五年级下册数学教案

时间:2022-11-10 14:43:44 教案 投诉 投稿

五年级下册数学教案15篇

  作为一名教职工,很有必要精心设计一份教案,借助教案可以有效提升自己的教学能力。那么写教案需要注意哪些问题呢?以下是小编为大家整理的五年级下册数学教案,欢迎阅读,希望大家能够喜欢。

五年级下册数学教案15篇

五年级下册数学教案1

  【教学内容】

  质数和合数(课本第14页例1及第16页练习四1~3题)。

  【教学目标】

  1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2.知道100以内的质数,熟悉20以内的质数。

  3.培养学生自主探索、独立思考、合作交流的能力。

  4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  【教学重难点】

  重点:理解质数、合数的意义。

  难点:掌握判断质数与合数的方法。

  【教学过程】

  一、复习导入

  1.什么叫因数?

  2.自然数分几类?(奇数和偶数)

  教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  二、新课讲授

  1.学习质数、合数的概念。

  (1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

  (2)根据写出的因数的个数进行分类。(填写下表)

  (3)教学质数和合数的概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

  2.教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  17 22 29 35 37 87 93 96

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:17 29 37

  合数:22 35 87 93 96

  3.出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。首先排除掉2的`倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

  ③注意1既不是质数,也不是合数。

  100以内质数表

  三、课堂作业

  完成教材第16页练习四的第1~3题。

  四、课堂小结

  这节课,同学们又学到了什么新的本领?

  学生畅谈所得。

  【板书设计】

  质数和合数

  一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

  【教学反思】

  教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案2

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的饮料瓶、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的'关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升 的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3 )

  ②1升 = 1立方分米

  1000毫升 1000立方厘米

  1毫升(mL)=1立方厘米( cm3 )

  练一练:

  1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

  1.5dm3 =( )L

  (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

   (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2 =40(立方分米) 40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

  小结:计算容积的步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16

  五、作业:

五年级下册数学教案3

  一、教学目标

  1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。

  2、结合具体情境,进一步体会“整数”与“部分”的关系。

  二、重点难点

  重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。

  难点:充分体会“整数”与“部分”的关系。

  三、教学过程

  (一)复习旧知,导入新课

  1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗说说它们分别表示什么意义

  2、今天我们一起来学习《分数的再认识》。

  (二)创设情境,学习新知

  活动一:分笔游戏,体会单位一

  1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)

  2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。

  3、另找4名同学检查。

  4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)

  5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢(每位同学的总数不一样)

  6、师总结:最初每位同学笔的“整体”不同,也就是单位“1”不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识

  活动二:教材P34说一说。

  1、带着新的认识,我们来判断两个小朋友看的书一样多吗

  2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗为什么学生独立思考一会,同桌交流,再全班反馈。

  3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的'数量也不同。)

  4、在什么情况下,他们读的一样多呢(整体相同,相同分数表示的数量也相同。)

  5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:“我俩吃的一样多”。李晓阳说:“我吃得比你多。”他们谁说得对呢

  (三)巩固练习

  1、教材P34画一画。

  2、教材P35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

  四、板书设计

  分数的再认识

  整体不同,相同分数表示的数量也不同。

  五、教学反思

  本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。

五年级下册数学教案4

  教学内容:观察物体

  教学目标:

  1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

  2.培养学生从不同角度观察,分析事物的能力。

  3.培养学生构建简单的空间想象力。

  重点:帮助学生构建初步的空间想象力。

  难点:帮助学生构建初步的空间想象力。

  教学过程:

  一、谜语导入

  请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

  二、合作探究

  (一)整体观察

  1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

  你观察到的正方体是什么样的?

  在你的位置上观察,你看到了哪几个面?

  2.学生汇报交流。

  学生自由走动,观察。汇报交流。

  3.解释应用

  教师出示两个正方体的.立体图,一个有虚线,另一个没有。

  提问:谁能用刚学到的知识解释一下正方体为什么这样画?

  学生解释说明。

  (二)分别从三个面进行观察(出示例1)

  1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

  学生离开座位自由观察。

  2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

  总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

  三、拓展应用

  1.做教科书例2

  2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

  学生玩游戏,教师指导。

  四、总结

  本节课你学会了什么?

  五、作业布置

  兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

  1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

  2.从一个面看到物体的形状,可以有多种不同的摆放方式。

  3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级下册数学教案5

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的'关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

五年级下册数学教案6

  课题:简单的土石方计算

  教学目标:

  1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

  2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

  3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

  教学重点:

  熟练运用长方体和正方体的体积计算公式解决实际问题。

  教学难点:

  长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

  教学过程:

  一、巧设情境,激趣引思。

  同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

  (1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

  (2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

  (3)学生分组讨论,指名回答问题。

  这节课我们运用体积的有关知识,解决实际生活中的问题

  二、自主互动,探究新知。

  课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的'结果。

  教师介绍“方”,让学生用方描述挖出的土。

  课件出示例题及拦河坝的和示意图。

  让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

  怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。

  让学生尝试解决问题,并交流计算的方法和结果。

  三、应用拓展,反思交流。

  1、应用:

  (1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

  (2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

  第3、4题,让学生先说一说,要解决问题,先要求出什么?

  2、拓展:

  练一练5 板书设计:

  简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

  横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案7

  教学目标:

  理解分数的加减法混合运算的顺序。

  能正确计算分数加减混合运算。

  会安排自己星期日的时间。

  教学过程:

  导入

  师:今天想和同学们一起统计一下我们班同学星期日的活动,谁来说说你星期日做什么了

  生:我在家里写作业、我去叔叔家玩了、我帮妈妈洗衣服了……

  新课

  调查统计活动

  师:同学们,星期日能做各种各样的活动,我们学会统计,我们来统计一下吧!哪位同学想做一个小统计员。(找几位小统计员)

  生:(汇报)留在家里的同学是8人,占全班人数的十一分之四,出去玩的同学有五人,占全班人数的二十二分之三。

  师:那还剩下一部分同学,那剩下的`这部分同学占全班同学的几分之几呢

  生:把这两部分的人加在一起,再用全班人数减去这部分。

  师:能用全班人数去减吗

  生:不能。

  师:那么,用什么减呢

  生:可以用“ 1 ”减去。

  师:为什么用“ 1 ”呢

  生:把全班人数看做单位“ 1 ”。

  师:为什么把全班同学看做单位“ 1 ”呢

  生:因为我们在全班同学里调查,调查出来的人数是占全班人数的几分之几所以把全班人数看作单位“ 1 ”。

  师:那怎么列出算式呢

  生讨论列出算式。

  师:如何计算呢

  生小组合作,找出算法,讨论发现了什么

  师:从这两道题里我们可以看出分数加减混合运算是有一定顺序的,谁能说说。

  生:按照从前往后的顺序,有括号的先算括号里的。

  巩固练习

  延伸结束

  师:我们在统计同学们星期日的安排时,有的同学星期日的时间安排的非常好,大家应学会安排星期日的时间,请同学们安排下你本周星期日的时间吧!

  生:做星期日时间的计划

五年级下册数学教案8

  教学目标:

  1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。

  3在解决问题的过程中培养学生的逻辑思维能力。

  教学重点:感受古代数学问题的趣味性。

  教学难点:用不同的方法解决问题。

  教学准备:课件

  教学程序:

  一激趣导入

  师:咱班同学家里有养鸡的吗有养兔的吗既养鸡又养兔的有吗把鸡和兔放在同一个笼子里养的有吗在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢你们想知道吗这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

  师:关于“鸡兔同笼”问题以前你们有过一些了解吗流传至今有一千五百多年的问题,是什么样呢想知道吗

  二探索新知

  1(课件示:书中112页情境图)

  师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

  这里的“雉”指的是什么,你们知道吗这道题是什么意思呢谁能试着说一说

  生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只)

  师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。问鸡和兔各有几只

  师:从题中你发现了那些数学信息

  生:笼子里有鸡和兔共35只,脚一共有94只。

  生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

  师:根据这些数学信息你们能解决这个问题吗这道题的数据是不是太大了咱们把它换成数据小一点的相信同学们就能解决了。

  2.出示例一(课件示例一)

  题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只

  师:谁来读读这个问题。

  谁能流利的读一遍

  请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题

  生:读题

  师:现在就请你来解决这个问题,你想怎样解决把你的想法和小组内的同学说一说。

  生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

  师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)

  师:还有其他方法吗

  生:我想用方程法也能解决。(板书:方程法)

  生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

  师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)

  师:还有别的方法吗那这些方法行不行呢下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

  生:在小组内尝试各种方法。

  师:经过上面的研究学习,你们都尝试运用了哪种方法呢下面以小组为单位进行汇报。

  生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

  师:把你们研究的结果拿来让大家看看。这样按顺序推算,对于数据小的问题解决起来很方便,不过一旦数据比较大,比如笼子里的鸡和兔有100只,200只,甚至更多,再用这样的办法怎么样

  生:很麻烦。

  师:是啊,那要花费很长时间。哪个小组还想汇报

  生:我们小组用方程法计算的。(生说计算过程,师板书过程。)

  师:我们看这个方程列得是否正确4X表示什么2(8-X)表示的是什么兔脚数+鸡脚数=什么这就是列这个方程所依据的数量关系。谁能把这个数量关系完整的说一遍

  生:说数量关系。(鸡脚数+兔脚数=26只脚)

  师:根据这个数量关系你能想到另两个数量关系吗

  生:叙述另外两个数量关系。(26只脚-鸡脚数=兔脚数26只脚-兔脚数=鸡脚数)

  根据这两个数量关系你又能列出哪两个方程呢

  生:汇报师板书两方程。

  师:除了可以设兔有X只,还可以怎样设

  生:还可以设鸡有X只。那兔就有(8-X)只。

  师:对,那根据什么数量关系你又能列出怎样的方程呢

  生:汇报,根据鸡脚数+兔脚数=26只能列出方程2X+4(8-X)=26

  根据26只脚-鸡脚数=兔脚数能列出26-2X=4(8-X)

  根据26只脚-兔脚数=鸡脚数能列出26-4(8-X)=2X

  师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

  师:除了这两种方法,假设法有运用的吗

  生:汇报。

  我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)

  生:我们是这样想的。假设笼子里都是鸡,应有脚8×2= 16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只

  鸡就有8-5=3只。(生说师板书计算过程)

  师:这位同学说的你们听明白了吗结合算式进行明理。明确每一步算式各表示什么意义。

  师:这种方法都明白了吗结合课件图画进行解释质疑。

  师解释:刚才我们把笼子里的动物都看做鸡(课件图画上显示)那么笼子里共就应该有多少只脚

  生:16只。

  师:实际上笼子里有26只脚,怎么会少了10只脚呢(课件显示)

  生:每只兔子少算2只脚。

  师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

  师:把笼子里的动物都看做鸡,你们会算了,要是把笼子里的动物都看做兔,(师板书:全看作兔)又该怎样思考呢你能参照前面的.方法自己试着做一做吗

  生:试做。

  师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

  生:练做。

  师:谁来说说假设全是兔该怎么算

  生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)

  师:你们也都算上了吗师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢(课件示)

  生:每只鸡多算2只脚。

  师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

  师:还有运用其他方法的吗

  师:同学们看,通过上面的探究学习,我们共找到几种解决鸡兔同笼问题的方法(三种)哪三种(列表法,方程法,假设法)你们能说说这三种方法各有什么特点吗

  生汇报:列表法适合于数据小的问题,数据大了就不适用了。

  方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐

  师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

  三巩固练习

  师:现在就请你来解决那道数据较大的问题你们能解决吗

  生:独立解答后全班交流。

  师:哪位同学愿意说说你是怎么解决这个问题的

  生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)

  师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗我们一起来看一看。(课件示)

  师:古人的办法很巧妙吧如果大家对这种解法感兴趣,课后可以再研究。

  师:在一千五百年前,我国的古人就发明出这么的数学问题,一直流传到现在,他们还想出那么巧妙地解决办法,为我们后人留下了宝贵的知识财富,你想对他们说点什么吗

  四全课总结

  师:通过这节课的学习你有什么收获

  生:我学会用……方法解决“鸡兔同笼”问题。

  ……

  师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

  板书设计:

  鸡兔同笼

  列表法

  方程法假设法

  解:设有兔X只,鸡就有2(8-X)只。全看作鸡

  4X+2(8-X)=26 8×2=16(只)

  2X+16=26 26-16=10(只)

  X=5 4-2=2(只)

  8-5=3(只) 10÷2=5(只)

  答:有5只兔,3只鸡。 8-5=3(只)

  26-4X=2(8-X)全看作兔

  26-2(8-X)=4X 8×4=32(只)

  2X+4(8-X)=26 32-26=6(只)

  26-2X=4(8-X) 4-2=2(只)

  26-4(8-X)=2X 6÷2=3(只)

  8-3=5(只)

五年级下册数学教案9

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的.速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级下册数学教案10

  教学内容:

  教材第xx页的内容及第xx页练习的第x题。

  教学目标:

  1.理解两个数的公倍数和最小公倍数的意义。

  2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

  3.培养学生抽象、概括的能力。

  教学重点:

  理解两个数的公倍数和最小公倍数的意义。

  教学难点:

  自主探索并总结找最小公倍数的方法。

  教学具准备:

  多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

  教学方法:

  小组合作谈话法。

  教学过程:

  一、创设情景,生成问题:

  前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的.知识。今天,我们来研究两个数的倍数。

  二、探索交流,解决问题

  1.在数轴上标出4、6的倍数所在的点

  拿出老师课前发的画有两条直线的纸。

  在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

  2.引入公倍数

  (1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

  (2)观察:从4和6的倍数中你发现了什么?

  (3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

  (4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

  说说看,什么叫两个数的公倍数?

  3.用集合图表示

  如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

  4.引人最小公倍数

  学生汇报后问:

  (1)为什么三个部分里都要添上省略号?

  (2)4和6的公倍数还有哪些?有没有最大公倍数?

  (3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

  4的倍数6的倍数

  4,8,

  16,20,

  12,24,

  4和6的公倍数:

五年级下册数学教案11

  【教学目标】

  1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数能否被3整除。

  3.培养学生分析、判断、概括的能力。

  【重点难点】

  理解并掌握3的倍数的特征。

  【复习导入】

  1.学生口述2的倍数的特征,5的倍数的特征。

  2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1.猜一猜:3的倍数有什么特征?

  2.算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=12 3×5=15 3×6=18

  3×7=21 3×8=24 3×9=27

  3×10=30……

  观察:3的.倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→51 18→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3.验证:下面各数,哪些数是3的倍数呢?

  210 54 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4.比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  3402 5003 1272 2967

  5.“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  14 35 45 100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】

  完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】

  同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】

  完成练习册中本课时练习。

  3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

五年级下册数学教案12

  教学目标

  1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。

  2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

  3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。

  教学内容分析:

  小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。

  重难点

  重点:

  知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。

  难点:

  运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

  教学过程

  活动1【导入】

  一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。

  师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。

  师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。

  师:这段不足1的长度怎样表示呢?(用分数表示)

  在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  师:猜一猜,这段不足1的长度是这个标准的几分之几呢?

  老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。

  预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的

  预设2:红色纸条对折,不足1的部分是红色纸条的

  预设3:两张桔色的纸条。一张桔色的'纸条是红色纸条的,两个就是。

  我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。

  在刚才的测量过程中我们发现不足1的部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?

  活动2【讲授】

  二、分物中体会单位“1”可以是多个物体

  师:刚才我们找到了,生活中其他的地方有没有呢。

  大米

  1000克

  拿出小片子,请你分别表示出它们的。

  我们表示的都是,可是为什么对应的数量却都不相同呢?

  回顾一下找的过程,你对分数又有了哪些新的体会?

  师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”

  活动3【讲授】

  三、分物中认识分数单位,深入体会分数的意义。

  师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。

  合作建议:

  独立思考:想一想、画一画,用这些糖还能表示出哪些分数。

  小组讨论:在小组内说一说你找到的分数所表示的意义。

  预设:

  观察这两个分数你有什么发现吗?

  相同点:都是把6块糖平均分成6份

  不同点:取的份数不同

  联系:2个是

  师:你会表示吗?

  师:我们发现有几个就是六分之几。

  师:你会表示吗?

  师:那么有几个就是三分之几。

  像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。

  师:有些同学还找到了一样的分数,对吗?

  师:表示了这么多分数,谁能来说说分数的意义。

  活动4【导入】

  四、巩固练习

  1、填一填

  2、猜一猜

  师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。

  师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?

  师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?

  师:同学们想不想知道我给大家今天的学习情况评几颗星呢?

  出示

  师:你知道这是几分之几吗?

  有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。

五年级下册数学教案13

  【教学内容】

  教科书第58页综合应用:设计长方体的包装方案。

  【教学目标】

  1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

  2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

  3、培养学生的创新意识、策略意识、实践能力和空间观念。

  【教学重点】

  让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

  【教具学具】

  为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

  【教学过程】

  一、课前引入

  师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

  生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

  师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

  二、设想与摆放

  1、设想与摆放

  设想:

  (1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

  (2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

  (3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

  2、记录与计算

  (1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

  生:摆成的'大长方体的表面积越大,所用的包装纸越多,反之就少。

  (2)究竟哪种摆法会更节约包装纸呢?

  师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

  (3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

  为什么这种方案的用纸量会最少?在全班进行交流。

  三、交流与比较

  比一比谁的方案用纸少,并分析出用纸量不同的原因。

  重点思考并讨论:

  为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

  四、发现与思考

  通过本次包装设计,你有什么发现?

  1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

  2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

  五、知识拓展

  师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

  师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

  六、课堂小结

  这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案14

  教学目标:

  1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3.学生初步感知了什么变了而什么却没有变的概念。

  4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

  3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)、教学新知。

  1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

  2.学生操作,教师巡视并特别提醒学生注意“平均分”。

  3.展示学生的作业。

  4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

  6.引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7.课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

  8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的`了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案15

  第1课时

  教学课题:可能性

  教学内容:教科书第133-134页内容。

  教学目标:

  1、结合现实事例,初步学会求简单事件发生的可能性的大小。

  2、在游戏中,体验事件发生的等可能性以及游戏规则的公平性。

  3、通过解决简单实际问题,体会数学与生活的密切联系,感受学习数学的乐趣。

  教学重点:

  1、求一些简单事件发生的可能性的大小

  2、体会游戏规则公平性。

  教学难点:

  1、求一些简单事件发生的可能性的大小

  2、体会游戏规则公平性。

  教学具准备:课前预习、各种颜色的球数个。

  教学过程:

  一、创设情境、谈话导入

  你们喜欢下跳棋吗?下跳棋时你们用什么方法决定谁先走子?

  由学生口答

  同学们有这么多的办法,我们学校举行了一场跳棋比赛,李力和方明是四年级的种子选手,他们怎样决定谁先走子的?

  出示情景图:摸棋子决定吧,摸到红子你先走,摸到蓝子我先走。

  出示两袋棋子。

  这里有两袋棋子,应该摸哪袋呢?为什么?

  学生回答

  看来,同学们一致认为摸甲袋棋子公平,(板书:公平)摸甲袋棋子为什么公平呢?

  甲袋中红子和蓝子的个数同样多,摸到红子和蓝子的可能性相同吗? (甲袋中摸到红子和蓝子的可能性都是一半)

  学生说完后老师小结:红子和蓝子的个数同样多,都占总数的二分之一,也就是摸到红子和蓝子的可能性相等,你能用一个数表示出摸到红子和蓝子的可能性都是多少吗?

  为什么用二分之一表示,你是怎样想的.?

  重点引导学生说出红子和蓝子的个数都占总数的二分之一,所以摸到红子和蓝子的可能性相等,都是二分之一

  板书:可能性相等公平

  摸乙袋棋子为什么不公平呢?

  学生可能出现的情况:

  【乙袋中红旗子有1个,摸到红子的可能性是三分之一,蓝子有2个,摸到蓝子的可能性是三分之二,所以摸乙袋不公平。红子的个数占总数的三分之一,蓝子的个数占总数的三分之二,摸到蓝子的可能性大,所以摸乙袋不公平。】

  这节我们就学习可能性的大小。

  板书:可能性有大小不公平,老师就说,在甲袋中红子和篮子各一个,都占总数的,我们就说在甲袋中摸到红子和篮子的可能性相等都是,然后问学生:在甲袋中摸到红子很篮子的可能性为什么都是呢?

  二、合作交流,探究新知:

  1、抛硬币

  刚才李力和方明用摸棋子的方法决定谁先走子,用抛硬币的方法可以吗? 请同学们认真的读一读游戏规则。

  游戏规则:任意抛出一枚硬币,如果正面朝上李力先走,如果反面朝上,方明先走。

  你认为这种方法公平吗?为什么?把你的想法说给小组的同学听听。 其实抛硬币这种方法科学家们经过大量的试验证明是公平的,现在让我们一起了解一下他们的实验数据。

  浏览抛硬币的数据:

  法国数学家、自然科学家蒲丰的实验数据,他做了4040次实验,其中有xx次正面朝上,1992次反面朝上。

  美国数学家费勒的实验数据,他做了10000次实验,其中有4979次正面朝上,5021次反面朝上。

  英国统计学家皮尔逊的实验数据,他做了24000次实验,其中有1xx次正面朝上,11988次反面朝上。

  这些数据说明了什么?找学生回答

  通过大量的实验科学家们发现实验的次数越多,正面朝上和反面朝上的可能性就越接近二分之一,所以抛硬币的游戏规则是公平的。

  2、转盘摸奖游戏

  刚才同学们通过研究摸棋子和抛硬币的游戏规则,知道了可能性有大有小,当可能性相等时游戏规则就是公平的,现在我们就利用刚才的知识做个幸运转转转的游戏好吗?

  教师出示颜色大小不等的转盘。

  老师决定指针停在红色区域给第一小组发奖品,指针停在绿色区域给第二小组发奖品,指针停在黄色区域给第三小组发奖品,指针停在蓝色区域给第四小组发奖品,指针停在紫色色区域给第五小组发奖品。这样抽奖公平吗?

  怎样才能使转盘公平呢?学生回答

  教师拿出五等分的转盘,问:使用这个转盘公平吗?为什么? 引导学生说出指针停在每种颜色区域的可能性都是。

  3、装球游戏

  刚才我们做了幸运转转转游戏,我们再来做个装球的游戏好吗?。谁愿意给大家读一读装球的要求。

  你能按要求装球吗?现在请小组长拿出我们的学具,请同学们按要求装球,装完后把你的装球方法说给小组的同学。

  班内汇报交流:你是怎样装的,为什么这样装呢?

  (相同的方法只说一次) 备注:如果学生没有说出可能性是

  4、砸金蛋

  刚才我们在游戏中学习了用分数表示可能性的大小,其实在我们的生活中隐藏着许多可能性大小的问题,现在让我们带着一双数学的眼睛走进非常6加1砸金蛋的现场。

  你能解决这里面的可能性的问题吗?

  出示:在不知情的情况下,第一次砸到一部手机,第二次再砸,再次砸到手机的可能性是()

  5、摸牌游戏

  同学们喜欢玩扑克牌吗?在我们经常玩的扑克牌中也有有趣的可能性现象呢。

  6、成语中的可能性

  看来同学们对可能性的问题掌握的很牢固,解决问题已经是十拿九稳了,“十拿九稳”这个成语中用没有我们今天学习的可能性的大小问题呢?

  你还能举出这样的例子吗?

  看来语文和数学是相通的,只要我们善于观察就会发现很多有趣的现象。

  三、课堂总结:这节课你有什么收获呢?

  四、限时作业。

【五年级下册数学教案】相关文章:

五年级下册数学教案11-09

五年级下册数学教案优秀02-23

五年级下册数学教案(15篇)11-10

五年级下册数学教案教学反思10-19

五年级下册数学教案 15篇03-26

五年级下册数学教案合集15篇03-01

五年级下册数学教案(集合15篇)03-09

五年级下册数学教案汇编15篇02-02

五年级下册数学教案(集锦15篇)02-13