,把学生的姓名写在合适的位置,让我们能一眼就看出参加数学的、参加作文的和两个项目都参加的有哪些同学呢?
(2)学生小组合作,自主绘图。教师巡视指导。
3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。
师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
4.读图训练。教师引导学生用准确的语言表述图中的各种信息。
5.观察图表,算法探究。
师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?
学生回答列式。
6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。
【巩固应用】
教材第106页练习二十三第1、2、3题。
【课堂小结】
通过今天的学习,你有什么收获?
【板书设计】
既……又……
8+9-2=15(人)8-2+9=15(人)
9-2+8=15(人)6+7+2=15(人)
《广角》教案6
教学目标:
1、通过一系列的猜测、比较、推理等活动,使学生感受简单的推理的过程,初步获得一些简单的推理经验。
2、在猜测中让学生学会对于推理过程的简单叙述。
3、培养学生初步的观察、分析及推理能力。
教学重点:经历感受简单的推理过程,培养初步的观察,分析及推理能力。
教学难点:培养学生初步的有序地、全面地思考问题的能力。
教具准备:橡皮、智慧星、桂圆、荔枝、橘子等水果各一个、
教学过程:
一、激趣引入
师:小朋友们,你们喜欢玩游戏吗?现在老师和大家一起做个游戏,你们愿意吗?
(师出示两块不同颜色的橡皮,分别藏在左右手中,让大家猜一猜,左右手中是什么颜色的橡皮)
生乱猜,师说你们能确定吗?(生答)
师:现在老师给你们一个提示,我的右手拿的不是白色的橡皮,现在猜猜老师手里拿的是什么颜色的?能确定吗?说说你的想法。(生答)
师:你们真棒!原来猜也有大学问,要想一次猜准就要有依据去猜才行,今天老师和大家一起走进数学广角,去玩一玩猜一猜的游戏,大家高兴吗?(板书:推理)
谁能猜得准,说得好,谁就能得到老师送的智慧星,得智慧星多的同学就是本节课的数学明星,有信心吗?
二、探究新知
1、“猜名字”游戏
师:在“数学广角”里有两位小朋友已经在等我们了,看,你们能猜出哪位是兰兰,哪位是红红吗?(生猜)大家能不能确定谁是兰兰,谁是红红呢?(不能),那何老师给大家一个提示。(出示:左边的小朋友说:“我不是红红”)可以猜出来了吗?能说说你是怎么想的吗?(生:左边的小朋友说她不是红红,那她就是兰兰,右边的小朋友就是红红了。)还有别的想法吗?(左边的不是红红,那右边的肯定就是红红,左边的就是兰兰了)。
师:你们俩不但猜得准,而且说得也清楚,真不错!大家把掌声送给他们,老师也送你们一个礼物,是什么呢?(师预先准备两种颜色的智慧星)指一生:奖给你的不是红色的,那是什么颜色的?师追问思维过程。
(师:你看!多聪明的孩子啊!两件物品,一种情况,只用两个词儿,两句话就把意思给表达出来了,谁再来说说?)
谁愿意和大家说说为什么刚开始不能马上猜出来,而现在却很快就猜对了呢?
师:是啊!当事情有两种情况时,要想一次猜准,需要根据提示先排除其中一种情况,再去猜。
2、师生猜水果
(1)老师这里有桂圆和荔枝两种水果,我想请一个同学一起藏水果,猜我们各拿的是什么水果?(先请学生拿一种水果,老师根据学生拿的告诉提示。)
师:请听提示:我拿的不是XX,你们知道我们分别拿的是什么吗?说说理由
(2)师再出示一些水果(小番茄、葡萄等),请一名同学任选两个水果放在背后,(师:来,先给小朋友们一个提示。)
提示:我的左手不是桔子,那我的右手是什么?为什么?
3、同桌合作,学生利用学具互相猜题
(1)接下来,我们同桌来玩一玩这个游戏,这样,我们每个小朋友的桌上不是放着一个学具袋吗?袋里装着我们的学具,你可以选择其中的两个学具,和同桌玩一玩推理的游戏,注意:猜之前要先给同桌一个什么?(提示)
(2)刚才我们玩的.这些游戏都有一个什么共同点?(板书:2种物体,1个提示)
我们接着往下学。
4、游戏:生活中的推理游戏
师:其实生活中经常会遇到这样的“推理”游戏,大家想猜猜何老师的一些事情吗?
①我喜欢打乒乓球,我握拍子的手不是左手,那是哪只手?
②我教的二年级班长不是女孩子,是——?
③我走路时,先迈的不是右脚,那是哪只脚?
同学们反应真快!如果猜的事情有两种可能,我们就根据提示语去猜,不是这种情形,就是另一种情形。
三、情境体验,完整表述推理过程(三种情况的猜测)
1、“猜年龄”游戏
师:兰兰和红红的好朋友亮亮听说我们在“数学广角”玩游戏,也赶来参加,欢迎吗?亮亮想考考大家,猜猜他们3人的年龄,他们分别是7岁、8岁、9岁,谁能一次猜出他们各自的年龄?(不能)那该怎么办?(提示)师出示:亮亮说:“我今年8岁了”现在可以确定了吗?(不可以)一个提示语够吗?(还得一个),师出示:红红说:“我不是7岁”。能确定吗?你是怎么想的?请同桌互相说说,(从亮亮的话中知道他8岁了,再根据红红说的“我不是7岁”,可判断红红9岁,兰兰7岁。)多指几名同学说推理的过程。
师:要想保证一次猜准3种情况,需要几个提示语?(生:两个)
2、“猜兴趣小组”游戏
师:三种情况的猜测,知道两个提示语,就一定能猜准确吗?
兰兰他们3个小朋友和大家一样非常喜欢学习,他们利用课外活动时间分别参加了美术、舞蹈、书法兴趣小组,(贴出提示兰兰说:我参加了美术小组;
红红说:我不参加美术小组,)“你们根据这两个提示能猜出3人各参加了什么小组吗?为什么不能?(这两个提示语是重复的)
师再出示:也没有参加书法小组,现在能猜出来了吗?
师生共同小结:要猜的事情是三种情况时,需要2个提示语,但不能重复,猜一猜时可以把直接告诉我们的放一旁,再根据猜两种情况的猜法去猜其余两种。
四、课间放松游戏
(师生一起做律动)
拍拍你的肩,不是左肩,那是哪个肩?那是()肩。
摸摸你的耳,不是右耳,那是哪只耳?那是()耳。
踏踏你的脚,不是右脚,那是哪只脚?那是()脚。
伸伸你的手,不是左手,那是哪只手?那是()手。
五、应用拓展
1、活动一(猜跳棋)
师:出示三个纸杯,分别装着红黄蓝三种颜色的跳棋,你们分别猜出纸杯里装的是什么颜色的跳棋吗?(生答不能)
现在老师给你一个提示(1号杯子里是红色的)现在你能才到吗?(生答不能)老师再给你一个提示,(2号杯子里不是蓝色的)
这时你能不能判断了吗?(生说能,多指几名同学说推理过程)
师小结:要想保证一次猜3种情况,需要知道几个提示?(两种)
2、猜名次
小刚、小明和小红跑步比赛,它们会是第几呢?
小刚:我不是第一就是第二,
小明:我在小刚的前面,
小红:我是第三名。
(师,根据提示,先确定小红,剩下第一名和第二名,根据小刚的提示有可能是第一,也有可能是第二,根据小刚的提示能确定一定是第一名,所以小刚是)
六、课堂总结。
同学们,在数学广角玩的愉快吗?有很多的收获吧!
今天我们学的“猜一猜”,这其实是数学里的简单推理知识,希望同学们遇到这些问题时,能冷静地去判断、推理。
《广角》教案7
教学内容:
人教版三年级上册,第九单元《数学广角》例1、例2及相关练习
教学目标:
1、学生通过观察、猜测、实验等活动,了解生活中的一些简单搭配现象,提出不同的搭配方案。找出简单事物的排列数及排列的有效方法。
2、在解决问题的过程中,初步学会用数学语言表达解决问题的大致过程和结果。
3、学生在数学活动中养成与他人合作的良好习惯。感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。渗透符号化思想,以及有序全面地思考问题的'意识。
教学重点:
自主探究,掌握有序搭配方法和有效排列方法并用所学知识解决实际问题。
教学难点:
怎样搭配、排列可以不重复、不遗漏。能有顺序地、全面地思考问题,
并能清楚表述思维过程。
教学准备:
多媒体课件,学具卡片,小组活动记录单等
教学程序:
一、激趣导入:
1、交代本节课内容,板书课题。
2、明确数学广角与生活的联系,激发学生学习本节课的兴趣和学好的信心。
二、探究新知:
(一)例1(搭配问题)
1、课件出示例1,创设情境:聪聪过生日,参加生日聚会,有几种搭配衣服的方法呢?
2、学生小组合作,利用手中的学具摆一摆,找出有几种搭配方法,并试着用连线的方式表示搭配的结果。
3、汇报小组活动结果,学生边汇报教师边演示课件
4、教师点拨:怎样保证不重复不遗漏,怎样算出有多少种搭配方法。
5、完成做一做:学生小组活动,填写记录单汇报,课件演示。
6、完成115页1题,课件出示,学生快速算出有几种搭配方法,再分别说一说,课件演示
(二)例2(排列问题)
1、教师提出问题:课件出示例2,引导学生小组活动
2、学生小组合作学习:利用手中数字卡片摆一摆,填写小组活动记录单。
3、汇报交流,想一想:怎样记录更清楚,保证不重复不遗漏。
4、教师点拨:排列的注意事项
5、完成做一做:学生小组交流后汇报
6、完成116页4题:小组内利用卡片摆一摆,填写记录单后汇报。
(三)小结:搭配和排列的方法及注意事项。
三、巩固练习
1、115页2题:学生回答,课件演示
2、115页3题:课件出示,学生口答
3、116页6题:学生操作后汇报,课件演示。(视时间而定,可口答,
也可留在课后)
4、智慧闯关(4关):课件出示,学生口答
5、机动题(根据时间,可留在课后)
四、总结:
谈谈本节课学习收获。
《广角》教案8
教学目标:
1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
3、进一步体会到数学与日常生活密切相关。
4、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
5、体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:分配问题。抽取问题。
教学难点:正确说明分配的结果。理解抽取问题的基本原理。
教学时间;2课时
第1课时
教学内容:分配
知识与技能:使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
过程与方法:能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
情感态度与价值观:进一步体会到数学与日常生活密切相关。
教学重点:分配问题。
教学难点:正确说明分配的'结果。
教学过程:
一、学例1
1、活动。
把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
学生思考各种放法。
与同学交流思维的过程和结果。
汇报交流情况。
学生口答说明,教师利用实物木棒:
第一种放法: 第二种放法:
第三种放法: 第四种放法:
2、问题。
不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么?
经过简单交流,学生不难描述其中的原理:如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。
3、做一做
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
说出想法。
如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
尝试分析有几种情况。
说一说你有什么体会。
学生体会到,如果把各种情况都摆出来很复杂,也有一定的难度。如果找到数学方法来解决就方便了。
二、学例2
1、本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?
摆一摆,有几种放法。
不难得出,总有一个抽屉至少放进3本。
2、说你的思维过程。
果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
3一共有7本书会怎样呢?9本呢?
学生独立思考,寻找结果。
与同学交流思维过程和结果。汇报结果,全班交流。
4、能用算式表示以上过程吗?你有什么发现?
5÷2=2……1 (至少放3本)
7÷2=3……1 (至少放4本)
9÷2=4……1 (至少放5本)
说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
5、做一做
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
想:每个鸽舍飞进2只鸽子,共飞进6只鸽子。剩下2只鸽子还要飞进其中的1个或2个鸽舍,所以,至少有3只鸽子要飞进同一个鸽舍里。
三、巩固练习
完成课文练习十二第2、4题。
四、布置作业
完成《家庭作业》第20练习。
第2课时
教学内容:抽取游戏
教学目标:
知识与技能:使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
情感态度与价值观:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:抽取问题。
教学难点:理解抽取问题的基本原理。
教学过程:
一、教学例3
盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?
1、猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2、实验活动。
一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3、发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做
1、第1题。
独立思考,判断正误。
同学交流,说明理由。
2、第2题。
说一说至少取几个,你怎么知道呢?
如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习
完成课文练习十二第1、3题。
四、布置作业
完成《家庭作业》第21练习。
《广角》教案9
教学内容:
等量代换的思想(课本第109页的例、练习二十四的第3、4、5题)。
教学目标:
1、通过解决一些简单的数学问题,使学生初步体会等量代换的思想方法。
2、让学生在经历解决问题的'过程中,获得经验,感受数学在日常生活中的作用。
教学重难点:
让学生在经历解决问题的过程中,获得经验,感受数学在日常生活中的作用。
教具准备:
电脑课件、天平、相应的物体模型等。
教学过程:
一、教学准备:认识天平
1、取出天平,让学生认识天平及法码。
2、在天平的左边放一个物体,称其重量。
理解只有当天平平衡时,左右两边的物体的重量一样重,右边法码是多少克(或千克〉,左边物体的重量也是多少克(或千克〉。
二、亲身经历,探索新知
1、课件出示例2第一幅图,学生观摩天平,教师提问:
(1)天平左右两边保持平衡说明了什么?
(2)1个西瓜重多少千克?你怎么想的?
2、出示第2个图:
观察:天平左右两边是否平衡,这说明了什么?4个苹果重多少千克?你怎么想的?
3、这时让学生观察第1、2两个图:从这两个图例中,你们还可以收集到哪些信息?
4、出示第3个图:
(1)学生观察天平,领会图示的意义,然后自己提出问题:几个苹果与1个西瓜同样重?
(2)小组讨论:①让学生在小组中说一说自己的答案想法。②汇报、交流讨论结果。
(3)汇报结果,思想交流。
通过讨论、交流,学生基本懂得思想方法。在教师的引导下,使全体学生明确:16个苹果与1个西瓜同样重。
三、课堂活动:
课本第109页的“做一做”。
1、观察图例,领会题目意图。
2、明确题目所提出的问题2头牛和多少只羊同样重。
3、带着问题进行探究活动。
四、巩固练习
练习二十四的第3、4、5题。
四、课堂小结
本节课我们学习了什么?你有什么收获?
《广角》教案10
教学内容:
二年级下册教科书第109页的内容。
教学目标:
1.通过观察、猜测等活动,经历简单的推理过程,理解逻辑推理的含义,初步获得一些简单的经验。
2.能借助连线、列表等方式整理信息,并按一定的方法进行推理。
3.在简单推理的过程中,培养初步的观察、分析、推理和有条理地进行数学表达的能力。
4.感受推理在生活中的广泛应用,初步培养学生有顺序地、全面地思考问题的意识。
教学重点:
理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单推理的经验。
教学难点:
初步培养学生有序地、全面地思考问题及数学表达的能力。
教学准备:
课件
教学过程:
一、创设情境,初步感知推理
1、游戏“猜一猜”。
请两位同学上台,分别拿着语文书和数学书,A同学拿的不是数学书,猜一猜B同学拿的是什么书?
2、揭示课题:数学广角——推理
二、探索新知
1.呈现问题
出示例题1:先出示例题1的前半部分:有语文、数学和品德与生活三本,下面三人各拿一本,再分别出示小红和小丽说的话,最后出示问题。
2.理解题意、分析问题
(1)从题目中你知道些什么?你能提出什么问题?
“有语文、数学和品德与生活三本,下面三人各拿一本”这句话是什么意思?
(2)到底他们三人分别拿的是什么书呢?请同学们先独立思考,把解决这个问题的过程用自己喜欢的方式记录下来,再把你的想法和同组的同学交流一下。
3.分组活动,全班交流。
a:语言描述法。(小红拿的是语文书,那小丽和小刚拿的就是数学和品德与生活书。小丽又说她没拿数学书,她肯定拿的就是品德与生活书.剩下的小刚拿的就是数学书了。)
b:连线法。(把人名和书名写成两行,再根据每一个条件分别连线:小红拿的是语文书,就直接把小红和语文书连上线;剩下的小丽和小刚就只能连数学书和品德与生活书了,小丽又说她没拿数学书,那小刚拿的就是数学书了,再连上线,最后把小丽和品德与生活赘连线。)
c:表格法。
语文 | 数学 | 品德与生活 | |
小红 | |||
小丽 | |||
小刚 |
4、总结推理过程
师:刚才的推理过程中,我们最先确定的是谁?根据什么确定的?
师:实际推理时,方法很多,语言描述是推理的好方法,连线和列表法能让推理过程简洁、直观,我们可以根据需要选择合适的方法。
师:看到大家学得都不错,柯南还送给咱们一首儿歌呢!一起读一读:“我是一名小侦探,根据线索猜得准,能确定的先确定,能排除的'再排除,剩下越少越好猜。”
三、应用提升
师:根据柯南送咱们的“能确定的先确定,能排除的再排除”,我们一起来接受柯南给我们设的难关吧!有信心吗?
1、第一关:
猜猜小狗的名字
(1)课件出示书本第109业“做一做”第1题
欢欢、乐乐和笑笑是三只可爱的小狗。体重分别是7千克、5千克、9千克。乐乐比欢欢重,笑笑最轻。你能写出他们的名字吗?
(2)指名读题目要求。
你从题目中知道了什么?要解决的问题是什么?可以先确定的是谁?
学生独立完成,指名汇报
(3)出示下图,根据学生的回答进行连线。
7千克5千克9千克
欢欢乐乐笑笑
师:根据“笑笑是最轻的”,笑笑应该和几千克相连?
2、第二关:
小冬、小雨和小伟三人分别在一、二、三班,小伟是三班的,小雨下课后去一班找小冬玩。小冬和小雨各是几班的?
师:先确定谁?接着呢?谁能说完整整个推理过程?
3、第三关
小雨、小东、小松三个人进行跳绳比赛。小松说:“我不是最后一名。”小东说:“我也不是最后一名,但是小松比我的成绩好。”他们各得了第几名?
学生独立思考,并完成。
全班交流。
师:同学们,破了这么多的案子,大家一定很累了,下面咱们来轻松一下,做个游戏。
律动放松游戏
师:先来活动一下身体吧。老师提问,你们回答。答完之后听口令做动作。全体起立。准备好了吗?
拍拍你的肩,不是左肩,那是哪个肩。那是()肩。拍右肩
踏踏你的脚,不是右脚,那是哪个脚?那是()脚。踏右脚
摆摆你的手,不是左手,那是哪个手?那是()手。摆左手
四全课总结
师:同学们,一节课的时间很快就要过去了,在这节课里,你都跟小侦探柯南学到了哪些知识?
《广角》教案11
教学内容:人教版三年级下册第九单元P108例1
教学目标:
1、结合具体情境体会用“韦恩图”解决重叠问题的价值,掌握用“韦恩图”解决一些简单的重叠问题题目的方法,培养学生的思维能力。
2、进一步渗透集合的思想,在解决实际问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,提高学习数学的兴趣。
教学重难点:理解集合图的各部分意义及解决简单问题的计算方法。
教具、学具:课件、带有学生姓名的小贴片。
教学过程:
一、问题情境,导入新课
师:出示下面统计表
师:朝阳小学三(1)班选出8人参加学校的语文活动小组,又选出9人参加数学活动小组。参加两个小组的一共有多少人?
生:8+9=17人,
师:同意吗?一定吗?
生:齐说同意、一定。
师:出示图1集合圈,
语文组 数学组
师:你能把参加语文组和数学组人的姓名图片贴在下面两个圈里吗?
师:相机出示带有17个同学姓名的图片。
【评析:尊重学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。】
二、探究新知
1、问题的引出
师:出示例题中的统计表
师:仔细观察这张表格提供的信息与前面的表格提供的信息有什么不同?
生:有几个同学重复了。
生:有三个同学既参加参加了语文小组又参加了数学小组。
师:刚才这位同学说“重复”是什么意思?
生:重复,就是一个人参加了两项活动。
师:在实际生活中你们遇到过这种情况了吗?
生:遇到过,比如我既参加了象棋小组又参加了绘画小组。
生:我参加了三个兴趣组。
师:如果还用两个圈来表示参加语文组和数学组的人数你认为下面那幅图能代表你们的意思?
生:图2。因为图2有重复的部分。
师:只能用图2来表示来表示重复的关系吗?
生:两个长方形(正方形、三角形)交叉在一起也行。
师:谁来说说重复的部分是什么意思?
生:重复部分就是两项活动都参加人。
师:同意吗?
生:同意。
师:参加语文组的有几个人?参加数学组的呢?
生:语文组有8人,数学组有9人。
师:根据表中提供的信息,你觉得用哪副图来表示参加两个小组人数之间的关系比较合适?请同学们贴一贴。
【评析:把学生探究“集合图”的过程,变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。】
2、交流汇报
师:展示学生的作品并强调不管圆圈中学生姓名怎么放,但这三个重复的同学都放在重叠的部分上。
师:怎样计算参加两个小组的人数一共有多少人?
生:一共是14人,我是数出来的。
生:8+9=17 17-3=14
师:第一个表格为什么直接用8+9=17就算出参加两个小组的人数,而这一次8+9后还要再减去3呢?
生:因为如果还是17的话就把杨明、李芳、刘云多算了一次,因此要减去3。
生:第一个表格没有重复参加的,第二个表格有重复参加的。
师:不管用数的方法还是用算式计算都要注意什么?
生:不能把重复的三个人多算了一次。
【评析:在展示学生的作品时,对圆圈中学生的姓名位置不同的贴放,教师引导学生及时归纳、小结,这既能让学生体会出集合图本身各部分之间所存在的关系又能让学生直观地感知各个数据与集合图之间的关系。同时让学生反思、比较由前后两个表格所出现的不同的计算方法,这既沟通了已有的知识经验与新知间的联系,又彰显出解决新问题的关键点。】
3、明确“韦恩图”各部分表示的意思,感受其的价值。
师:刚才我们通过数一数,算一算的方法,得出了参加两个小组的人数。现在谁来说说这个集合图有几部分组成?每部分各表示什么意思?
生:三部分,左边一小部分表示只参加语文组的人数,中间一部分表示两个小组都参加的人数,右边一小部分表示只参加数学组的人数。
师:相机在集合图上标示出“只参加语文组”、“既参加语文组又参加数学组”、“只参加数学组”的字样。
师:简单介绍“韦恩图”来历。
师:在实际生活中,往往提供的信息不会像表格中那样的。
师:相机把例题呈现在统计表中的学生姓名打乱。
师:如果给的是现在这样的信息,你觉得“韦恩图”和文字所提供给的信息,哪一个更能清晰地表示出只参加“语文人的”、“只参加数学的”、“两项都参加的”这三者中间的关系呢?
生:用“韦恩图”来表示。
师:用“韦恩图”不仅能清晰的表示出各部分之间的关系,还便于我们计算。
师:你认为在什么样情况下使用“韦恩图”来解决问题呢?
生:有重复关系的,
师:相机板示课题:数学广角——重叠问题。
【评析:让学生表述“韦恩图”各部分之间的关系,给了学生一个完整的认知,同时使学生对“韦恩图”中的认知更趋于明朗化。而把例题中提供的信息打乱,让学生在反思中比较,就为学生体会“韦恩图”的价值提供了更具有说服力的素材。】
三、巩固应用,落实“双基”
1、教材p110练习二十四第1题
2、教材P110练习二十四第2题
四、拓展延伸,发展能力
师:改动教材例题中提供的信息方式为:三(1)班由8人参加语文活动小组,有9人参加数学活动小组,参加两个小组的一共有多少人?
师:请同学读题,并与原例题进行比较
师:请同学拿出第二组供贴图用的学具片
师:结合生活实际,展开想象,在教师提供的集合圈中摆一摆,之后再在小组里交流一下,并算出每一种情况下,参加两个小组的人数共多少人?
交流回报:
生:8+9=17人,我是把两个圆圈分开摆的
生:8+9=17人 17-2=15,我是把两个圆圈交叉在一起的,并且交叉的`部分是2人。
生:参加两个小组的一共只有9人,我是把参加语文组的人数全部圈在数学组里面的。
师:结合学生的口述,相机展示学生的作品
师:重点引导学生交流结果是9人的集合图各部分之间的关系。
师:为什么同样是8人参加语文组、9人参加数学组结果会出现不同的情况呢?
生:因为上一道题告诉我们有几人重复的,而这道题没有告诉有几人重复的,结果就有几种可能性。
生:这个题目没有前面两个题目讲的清楚,不知道会有什么情况。
师:也就是说这道题没有确定语文组和数学组之间的具体关系。
师:那你认为做这样的题目首先要注意什么?
生:搞清重复的人数。
生:在画图时要确定相交的部分应该是几人。
生:考虑问题要全面些。
师:通过刚才我们解决的这个题目,比较一下结果,你有什么发现?
生:重复的部分越多,参加两项活动的人数就越少。
生:要想参加两项活动的人数多最好互不交叉。
生:当参加两项活动的人数最少时,这个数就是其中一个较大的数。
师:配合学生的讲解,相机用课件动态演示两个集合图变化的过程。
五、全课总结
师生交流:这节课我们解决了什么问题?在解决这一问题的过程中用到了什么策
略?这一策略以前你用过吗?
《广角》教案12
教学内容:人教版五年级上册第七单元第一课植树问题
教学目标:
知识与技能:
(1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。
(2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。
(3)从封闭曲线(方阵)中发现植树问题的规律。
过程与方法:
培养学生观察能力、操作能力以及与人合作的能力。
情感态度与价值观:
学生通过观察、操作、交流等活动探索新知。
教学重难点:
教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的'一些简单实际问题。
教学难点:基本规律的提炼和方法的应用。
教学准备:
教具准备:课件
学具准备:练习本
教学过程:
一、课前谈话。
同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。
二、探究规律。
(一)1.出示题目
这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)
①理解题意
a、 指名读题,从题中你了解到了哪些信息?
b、 理解“两端”是什么意思?
指名说一说,然后实物演示。
指一指哪里是小棒的两端?
说明:两端要栽就是小路的两头要种。
②学生动手操作。
拿出小棒,同桌间互相说一说,画一画,摆一摆。
③同桌互相讨论后,全班汇报交流
a、指名说一说:你一共摆了多少根小棒?
上黑板上来摆给大家看一看。
b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?
c、间隔与种树的棵数有什么关系?
④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。
2.改变题目条件变为:
在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)
1.学生试解答
2.用小棒检验
3.说一说你的想法
间隔数与栽树的棵数又有什么关系呢?
学生试说后,教师小结。
4. 基本练习:同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行 有多少人?
5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(二)出示例2
1、学生读题,理解题意
①“两馆间的小路”指的是哪一段?
②“小路两旁”指的是要栽几边?
2、学生互相合作,用小棒摆一摆
师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。
要求完成:
①你一共摆了几根小棒?
②每一边的小棒根数和间隔数之间有什么关系?
3、全班交流
4、教师小结
这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。
(三)用摆小棒的方法教学例3
教师小结:两端封闭的情况下 植树棵数=间隔个数
三、练习应用
1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?
四、课堂总结
《广角》教案13
教学内容:
义务教育课程标准实验教科书四年级下册第117——118页例题1及相应的“做一做”。
教学目标:
1.通过教学初步培养学生“从特殊到一般”的思维方法,使学生在动脑、动口、动手的活动中掌握利用特殊的数量关系思考和解答一些实际问题的方法。
2.培养学生观察事物的能力、操作能力以及与人合作交流的能力。
教学过程:
一、引入新课
解决问题:
1.出示题1:“四(1)班有8组,每组6人,一共有几人?”要求学生解答。然后教师指出:解决问题就是根据“数量关系”来解实际问题。
2.出示题2:
(1)“方娟同学在第3小组,她前面有3名同学,她后面也有3名同学,问第3小组共有几名同学?”(现场表演)
(2)一根绳子要剪成3段,需剪几下?(现场操作)
学生回答后,教师:有些实际问题要用特殊的数量关系来解答。
板书课题:数学广角(一)——用特殊数量关系解答的一些实际问题
[反思:从课题的复习开始,教师就注意抓住学生在解答时较易出错实际问题(前一道容易答“共有6名同学”,后一道容易误答为“要剪3下”)来引入新课,这有利于激发学生思维的积极性及思维的准确性,为后面的学习作了有效的捕垫。]
二、讲授新课
(一)准备知识:
1.下面的每两个“○”中间摆一个“△”,每行要摆几个“△”?
(1)○ ○
(2)○ ○ ○
(3)○ ○ ○ ○
(4)○ ○ ○ ○ ○
(5)○ ○ ○ ○ ○ ○
①指名一学生在黑板上演板,其余学生以小组为单位在练习本上试画。
②引导学生观察填空:
各小题有()个“○”,中间摆了()个“△”。
③引导学生找出规律:“△”的个数总是比“○”的个数少一个。
④运用规律回答:如果有9个“○”,要摆几个“△”?12个“○”呢?
⑤教师:两个相邻“○”之间的部分称为一个“间隔”,有几个“间隔”就可以摆几个“△”。概括得出:间隔数=物体的总数量-1。
2巩固规律:.口答
①五个手指之间有几个间隔:如果每两个手指之间都夹一支粉笔(表演),可以夹几支?两个手指之间都夹两支呢?
②我们班一组有7个同学,1、3、5、7号同学站起来后,问:坐下的有几人?(现场表演)
[反思:善于运用“现场表演”的方法来增强学生的感性认识,为学生的理性认识作了铺垫和准备。同时这种表演形式因为有学生的参与,使得学生更加专注于听讲和思考,因而取得了良好的教学效果。]
(二)教学例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?
1.引导分析:
①问: 100米 里有几个 5米 ?100÷5=20(个)。准备20棵树苗够吗?
②看图帮助理解: 100米 里共有20个 5米 ,实际上就是有20个间隔。
100米
5米 一个间隔共有20个间隔
③得出结论:20个间隔,应该要栽20+1=21(棵)树。
2.学生列式计算:
教师根据学生列式完成下列板书:
间隔数
↑
100÷5+1
↓
应栽树的棵数
=20+1
=21(棵)
答:一共需要21棵树苗。
(三)即时训练,课本第118页“做一做”:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
1.引导分析:
①设问:如果在每两棵树之间插一面小旗,一共要插几面小旗:(36-1=35面)
②全班交流:(重点让学生理解“36-1=3 5” 实际上就是表示间隔数。)
③得出结论:36棵树之间有几个间隔?(35个)
2.学生列式计算:
教师根据学生的'计算完成下列板书:
树的棵数
↑
6×(36-1)
↓
间隔数
=6×35
=210(米)
答:从第一棵到最后一棵的距离有210米。
三、巩固练习:
1.联系实际练习:一栋6层楼房,每两层之间有22级楼梯,一共有多少级楼梯?
2.看谁算得又对又快:
(1)1+2+1=
(2)1+2+1+2+1=
(3)1+2+1+2+1+( )+( )=
(4)1+2+1+2+1+2+1+……+2+1=
50个“ 1”
(通过(1)——(3)的练习,引导学生发现数字的排列规律,做(4)时,先要求学生说出题中共有的特性,然后计算:1×50+2×49=148)
[反思:巩固练习3、4设计得比较巧妙,既紧扣本课所学内容,又能注意适当的变化,始终使学生保持较高的学习兴趣,从而在愉悦中获取知识,获得用特殊的数量关系解答某些实际问题的能力。]
四、:
在解决问题时,要看清题目,做到具体问题具体分析。今天所学的特殊数量关系仅限于某些实际问题的解答,还有很多实际问题需要用另外的特殊数量关系来解答,这有待我们今后进一步学习和探讨。
[反思:有针对性和拓展性,使人感到余音缭绕,比起那种戛然而止的做法更有效,而且有利于开拓学生的思维,拓宽学生的视野。]
《广角》教案14
教学目标:
1、通过调查身边的电话号码、邮政编码、身份证号码等实践活动,帮助学生初步了解一些简单的数字编码的方法;体会数字编码可以表达一定的信息,并知道数字编码的一般特点。
2、通过开展对相关编码信息的探索和交流活动,帮助学生积累一些数学活动经验,感受数字编码的思想及其应用价值,初步体验数字编码的思想和方法。
教学重点:
感知数字表达信息的最基本方法和作用,尝试应用数字来处理信息。
教学难点:
感知数字表达信息的最基本方法和作用,尝试应用数字来处理信息。
教学过程:
一、谈话导入(感受数字与信息的联系)
引入:同学们,在生活中,我们常常要与数字打交道。比如说,(出示“1”)提问:一件礼物,一个苹果,一张报纸……这里的“1”表示什么?
提问:可以表示数量和顺序么?你又分别想到了什么?
(小结:数字组成一个数,可以用来表示数量和顺序,它向我们传递了一些信息,也可以用来编码,同样传递了一些信息。今天这节课,我们就一起来研究,板书——数字和信息。
二、初识编码,感知特点(说一说)
交流电话号码信息――感受数码
⑴师:像110这样特殊的电话号码,生活中还有很多,你能说一说吗?
老师也搜集了一些资料,我们一起来看一看。
小结:其实不管是特殊的电话号码,还是普通的.电话号码,这些由数字组成的编码都给我们的生活带来了方便。
三、探索编码,感悟方法(看一看)
观察:跟上一封相比,有什么区别?(多了邮政编码)
问:你知道为什么要加上邮政编码呢?(学生回答后放录像)
问:看完录像谁再说说为什么需要加上邮政编码?
谈话:邮政编码也是一种数字编码,它是由几个数字组成的?别小看这6个数字,它可是表达了丰富的信息呢。谁大胆试着说说看这6个数字都表达了哪些信息呢?
介绍邮编的相关信息
⑴师:21表示江苏省苏南地区;210表示江苏省苏南地区南京邮区;2100表示南京市邮局表示江苏省苏南地区南京邮区; (板书)规律
四、解读编码,感受价值(比一比)
研究身份证数码
⑴出示身份证图片
师:从邮政编码我们知道了一个人所在地的相关信息,如果想了解这个人的个人信息,需要知道什么编码?
1、你能从这几张身份证号码中看出他们的出生日期吗?
2、猜一猜,哪个是爸爸的?哪个是妈妈的?哪个是小明的?
⑵练习解读身份证信息。(出示一张身份证)
师:你能把身份证上的信息填写完整吗?
师:你觉得身份证上的数字编码有哪些用处?
五、总结收获,介绍数字编码在生活中的其它运用。
谈话:在生活中,有时候人们还用字母或文字、和数字来组合成编码表达信息?比如……(出示相关图片)
介绍:条形码火车票Z表示直达车,车牌苏A表示南京,图书I表示文学,/前表示出版社编号,/后表示图书馆流水号。
⑵提问:用这些编码来表达信息有什么好处?
你还在哪里见过用数字编码的呢?
假如生活没有数字,将会……
师:数字编码在我们的生活中发挥了这么重要的作用,那同学们想不想自己也来编一编呢?编的时候我们要做到在一定范围里,简洁,唯一,有规律。
⑴ 出示第1个问题
师:房间的编号中要包含哪些信息?
一楼第三个房间该怎样编?四楼第十个房间呢?十楼第九个房间呢?
⑵ 出示第2个问题
明确小组活动要求。
⑶集体汇报交流。
请在小组内讨论出方案,再试着编码!交流时写出代表你自己的编码。
(学生讨论交流,尝试自主编码,同时让部分学生到黑板前展示自己设计的编码,并解释说明,其他学生进行点评!)
六、回顾过程,总结经验
师:今天我们共同研究了数字与信息。在活动中你觉得有什么收获?
《广角》教案15
第八单元数学广角-数与形(教案)
【教学目标】
知识技能
1.重视“数”“形”之间的联系,找到解题规律。
2.引导学生探究算式左边的加数与大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。 过程与方法:
1.借助“数”“形”之间的关系,解决相关问题。
2.使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。
情感态度价值观:
在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。
【教学重难点】
重点:感受数与形可以互相转化,树立数与形相结合是数学解题思想方法。 难点:体验到数学的极限思想。
【教具准备】
教具:正方形块 ,课件。
学具:完全相同的小正方形纸卡若干
【教学过程】
一、激趣导入
师:老师听说咱们班的同学很爱听故事,今天老师也带来了一个,这个故事叫 《形帮数》想听吗?
生:想、、、、、、
师:(出示第一张形与数的课件,背景音乐响起)在数学王国里住着数和形两个大家族,他们有时争吵,但更多的是互相帮助、、、、、、(故事讲完)同学们,你们知道形是怎么帮助数解决问题的吗?这节课让我们一起到人教版数学六年级上册第八单元 数学广角—数与形 中寻找它们解决问题的过程及方法。(板书课题)
二、探究新知
1.教学例1。
(1)出示例题。
2 2 1=(1)
1+3=(2) 1+3+7=(3) 2
(以故事的方式讲解)让我们再次回到故事中,形大步走到数的面前,挺着肚子 1 2
说:“考考你,你算算我有多大?”数上下(转 载于:wWW.cSsYq.cOM 书业网:8单元数学广角数与形)打量了一下形:“哼!!小菜一碟,你是正方形,边长1厘米,面积等于边长乘以边长,就是1×1=(1) ;看到数能快速地说出来,形说:“别高兴的太早,后面还有呢!”接着它把和它长得一样大小的三个兄弟叫到它身边,和它站在一起,一个挨着一个,整齐地排成两排,(让学生拿出正方形按照形说的摆出来)形说:“那你现在能算出我们有多大吗?”数说:“你的面积是1,你的三个兄弟都是和你一样大小的正方形,它们每个的面积也是1,三个的面积就是3,你们四兄弟的面积是1+3=4,4是2的平方。”
师:同学们,数算出来的结果对吗?你们也用其他的方法来算一算,帮数检查一下,看看结果是否正确?动手做在草稿纸上,做好的同学请举手。(引导学生用求大正方形的面积的方法计算:它们排成两排还是一个大正方形,不管是行还是列都由两个小正方形组成,边长也是两个小正方形的边长相加,所以大正方形的2 面积等于2×2=4=(2) )等学生完成之后,个别提问方法,让学生知道有两种方法来做。故事内容:“待数算完之后,形又把和它们一样大小的五个正方形叫到它们的身边,一个紧挨一个排成一个大正方形,你们知道形是怎样排列的吗?请你试着排列出来。”请学生上来排列,其他学生小组合作,教师巡视,指导学生列算式。检查结果,讲解过程。
(2)小组合作:动手排列第四个,第五个图形并写出相应的算式,总结发现。 ①排列图形、观察、讨论。
仔细观察,看一看上面的图形和算式左边有什么关系?
②汇报发现。
发现一:算式左边的加数的个数与对应的大正方形中每行(或每列)的小正方形的个数相同;
发现二:算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和。
发现三:算式左边的加数和正好等于大正方形中每行(或每列)的.小正方形个数的平方。
[算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和,正好是每行(或每列)小正方形个数的平方]
发现四:从1开始的连续奇数的和正好是这几个奇数的个数的平方。
三、应用知识。
1. 你能利用在《形帮数》的故事中找出的规律,直接写一写吗?(可借助学具摆一摆) 2 ①1+3+5+7=( ) 2 (1+3+5+7=4 ) 2 ②1+3+5+7+9+11+13=( ) 2 (1+3+5+7+9+11+13=7 )
③____________________=92 (1+3+5+7+9+11+13+15+17=9 2 )
2. 请根据《形帮数》的故事中(例1)的结论算一算。
1+3+5+7+5+3+1 =() 5 2
3.请根据《形帮数》的故事中(例1)的结论算一算。
1+3+5+7+9+11+13+11+9+7+5+3+1=( )85
【《广角》教案】相关文章:
数学广角教案设计08-25
数学广角教学设计05-06
数学广角教学反思01-07
《数学广角──集合》教学设计06-02
《数学广角——推理》教学反思04-07
四年级上册数学广角教案02-01
数学广角教学设计15篇05-06
数学广角教学反思15篇02-08
数学广角教学反思(15篇)02-08