人教版小学数学六年级比的教案
在教学工作者开展教学活动前,通常需要用到教案来辅助教学,借助教案可以有效提升自己的教学能力。那么什么样的教案才是好的呢?下面是小编为大家收集的人教版小学数学六年级比的教案,仅供参考,大家一起来看看吧。
人教版小学数学六年级比的教案1
单元导学
本单元的主要内容包括:比的意义,比的读、写法,比与分数、除法的关系,比的基本性质,求比值与化简比,按比分配。
比的知识是学习比例相关知识的重要基础,把比单独设成单元,有利于学生从量与量之间的关系这一角度去认识比,而不仅仅从运算的角度去理解比,有助于培养学生的代数思想。
学生在分数的意义以及分数与除法的关系的基础上学习比。从学习除法的意义、分数的'意义以及分数与除法的关系到学习比的意义、比的化简、比的应用,密切联系学生已有的生活经验和学习经验,由浅入深地引导学生在独立思考、实际操作和合作交流中体会生活中存在两个数量之间比的关系,理解比的意义,鼓励学生运用合理的策略解决实际问题。
教材注重提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。注重引导学生利用比的意义解决实际问题,为后面学习百分数和正、反比例等知识奠定了基础。
备内容
备目标
知识与技能
过程与方法
情感、态度与价值观
1.理解比的意义。
2.知道比与分数、除法的关系,并能类推出比的基本性质。
3.会求比值、化简比。
4.能解答按比分配的实际问题。
1.学生在理解比的意义、探索比与分数、除法之间的关系以及比的基本性质的过程中,体会类比思想、推理思想,积累数学活动经验。
2.经历探索比的基本性质的过程,积累探究问题的方法和经验。
3.经历运用比的知识解决有关实际问题的过程,体会用比的知识解决在生活中按比例分配的问题。
1.体会数学知识之间的内在联系,把握数学知识的本质。
2.经历用比描述生活现象和解决实际问题的过程,感受数学知识在日常生活中的应用价值。
备重难点
重点
1.掌握比的基本性质。
2.能运用比的知识解决有关实际问题。
难点
1.理解比的意义。
2.能运用比的知识解决按比例分配问题。
人教版小学数学六年级比的教案2
课前准备
PPT课件
教学过程
⊙谈话揭题
上节课我们复习了小数,那么小数与分数之间、分数与百分数之间又有怎样的区别和联系呢?希望通过本节课对分数、百分数的相关知识的复习,你们能找到正确的答案。[板书课题:分数(百分数)的认识]
⊙回顾与整理
1.分数的意义、分数单位及分数与除法的关系。
(1)师:什么是分数?什么是分数单位?
明确:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,其中的一份叫做分数单位。
(2)师:分数与除法有着怎样的关系?
预设
生1:除法中的'被除数相当于分数中的分子,除数相当于分母,除号相当于分数线。
生2:因为0不能作除数,所以分数的分母不能为0。
2.真分数、假分数的特点。
(1)真分数的分子比分母小,真分数的分数值小于1。
(2)假分数的分子大于或等于分母,假分数的分数值大于或等于1。
3.分数的基本性质、约分和通分。
(1)师:什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
(2)师:什么是约分和通分?
预设
生1:把一个分数化成同它相等,但是分子、分母都比较小的分数,叫做约分。
生2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(3)师:什么是最简分数?
分子和分母是互质的分数,叫做最简分数。
4.小数、分数、百分数的互化。
(1)小数、分数、百分数的互化。
①小数化成分数。
原来有几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约分。
例如:0.7= 1.25==
②分数化成小数。
用分子除以分母,能除尽的就化成有限小数;有的不能除尽,不能化成有限小数,一般保留三位小数。
例如:=3÷4=0.75 =3÷25=0.12
=3÷7≈0.429 =4÷9≈0.444
③小数化成百分数。
只要把小数点向右移动两位,同时在末尾添上百分号即可。
例如:0.23=23% 1.7=170%
④百分数化成小数。
只要把百分号去掉,同时把小数点向左移动两位即可。
例如:120%=1.2 85%=0.85
⑤分数化成百分数。
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
例如:≈0.143=14.3%
⑥百分数化成分数。
把百分数改写成分数,能约分的要约成最简分数。
例如:85%==
(2)师:谁能举例说一说什么样的分数能化成有限小数?
预设
生1:一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
例如:=0.65,分母中只含有质因数2和5。
=0.8125,分母中只含有质因数2。
生2:如果一个最简分数的分母中含有除2和5以外的其他质因数,这个分数就不能化成有限小数。
例如:≈0.056
分母中除质因数2以外,还有质因数3。
人教版小学数学六年级比的教案3
教学目标:
1、理解圆的周长的概念
2、通过实践操作体验圆周率得出的过程
3、会用圆周长计算公式解决实际问题
4、结合课堂开展爱国主义教育
教重难点:
体验圆周率的得出过程
教学准备:
PPT课件,尺子、绳子,每个同学准备直径是3厘米、5厘米、8厘米的圆一个
教学过程:
一、创设情境,导入新课
圣诞节到了,动画城里的小动物们要召开一次运动会。兔八哥和鸭小弟参加跑步比赛,场地如图,猜一猜谁跑得比较快
二、用心感悟,理解概念
a)要求兔八哥所跑的路线,实际上就是求这个正方形的什么?
要知道这个正方形的周长,只要量出它的什么就可以了?能说出你的依据吗?(突出:正方形的周长与它的边长有关)
b)要求鸭小弟所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。
c)你能用自己的话说说什么叫圆的周长吗?(围成圆的曲线的长叫做圆的周长)
d)指出你手上的圆的周长
三、动手操作,体验过程
1、动手操作,那我们能不能想个办法来求一求圆的周长呢?动手之前老师先来访问几个同学你们打算怎么去测量呢?(在尺子上滚动、用绳子绕)滚动的方法如果没有没有就课件演示一下
2、请同学们用自己喜欢的方法测量任意两个圆的`周长并完成表格
圆的直径
圆的周长
周长是直径的几倍?
3、提出猜想
你觉得圆的周长与什么有关呢?引导学生观察手上三个圆,说说你的想法。
跟直径、半径有关。那你觉得有什么关系呢?
直径越长,圆的周长就越长
4、刚才我们说正方形的的周长是边长的4倍,那么圆的周长是否也和圆的直径(半径)成一定的倍数关系呢?
5、汇报展示
观察数据,你有什么发现得出结论:圆的周长总是它直径的3倍多一些。板书:3倍多一些。
6、认识圆周率
这个倍数呢是一个固定的数,叫做圆周率。用公式表示圆周率=圆周长圆直径。圆周率用字母表示,读做pai。在1500多年前数学家祖冲之计算出圆周率的值在3.14159263。1415927之间,比欧洲早1000多年是当时世界上算最精确的圆周率的值了。经过精密计算,知道是个无限不循环小数。我们通常取3.14
7、引导出圆周长计算公式:圆的周长=直径圆周率用字母表示C=d
四、运用所学,解决问题
1、计算下面圆的周长
两个圆先求出示一个知道直径的圆,利用公式完成练习
第二个只知道半径,抛出问题,这个只知道半径你会求吗?得出求圆周长的另一个公式:圆的周长=半径2圆周率字母公式为C=2r然后完成计算
2、判断题:
1)圆的直径越大,圆周率就越大()
2)圆周长是它直径的3。14倍()
3)半圆的周长就是它所在圆的周长的一半()
3、解决开始跑步的问题
4、计算我们人民币1元的外周长,不知道条件怎么办?先测量然后计算
5、拓展
五、温故知新,总结课堂
人教版小学数学六年级比的教案4
设计说明
“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。
1.借助定义、实例,渗透函数思想。
教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。
2.借助具体情境,在观察、讨论中发现规律。
教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。
3.借助已有的学习经验总结反比例关系式。
因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。
课前准备
教师准备 PPT课件
学生准备 玻璃杯 直尺 水 实验记录单
教学过程
⊙复习引入
1.复习。
课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?
(1)引导学生独立解决问题。
(2)提问:你是根据什么公式进行计算的?
预设
生:圆柱的体积=底面积×高。
(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?
预设
生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。
生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。
2.引入课题。
如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)
设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。
⊙探究新知
1.在具体情境中初步感知成反比例关系的量。
(1)课件出示教材47页例2,引导学生结合问题进行观察。
师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积/cm2 | 10 | 15 | 20 | 30 | 60 | … |
水的高度/cm | 30 | 20 | 15 | 10 | 5 | … |
①表中有哪两种量?
②水的.高度是怎样随着杯子底面积的大小变化而变化的?
③相对应的杯子的底面积与水的高度的乘积分别是多少?
(2)学生思考后在小组内交流。
(3)全班交流。
预设
生1:有杯子的底面积和水的高度这两种量。
生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。
生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。
(4)明确什么是成反比例的量。
因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。
人教版小学数学六年级比的教案5
课前准备
教师准备 PPT课件
教学过程
⊙谈话揭题
上节课,我们从意义、读法、写法、大小比较、改写以及省略尾数保留近似数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。(板书课题:小数的认识)
⊙回顾与整理
1.小数的意义。
过渡:同学们,在生活中我们常常遇到不能用整数表示物体个数的时候,例如:我吃了半个苹果,做一件上衣要用一米半的布料……提问:半个、一米半怎样来表示呢?谁来说说小数的意义?
预设
生1:半个可以用0.5来表示,一米半可以用1.5来表示。
生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。
2.小数的数位顺序表。
师:小数的数位顺序表是怎样的?谁能把整数、小数的.数位顺序表补充完整?
(课件出示数位顺序表,小数部分留白。指名回答,师填充)
3.小数的读法和写法。
(1)师:怎样读小数?怎样写小数?
预设
生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。
生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。
(2)写小数时需要注意什么?
(空位用“0”补足)
4.小数的分类。
(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?
预设
生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。
(2)谁能举例说明什么是有限小数?什么是无限小数?
预设
生1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7,35.3,0.13都是有限小数。
生2:小数部分的位数是无限的小数,叫做无限小数。例如:8.33…,3.1415926…都是无限小数。
(3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?
预设
生:无限小数可以分为无限不循环小数和循环小数。
(4)关于无限不循环小数和循环小数,你都了解哪些知识?
预设
生1:一个数的小数部分,数字排列没有规律且位数无限,这样的小数叫做无限不循环小数。例如:π
生2:一个数的小数部分从某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:2.555… 0.0333… 17.109109…
生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99…的循环节是“9”,0.5454…的循环节是“54”。
5.小数的性质。
(1)师:谁能说说小数有怎样的性质?
预设
生:在小数的末尾添上0或者去掉0,小数的大小不变。
(2)理解小数的性质时,应该注意什么?
(提示:要注意是“小数的末尾”,而不是“小数点的后面”)
6.小数点位置的变化。
人教版小学数学六年级比的教案6
【教学内容】人教版小学六年级数学下册。
【教学目标】
1、在丰富的现实情境中认识生活中的折扣现象,理解折扣的含义。
2、能把折扣问题转化成百分数问题,并能准确、灵活地解决生活中的折扣问题。
3.在探索解决“折扣”问题的过程中,体验百分数在现实生活中的应用,获得用数学解决问题的成功体验,提高对数学学习的兴趣。
【教学重点】
理解折扣的意义,感受折扣在生活中的运用,能正确解决生活中简单的折扣问题。
【教学难点】能应用“折扣”的知识灵活解决生活中的相关问题。
【教学准备】多媒体课件
【教学过程】
一、激情导课
1、导入课题
(1)、孩子们!五一和国庆期间,商家为了招揽顾客,经常采用一些促销的手段,你见过哪些促销手段?(降价,打折、买几送几、送货上门等)
(2)、有些同学提到了“打折”,大家看,(出示课件) 你认为打折之后去购买商品,是比原来便宜了还是贵了?
(3)、揭示课题:今天,我们就来学习与打折有关的'数学问题——折扣。(板书课题)
2、明确目标
师:对于折扣,你知道些什么?还想知道什么?随着学生的回答教师出示学习目标:(1)、知意义 。(2)、会运用
刚才有同学提到他的理解,那是这样吗?在这节课中你一定会找到答案的。好,让我们进行今天的第一个学习任务。
二、民主导学
任务一:理解折扣的意义
1、任务呈现:请大家自学书97页第一自然段,完成下面的问题,有困难的组内互相帮助。
(1)什么是打折?
(2)几折表示( )也就是( )
(3)八折=( — )=( )% 九五折= ( — )= ( )﹪
(4)八折表示什么?九五折表示什么?
2、自主学习
学生自学后完成,如遇到困难可以组内互相帮助。
3、展示交流
(1)明确”打折”的含义
打折就是商店降价出售,几折就是十分之几,百分之几十。
(2)明确“九折”“八五折”的含义
九折就是现价是原价的十分之九,百分之九十。
八五折表示现价是原价的十分之八点五,百分之八十五,谁是谁的85%呢?谁能说一说八五折的具体含义?
(3)及时巩固
也就是说,折扣都可以转化成百分数,是这样的吗?那你能不能很快地将下面的折扣改写成百分数。你能说说这些折扣的意思吗?(课件出示图)用谁是谁的百分之几描述。
七折 六五折 八八折
(4)小结
同学们,我们说了这么多折扣的意思,几折就表示十分之几,也就是百分之几十。如八五折:现价是原价的85%(或十分之八点五)
刚才我们了解了这么多的折扣知识,下面看我们能不能利用这些折扣知识帮解决几个实际问题。
任务二:用折扣解决问题(例题4(1))
1、出示例4的第(1)题:
爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售,买这辆车用了多少钱?
小结:孩子们,你们听明白了吗?他是把折扣问题转化成百分数问题解决的。看来呀,关于折扣的问题我们只要把它转化成百分数问题就能顺利解决了。看来这道题没有难倒大家,好,来道难点的。
2、任务呈现
幻灯出示例4的第(2)题:
爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
2、自主学习
学生独立思考,自主解决。
3、展示交流
是啊!九折就是便宜了一折,我们是说打九折销售,在国外有些国家就说成降价10%。说法是不一样但意思一样吗?六折就是便宜了几折,八五折呢?
4、比较上两题的共同点和不同点,请大家仔细观察我们刚才这两道题,有什么共同点和不同点,都已知了原价的折扣,求现价和便宜了多少钱,在解答方法上我们都是求一个数的百分之几是多少。. 折扣问题的应用题其实就是百分数应用题,解答时可以按照百分数应用题的方法去解答。
5、同学们!通过这几次的购物经历,老师发现大家理解了折扣的含义,其实关于折扣还有很多的小奥秘。如果商场打折你最想让他打几折呢?也就是折扣数越小越好,刚才有同学提到0折,其实0折并不是不花钱,是什么意思呢?大家可以上网查一查。
看这道题,同一款米奇书包,在A店打八折,在B店打九折,如果是你,你会到哪个店去买?
那如果老师告诉你这个书包的原价,你还会这样选择吗?A店原价95元,B店原价80元。想想看你要去哪个店去买?非常好,大家都拿出笔来开始计算了。
小结:同学们灵活运用折扣知识解决了这么多的问题,真不错。看来我们在购物时,不能仅看折扣,还要看这件商品原价,当然我们还要注意这件商品的质量、你是否需要等等,不要被商家的促销手段所蒙骗,做一个理智地消费者。
好,这节课你学得怎么样呢?我们检测一下吧?
三、检测导结
1、目标检测
一、填空、
1、七折=( )%=( — ) 95%=( )折。
2、九五折表示现价是( )的( )%。
3、一件衣服打六八折销售,就是便宜了原价的( )%
四、解决问题
一个书包原价100元,现在商店打八八折销售,买这个书包现在要花多少钱?便宜了多少钱?
2、结果反馈
学生独立完成后,教师出示答案,订正。
3、反思小结
折扣是百分数在生活中应用的一个例子,百分数在生活中的应用还非常广泛,这些知识都等着我们去发现、去思考、去探索,希望大家能做个有心人!可不要让自己的学习成绩打了“折扣”哦!
人教版小学数学六年级比的教案7
设计说明
波利亚提出:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”亲身经历以探究为主的学习活动是学生学习数学的主要途径之一,《数学课程标准》中明确指出“探究学习是体验学习过程的一种重要学习方式”,这意味着教材是学生进行探究活动的重要素材。
本教学设计从六年级学生的生理、心理发展水平及学生的知识经验水平出发,为学生创造一个宽松和谐的情境,让学生通过一系列的活动提出问题、探究计算方法、对比优劣,用语言表达自己的收获,培养学生学习数学的能力。
1.把新知识转化为旧知识,完成知识的自我建构。
引导学生借助已有的经验去获取知识,这是最高的教学技巧。本节课通过学生自主探究、合作交流等方式,充分利用了以前学习的知识,根据数据的具体特点,学生借助转化思想把分数与小数进行互化和计算。在这个过程中,学生完成了知识的'自我建构,同时也加深了学生对算法灵活性的理解与掌握。
2.在对比中完成方法优化。
算法多样化有利于学生发散思维的训练,但是在实际教学中,我们不能一味地发散思维而忽视学生思维优化的训练。在学生多种算法的对比中,引导学生发现最优算法,从而让学生明白:在计算小数乘分数的时候要根据数据的特点灵活选择算法。
课前准备
教师准备PPT课件学情检测卡
教学过程
⊙复习旧知,引入新课
1.计算。
15×=×15=×=
2.引入新课。
师:上面的题你会计算吗?它们各是什么类型的分数乘法?你能说一说是如何计算的吗?
(学生回答)
师:你们说得太好了!老师为你们知道的这么多而感到骄傲!今天我们就来学习一种新的运算。
(板书课题:小数乘分数)
设计意图:通过复习分数乘整数、分数乘分数的计算方法,使学生回顾已学的分数乘法的计算方法,为知识的迁移做好准备。
⊙讨论交流,探究新知
1.创设情境,获取信息。
(1)课件出示教材8页例5情境图(不含问题),组织学生交流图中的信息。(学生先在小组内交流,然后汇报)
(2)学生自由提出问题,小组交流后汇报。
(松鼠欢欢的尾巴有多长?松鼠乐乐的尾巴有多长?)
2.理解题意,列出算式。
(1)组织学生理解的意义。
师:同桌之间交流一下对题中的和问题的理解。
(交流汇报:尾巴的长度是身体长度的,求尾巴的长度,就是求身体长度的是多少)
(2)列出算式。
师:根据刚才的理解,你能用算式表示出这两个问题吗?
生1:求松鼠欢欢尾巴的长度,就是求2.1的是多少,可以用2.1×表示。
生2:求松鼠乐乐尾巴的长度,就是求2.4的是多少,可以用2.4×表示。
3.探究计算方法。
(1)探究2.1×的计算方法。
师:大家观察一下,这道题与我们前面学过的分数乘法有什么不同?(一个因数是小数,另一个因数是分数)
师:那么应该怎样计算呢?请大家在小组内讨论一下,然后汇报。
人教版小学数学六年级比的教案8
教学内容:
成数(课本第9页例2)
教学目标:
1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。
2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。
教学重点:
理解成数的意义。
教学难点:
解决解答有关成数的实际问题。
教学过程:
一、复习
1、填空
①四折是十分之( ),改写成百分数是( )。
②六折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?
二、创设情境,导入新课
同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的.是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育
三、探究体验
(一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。
1、让学生尝试把二成及三成五改写成百分数。
2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。
3、练习:将下列成数改写成百分数。
二成=( )%; 四成五=( )%; 七成二=( )%。
(二)教学例2
1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?
3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。
4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。
350(1-25%)=262.5(万千瓦时)
或者引导学生列出
350-35025%=262.5(万千瓦时)
四、巩固练习
1、三成=( )%; 五成六=( )%; 八成三=( )%;
2、第9页做一做
3、解决问题
(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?
(2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)
(3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?
(4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?
五、课堂总结
这节课你收获了什么?
人教版小学数学六年级比的教案9
教学内容:
比较正数和负数的大小。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的.拓展。
数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
人教版小学数学六年级比的教案10
本单元的主要内容包括:倒数的认识、分数除法的意义与计算、解决问题。
通过本单元的学习,学生一方面完成了分数加减乘除的学习任务,比较系统地掌握了分数的四则混合运算及解决相关实际问题的方法;另一方面也进一步加深了学生对乘除法关系的理解,体会数学知识方法的.内在联系,为解决有关分数的实际问题提供更多的支持,同时也为后面学习比和比例、百分数打下坚实的基础。
本单元是在学生已经掌握了分数乘法、解方程等知识的基础上进行教学的。本单元的学习内容与下一单元比的相关知识联系紧密,将分数除法安排在比的前面进行学习,为更好地学习下一单元的内容奠定了知识基础。
备内容
备目标
知识与技能
过程与方法
情感、态度与价值观
1、理解倒数的意义,掌握求一个数的倒数的方法。
2、通过实例,使学生知道分数除法的意义与整数除法的意义相同。
3、理解并掌握分数除法的计算方法,明确算理。
4、会用算术方法及列方程解答分数除法问题。
5、能运用不完全归纳法总结出倒数的意义。
6、在教学分数除法的计算方法时,用折纸的方法推导计算结果,体现了数形结合思想;把除法计算转化成乘法计算,渗透了转化思想。
7、在探究倒数意义的过程中激发学生探究数学的兴趣,并能付诸行动。
8、体会数学知识之间的内在联系,促进学生整体思考能力的提升。
9、能积极参与数学活动,对数学有好奇心和求知欲。
10、体验获得成功的乐趣。
备重难点
重点
1、掌握求一个数的倒数的方法。
2、理解并掌握分数除法的意义、算理及计算方法,会用算术方法及列方程解答分数除法问题。
难点
1、理解分数除法的算理。
2、运用分数除法的相关知识解决实际问题。
人教版小学数学六年级比的教案11
教材分析
理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。
学情分析
分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。
教学目标
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.能正确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学重点和难点
教学重点:理解分数除法的意义,掌握分数除以整数的'计算方法。
教学难点:分数除以整数计算法则的推导过程。
教学过程
一、创设情景,教学分数除法的意义
1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!
(1)每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
(2)3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
(3)300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15
能再讲讲这样做的道理吗?
师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/5的多少?
通过直观图理解4/5的1/3是4/15
(3)比较归纳,发现规律。
分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:
结果最简。除号要变成乘号。
三、巩固练习
学生独立完成
四、课堂小结
1、分数除法的意义是什么?
2.分数除以整数的计算法则是什么?(学生总结)
五、作业布置
人教版小学数学六年级比的教案12
教学内容:人教版小学数学教材六年级上册第54页例2及相关练习。
教学目标:
1.能在实例的分析中理解按比分配的实际意义。
2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。
3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。
教学重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。
教学难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。
教学准备:课件。
教学过程:
一、情境导入
课件出示:女生与男生的人数比是5:7。
师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?
【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。
二、实例探究
(一)自主探索
1.出示:六(2)班一共有48人,女生与男生的人数比是5:7。
师:根据这两条信息,你能求出什么?男生、女生各有多少人呢?你会算吗?
2.学生独立尝试。
3.同桌交流。
师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)
4.汇报:
请不同做法的学生上台板演,交流汇报。
预设(1):48÷(5+7)=4(人);
女生:4×5=20(人);
男生:4×7=28(人)。
师:介绍一下你的想法吧。第一步求的是什么?第二步和第三步分别是什么意思?这种方法是先求什么?再算什么?
师:还有不同的解决方法吗?
预设(2):女生:(人);
男生:(人)。
师:这种方法中,是什么意思?呢?
5.小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。
方法一是根据比的意义,看看一共分成几份,先求出一份的数量,再算几份的数量;方法二是根据比与分数的关系,看看男生、女生各占总人数的几分之几,再用分数的知识来解决。这两种方法都不失为好方法,你更喜欢哪种方法?为什么?
【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的设计不仅降低了学习的难度,而且激发了学生的学习兴趣。
(二)揭示课题
师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)
(三)实践尝试
出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。
1.阅读与理解。
浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)
师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)
2.分析与解答。
预设(1):每份是500÷5=100(mL),浓缩液有100×1=100(mL),水有100×4=400(mL)。
师:这里的5表示什么?(把总体积平均分成5份。)
预设(2):浓缩液有(mL),水有(mL)。
师:表示什么?(浓缩液占总体积的;)
呢?(水占总体积的。)
3.回顾与反思。
师:可以用怎样的方法对结果进行验证?
预设:看浓缩液与水的比是不是等于1:4。
小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。
【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的.能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。
三、实践应用
(一)基本练习
1.师:打开教材第55页,看第一题。
(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。
(2)交流:说说你的方法。
2.出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。
师:请你来设计一下,可以怎么分配?
预设一:1:1。
师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)
师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。
对于其余各种分配方法,都让学生快速算一算再交流。
(二)发展提高
1.师:增加点难度行不行?我把这一题变一下。
出示教材第56页第7题:李伯伯家里的菜地共800平方米,他准备用种西红柿,剩下的按2:1的面积比种黄瓜和茄子。三种蔬菜的面积分别是多少平方米?
(1)比较:这一题和前几题相比,有什么不同?
(2)分析:这一题是把哪个数量进行分配,按怎样的比来分配?这个数量直接告诉我们了吗?所以我们应该先算什么?那你会算吗?
(3)学生尝试。
(4)交流算法。
师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。
师:这几位同学的方法有什么共同点?有什么不同点?
2.出示:学校把栽70棵树的任务按照六年级三个班的人数分配给各班。一班有46人,二班有44人,三班有50人。三个班各应栽多少棵树?
(1)比较分析:
师:这一题又有什么不一样?没有直接给出“比”,不能直接按比分配了,那怎么办?
师:我们可以先求出比,再按比进行分配。
(2)学生独立尝试,交流算法。
(三)小结
师:通过上面两个问题的解答,你觉得在解答按比分配的问题时应注意什么?
师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。
【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。
四、课堂总结
1.师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)
2.课外延伸。
师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。
【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。
人教版小学数学六年级比的教案13
设计说明
本节课复习的是百分数知识在实际生活中的应用,常见的百分率是小学数学中的重要基础之一。
本节课在教学设计上有如下特点:
1.创设情境,在具体的情境中复习百分数的意义。
在数学教学中,适时地给学生营造一个生活情境,不仅可以吸引学生的注意力,而且有利于学生发现问题,探索新知。复习中,通过创设情境,激发学生的学习兴趣,让学生结合具体情境,体会百分数与生活的密切联系,进一步理解百分数的意义,并在列表对比中,明确百分数与分数的区别和联系。
2.巧用图示,有序地复习百分数、分数、小数的互化方法。
思维导图在教学中备受关注,因为它可以帮助学生理清思考过程,把知识要点清晰地呈现在学生眼前。引导学生有序地复习百分数、分数、小数的互化方法时,结合学生的回答,把三者之间互化的方法用图示表示出来,使学生直观地了解并轻松掌握三者之间的互化方法以及相互间的可逆关系。
3.重视迁移,培养学生类推的能力。
根据百分数与分数的密切关系,百分数问题在解题思路和方法上与分数基本相同这一特点,联系分数知识复习、理解百分数问题中的数量关系,使学生能够正确解答百分数问题。这样设计,可以帮助学生沟通分数、百分数之间的内在联系。
课前准备
教师准备 PPT课件
教学过程
⊙情境激趣
(出示课件)一件绒衣的成分如下:
羊绒:14.8%
超细羊毛:73.5%
天丝:11.7%
读出这件绒衣成分的相关数据,并说出这些数据的意义。
设计意图:通过具体情境,调动学生复习的积极性,激发学生的复习热情,为高效复习作铺垫。
⊙复习百分数的相关知识
1.复习百分数的意义。
(1)什么叫百分数?它的意义是什么?(板书:百分数)
(像14.8%、73.5%、11.7%…这样的数叫做百分数。百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比)
(2)百分数和分数在意义上有什么不同?
(结合学生的回答,用课件展示,列表对比)
百分数 | 分数 | |
意义 | 百分数是表示一个数是另一个数的百分之几的数。 | 把单位“1”平均分成若干份,表示这样的1份或几份的数叫分数。 |
区别 | 百分数通常只是表示两个数的倍比关系。 | 分数既可以表示两个数的倍比关系,又可以表示一个具体数量。 |
联系 | 百分数可以看作分母为100的特殊分数。 |
2.复习百分数、分数、小数的互化方法。
(1)百分数、分数、小数的互化方法是什么?
①小数与分数的互化方法。(结合学生的回答,课件展示)
②小数与百分数的互化方法。(结合学生的回答,课件展示)
③百分数与分数的互化方法。(结合学生的回答,课件展示)
(2)巩固练习。
①把下面各数化成百分数。
0.625= 0.2= 0.6= 3=
②把下面的分数化成百分数。
= = =
③把下面的百分数化成小数或整数。
42%= 108%= 5.4%= 200%=
3.复习百分数应用题。
(1)复习常见的百分率问题。
(课件出示教材116页12题)
取小麦500 g,烘干后,还有428 g。计算出这种小麦的`烘干率和含水率。
烘干率=×100%
含水率=×100%
(解决问题,然后复习其他常见的百分率)
(2)复习百分数乘、除法应用题。
[课件出示教材113页3题第(3)、(4)、(5)小题]
①一件衬衣原价125元,现在降价20%。现在售价是多少元?[125×(1-20%)=100(元)]
②一件衬衣降价20%后,售价为100元。这件衬衣原价是多少元?[100÷(1-20%)=125(元)]
③一件衬衣售价为100元,一条长裤的价钱是这件衬衣的150%,这条长裤的价钱又是一双皮鞋的。这双皮鞋售价是多少元?
长裤:100×150%=150(元)
皮鞋:150÷=180(元)
(3)小结。
解百分数乘、除法应用题的关键是找准单位“1”,解题思路与分数乘、除法应用题的解题思路一样:单位“1”已知,求比较量用乘法计算;单位“1”未知,求单位“1”用除法计算。
设计意图:在系统复习百分数的相关知识的基础上,重点复习应用百分数知识解决问题的思路和解题方法,使学生利用百分数乘、除法解决问题的能力得到进一步提高。
⊙巩固练习
完成教材114页5题。
⊙课堂总结
通过本节课的复习,你都进一步理解了哪些知识?
⊙布置作业
教材116页13题。
板书设计
百分数(一)
1.百分数的意义
2.百分数、分数、小数的互化
3.百分数应用题
人教版小学数学六年级比的教案14
教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、 能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔X元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的'几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果X千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
人教版小学数学六年级比的教案15
课前准备
教师准备PPT课件
教学过程
⊙情境导入
1.情境激趣。
(课件出示教材92页情境图)说一说图中三个少先队员剪出的图案、设计的图案和制作的板报花边各采用了什么运动方法。(生回答,师板书)
2.导入揭题。
这节课,我们首先来复习图形运动中的平移、旋转和轴对称的相关知识。
⊙回顾与整理
1.平移。
(1)什么是平移?(把一个图形沿某条直线移动一定距离的过程叫做平移)
(2)判断平移后图形的位置,关键有几点?
(判断平移后图形的位置,关键有两点:一是平移的方向,二是平移的距离)
(3)举例说一说生活中常见的平移现象。
(电梯的上下运动、抽屉的推拉等)
2.旋转。
(1)什么是旋转?(把一个图形绕着某一固定点按顺时针或逆时针方向转动一定角度的过程叫做旋转)
(2)旋转的三要素是什么?
(旋转的三要素:一是旋转中心,二是旋转方向,三是旋转角度)
(3)举例说一说生活中常见的旋转现象。
(电风扇扇叶的转动、汽车行驶时车轮的转动等)
3.轴对称。
(1)什么是轴对称图形?什么叫对称轴?
(一个图形沿着一条直线对折,对折后折痕两边的部分完全重合,这个图形就是轴对称图形,折痕所在的直线叫做对称轴)
(2)我们学过的图形中,哪些是轴对称图形?各有几条对称轴?
预设
生1:等腰三角形、等边三角形、正方形、长方形、等腰梯形、圆等都是轴对称图形。
生2:线段也是轴对称图形,它有一条对称轴。
生3:等腰三角形有一条对称轴;等边三角形有三条对称轴;正方形有四条对称轴。
生4:长方形有两条对称轴;等腰梯形有一条对称轴;圆有无数条对称轴。
⊙典型例题解析
课件出示典型例题。
先把三角形ABC绕点C顺时针旋转90°,再向右平移6格。
分析本题考查的是学生对旋转、平移知识的掌握及运用能力。
画图前要先找准规定的旋转中心,即点C,画出线段CA绕点C顺时针旋转90°后的对应线段CA′,CB绕点C顺时针旋转90°后的对应线段CB′,然后连接A′B′,得到三角形A′B′C,三角形A′B′C即为三角形ABC按要求旋转后的图形。最后把三角形A′B′C的每个顶点分别向右平移6格,得到点A″、B″、C′,然后顺次连接这三个顶点,得到平移后的.三角形A″B″C′,如下图。
解答
⊙探究活动
1.出示探究题目。
有5个同样大小的圆片,用其中4个摆成右边的形状,剩下的一个圆片摆在什么位置能使5个圆片组成轴对称图形呢?
2.小组合作试一试。
3.说一说你们是怎样摆的。
预设
生1:要使原图形再摆上一个圆片后成为轴对称图形,首先要确定这个图形的对称轴,然后横着、竖着和斜着试一试,最后根据对称轴找到另一个圆片的位置。
生2:摆法一:
生3:摆法二:
生4:摆法三:
(加阴影的圆片表示后摆放的圆片)
【小学数学六年级比的教案】相关文章:
数学小学教案12-15
小学数学数对教案01-18
小学数学教学教案11-10
小学数学教案02-24
小学数学乘法教案04-18
小学数学除法教案02-14
小学数学方程教案02-14
小学数学备课教案02-14
小学数学试讲教案09-27