长方体和正方体的教案

时间:2022-12-30 08:28:47 教案 投诉 投稿
  • 相关推荐

长方体和正方体的教案15篇

  在教学工作者开展教学活动前,就不得不需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。我们该怎么去写教案呢?以下是小编精心整理的长方体和正方体的教案,仅供参考,大家一起来看看吧。

长方体和正方体的教案15篇

长方体和正方体的教案1

  教学目标

  使学生直观认识长方体和正方体,能够辨认这些图形.

  教学重点和难点

  重点:直观认识长方体和正方体,知道图形的名称.

  难点:辨认这些图形.能够区别长方形与长方体,正方形与正方体.

  教学过程设计

  (一)复习准备

  下图中有多少个长方形?多少个正方形?多少个三角形?多少个圆?(投影片)

  (二)学习新课

  1.初步认识长方体.

  (1)出示长方体实物(装墨水瓶的纸盒、火柴盒)

  师:同学们看这个纸盒和火柴盒,谁知道它们是什么

  形状?学生能回答可由学生回答,不能回答老师告诉学

  生,并板书:长方体.

  (2)看一看、摸一摸.

  让学生拿出一个长方体实物,看一看它的形状,摸一摸每个面.

  师:长方体有几个面?怎样正确地数出?(长方体有上、下两个面,前、后两个面,左、右两个面,一共有六个面)

  师:长方体每个面是什么形状的?相对的面一样吗?(长方体每个面都是长方形,相对的面完全一样)

  教师再出示一个长方体实物.(其中有两个面是正方形的)

  师:这也是一个长方体.它有几个面?每个面是什么形?相对的面一样吗?(这个长方体有六个面,有四个面是长方形,有两个面是正方形,相对的面一样)

  (3)举例.

  日常生活中,你还见到过哪些东西的形状是长方体?

  (4)小结.

  师:通过看一看、摸一摸,我们知道长方体有6个面,相对着的两个面的形状相同,有的长方体的6个面都是长方形的,有的长方体有两个面是正方形,其余4个面是长方形.

  板书:6个面长方形(也可能有两个面是正方形)

  教师出示长方体实物,变换摆放方向,让学生从不同角度观察、认识长方体.如下图:

  2.初步认识正方体.

  (1)出示正方体实物(魔方玩具、方积木块)

  师:谁知道它们是什么形状的?边说边在黑板上板书:正方体.

  师:正方体有几个面?每个面都是什么形?

  让学生拿出事先准备好的正方体数一数有几个面,再拿一个正方形的纸放在正方体的.每个面上比一比.师生共同得出正方体有6个面,每个面都是正方形.

  板书:6个面 正方形

  3.认识长方体图和正方体图.

  师:现在我把长方体和正方体画成图,你们认识吗?

  教师出示已画好的长方体图和正方体图,让学生说出它们各自的名称,并贴在板书长方体和正方体的左面.

  4.辨认长方体和正方体.

  (1)请同学们闭上眼睛想一想:长方体是什么样子的?正方体是什么样子的?

  (2)选图形(投影片)

  (三)巩固反馈

  1.教科书 p.23做一做.

  先让学生说一说中间一行的每一个图形的名称,再让学生把是长方体或正方体的实物和它所对应的几何图形用线连起来.然后集体订正.

  2.在长方体下面画√.

  3.在正方体下面画√.

  4.数一数.

  长方体有( )个 正方体有( )个

  长方形有( )个 正方形有( )个

  5.动手摆.

  教科书练习七第2,3题.

  课堂教学设计说明

  这节课的教学任务是使学生对长方体和正方体有一些感性认识,知道它们的名称,能够辨认就可以了.由于是初步认识,因此不要对学生提更高的要求.

  首先通过实物对长方体有感性认识,在此基础上通过看一看、摸一摸,知道长方体有几个面?各是什么形?继而概括出长方体的特征.然后教师通过变换长方体的摆放方向,从直观上加深对长方体的认识.最后教师再出出示长方体图,让学生抽象的认识长方体.体现了对学生思维深刻性的培养.

  通过选图形、数一数、摆一摆三个层次的练习,充分发挥学生的主观能动性,把已学过的长方体、正方体的特征进行概括、迁移,在比较中识别长方体和正方体,辨认长方形和长方体、正方形和正方体.学生的思维始终处于高度的发散状态,达到培养学生思维灵活性的目的.

长方体和正方体的教案2

  一、说教材

  1. 教材简析:“长方体和正方体体积计算”是六年制五年级小学教学第十册第二单元的内容。这节课是学生全面系统地学习体积计算问题的开始,是学生的空间观念从二维向三维的一次飞跃,是学生形成体积的概念和掌握体积的计量单位的基础,也为今后学习圆柱体体积计算作了铺垫。

  2. 教学目标:根据教材以及小学数学教学大纲的要求:我拟定本节课的教学目标是:(1)知识与技能目标:理解和掌握长方体和正方体体积的计算方法,并能用所学知识解决一些简单实际问题。(2)过程与方法目标:学会通过实践、观察、比析、综合、概括去获得知识的方法。(3)情感态度与价值观:培养学生积极探究的科学态度和与人合作的能力,养成良好的学习习惯。

  3 . 教学重难点:体积对学生来说,是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对怎样计量物体的体积不易理解,为此,我认为本节课的教学重点是:理解和掌握长方体和正方体体积的计算方法。那么,怎么找到计算长方体喝正方体体积的计算方法,学生有一定的难度。因此,我把“体积公式的推导过程”定为本节课的难点。

  二、说教法、学法

  这节课我首先运用设疑导入法引入新课;其次,运用实验探究法、尝试教学法,让学生在操作中感知----探究中学知----在练习中用知,从直观教学入手,培养学生由形象思维到抽象思维的.过渡,让学生自始至终在知识形成的过程之中,真正发挥学生的主体作用。

  三、说教学过程

  (一)设疑导入,揭示课题,明确任务

  理想的新课导入,能唤起学生的记忆思维,激发他们求知欲望,能诱导他们全身心地投入学习。上课一开始,我就拿出一个长方体和一个正方体的木块,问大家:“你们能算出这两个物体的体积吗?想不想找到一个计算体积的方法?这节课请大家自己动手、动脑推导出长方体和正方体体积计算公式。”并由此揭示课题,让学生明确学习任务,兴趣盎然地进入最佳学习状态。

  (二)操作感知,探究规律,巩固深化

  小学生的思维特点是以形象思维为点逐步向抽象思维过渡。根据这一特点,先利用直观教具和学具,师生一起进行操作活动,引导学生观察、思考、比较,把学生的具体操作思维与语言表达紧密结合起来,发展学生的空间观念。新知识分三步进行:

  第一步,做-----操作感知

  先让学生用学具(体积是1立方厘米的方木块)摆一摆,坐下面3个实验并作实验记录:

  实验1:每排摆4个方木块,摆3排,方木块的总数是( )个。

  实验2:摆这样的2层,公用方木块( )个。

  实验3:要摆成一个长5厘米,宽4厘米,高3厘米的长方格,应怎样摆?共要方块( )个。

  小组汇报实验结果,并填入表中:

长方体和正方体的教案3

  【教材分析】

  苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。

  在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。

  【教学片段】

  师:刚才,同学们动脑筋有条理地数出了长方体有──

  生(齐):6个面,12条棱,8个顶点。

  师:我们的研究不能满足于“是什么”,还要探究“为什么”。

  (学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)

  师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?

  (学生仔细打量眼前的长方体模型,积极探索着答案。)

  生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。

  师:那应该怎样算呢?

  生(齐):6×4÷2=12条棱。

  师:你现在也能提一些“为什么”的问题吗?

  生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?

  师:问得好!你有答案吗?

  生1:我有答案,但想让其他同学回答。

  生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。

  师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?

  生1:能不能由棱的条数推算出顶点的个数、面的个数?

  生2:由顶点的个数是不是也能推算出面的个数和棱的条数?

  师:真会提问题!同学们有兴趣研究吗?

  (学生兴致勃勃地研究并汇报了两个问题。)

  师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?

  生1:都先算出了24。这是为什么?

  (学生陷入了沉思,不一会儿,陆续举起手。)

  生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。

  生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。

  师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。

  ……

  师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?

  生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。

  师:反过来呢?

  生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。

  师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。

  【教学反思】

  一、数学学习是经验的,也是推理的

  新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。

  二、空间观念是具象的,也是关系的

  一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的.模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。

  三、课堂思考是个体的,也是群体的

  学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。

长方体和正方体的教案4

  教学目标:

  结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。

  知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。

  3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。

  教学重点

  1、长方体、正方体表面积的意义和计算方法。

  2、确定长方体每一个面的长和宽。

  教学难点

  1、长方体、正方体表面积的意义和计算方法。

  2、确定长方体每一个面的长和宽。

  教学媒体

  教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

  学具:长方体、正方体纸盒、剪刀。

  教学过程

  一、复习准备。

  (一)口答填空。

  1.长方体有( )个面,一般都是( ),相对的面的( )相等;

  2.正方体有( )个面,它们都是( ),正方形各面的( )相等;

  3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

  4.这是一个( ),它的棱长是( )厘米,它的棱长之和是( )厘米。

  (二)说一说长方体和正方体的区别?

  教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)

  二、学习新课。

  (一)长方体和正方体表面积的意义。

  1.教师提问:什么叫做面积?

  长方体有几个面?正方体有几个面?

  (用手按前、后,上、下,左、右的顺序摸一遍)

  2.教师明确:这六个面的总面积叫做它的表面积。

  3.学生两人一组相互说一说什么是长方体的'表面积,什么是正方体的表面积。

  4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

  (二)长方体表面积的计算方法

  1.学生归纳:

  上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

  前后两个面大小相等,它是由长方体的长和高作为长和宽的;

  左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

  2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)

  老师板书:

  上下面:长×宽×2

  前后面:长×高×2

  左右面:高×宽×2

  3.练习解答。

  做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

长方体和正方体的教案5

  教学内容

  教科书第51--52页的例1、例2,课堂活动及练习十二的1--3题。

  教学目标

  1.知识与技能:引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。

  2.过程与方法:会运用公式正确计算长方体和正方体的体积。

  3.情感、态度与价值观:渗透"猜测--实验探究--验证"的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。

  教具学具

  学生准备12个体积是1cm3的小正方体木块。教师准备多媒体课件,及表格一和表格二。

  教学重点

  1.理解长方体和正方体的体积公式的推导过程。

  2.会计算长方体和正方体的体积。

  教学难点

  长方体、正方体的体积计算的推导过程。

  教学过程

  一、问题引入

  1.师:小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?

  师:你是怎样想的?

  教师:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。

  2.师(出示一个长方体模型):要知道它的体积是多少,你有什么办法?

  生1:可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的体积是多少。

  生2:将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。

  生3:量出长方体的长、宽、高,用长×宽×高。

  教师:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。那么,生3的方法是否成立?这就是我们这节课要学习的内容。

  (板书课题:长方体和正方体的体积计算)

  [简评:从学生熟悉的搭积木游戏开始,沟通学生已有知识连接点:要计量一个物体的体积,就要看这个物体中含有多少个体积单位。然后让学生想办法怎样求出一个长方体的体积。激发了学生的求知欲,并自然过渡到新课的学习。]

  二、问题探索

  1.探索长方体的体积计算方法。

  (1)4人小组合作"搭积木"。电脑出示活动要求:用12个体积是1cm3的小正方体木块拼成不同形状的长方体,并填写表一:

  每排个数排数层数1cm3正方体的个数体积(cm3)

  长方体一

  长方体二

  长方体三

  思考:

  ①长方体每排个数、排数、层数分别相当于长方体的什么?

  ②长方体的体积怎样计算?

  (2)学生在合作交流中探讨长方体和正方体体积的计算规律。

  生:每排个数就是长方体长所含厘米数,排数就是宽所含厘米数,层数就是高所含的厘米数。长方体的体积=每排个数×排数×层数,或长方体的体积=长×宽×高,或长方体的体积=底面积×高。

  学生相互,鼓励学生自主探索。

  (3)用实例验证规律。

  师:刚才我们发现长方体的体积=长×宽×高,这个公式对所有的长方体都适用吗?

  学生从自己准备的学具中自由选取若干个1cm3的小正方体,搭成形状不同的两个长方体,验证每个长方体的'体积是否等于它的长、宽、高的乘积,请每小组(2人小组)同学一边实验一边填写表二:

  长(cm)宽(cm)高(cm)体积(cm3)

  第一个长方体

  第二个长方体

  让学生说说自己的发现。(板书:长方体的体积=长×宽×高)

  师:看来我们的发现是正确的,请给自己一颗探索星。

  (4)用字母公式表示长方体的体积计算方法。

  让学生观察板书和长方体的立体图,想一想:如果用V表示长方体的体积,a表示长,b表示宽,h表示高,用字母怎样表示长方体体积公式呢?

  (板书:V=a×b×h)

  师:闭上眼睛想一想,求一个长方体的体积必须具备什么条件?

  (5)反馈练习。

  师(课件出示例2):怎样计算电脑包装箱的体积?

  学生审题,独立完成。

  [简评:在探索长方体的体积的计算中,设置"操作→感知规律;验证→认识规律;练习→应用规律"几个层次,符合学生掌握知识的特点,使本环节的重难点得以突破。课堂气氛民主和谐,学生从同伴那里不断优化自己的思考方法。]

  2.自学正方体的体积计算方法

  (1)正方体的体积又怎样计算呢?猜猜看。

  (2)你的想法正确吗,可以翻开书第52页看一看,也可以同桌交流自己的看法。

  (3)说说正方体的体积计算方法,字母表示的方法(V=a·a·a或a3)。要计算正方体的体积,必须知道什么条件?

  (4)反馈练习:

  口答:这个正方体的体积是多少?

  三、课堂活动

  量一量、算一算。

  (分组测量、并计算)

  四、全课

  说说本课学习中你的收获。

  五、作业

  练习十二第2、3题。

  [简评:整堂课从学生提出假设,小组合作探索、交流得出长方体的体积计算公式,然后用长方体的体积计算公式推导正方体的体积计算方法,既体现了自主学习,又沟通了长方体和正方体体积的关系。解决实际问题的设计,让学生量一量,算一算,培养了学生动手实践和解决生活实际问题的能力。教师大胆地进行开放式教学,让学生经历探索的过程,让学生在合作中讨论交流,呈现了学生思维的多样性和层次性,发展了学生的思维,体现了教师主导与学生主体的教学观念。

长方体和正方体的教案6

  教材分析:

  《纲要》中将科学领域的目标之一定位为:“能从生活和游戏中获得有关物体形状、数量等方面的感性经验,并尝试运用已有的知识经验及数学方法解决日常生活和游戏中某些简单的问题,体验数学的重要与有趣。”同时强调:“科学教育应密切联系幼儿的实际生活进行,利用身边的事物与现象作为科学探索的对象。”即强调幼儿园数学教育生活化。由此我们感到,无论是教育内容还是教育方式,只要能激发幼儿对数学的兴趣,并能与幼儿生活息息相关,有益于幼儿的发展,就值得我们大胆尝试。

  目标:

  1.在认识面与体的特征的基础上认识正方体和长方体,感知他们的特征,能区分正方体和长方体。

  2.能运用观察、比较的方法感受形与体的不同,发展空间知觉。

  重点:感知正方体和长方体的特征,能正确区分正方体和长方体。

  难点:能运用观察、比较的方法感受形与体的不同。

  准备:正方体、长方体制作材料纸各一张,正方体、长方体积木、纸盒若干。

  过程:

  一.认识正方体

  1.老师带来了一些小宝贝,是什么呢?

  师:教师出示正方体的物品 ,有意识地让幼儿看清楚每一个物体,初步感知共同点。2.瞧,这些宝贝对小朋友们说:我们都有一个相同的地方,你知道是什么吗?

  师:根据幼儿的回答,出示正方形让幼儿观察比较,了解形与体的.区别。

  3.帮助幼儿认识正方体,了解其基本特征。

  正方体有几个面? 这6个面都是什么形状的?这些正方形大小都一样吗?教师将正方形的六个面一一撕下、比较并记录下来。

  师:帮助幼儿分析了解形与体的区别,知道正方体与正方形的关系,知道正方体是由六个大小一样的正方形组成,有六个面。

  二.幼儿探索长方体的基本特征,并记录

  1.出示长方体,那这又是什么呢?

  师:幼儿根据已有的经验猜测,基本都会认定为长方体。

  2.幼儿自由探索、记录长方体的六个面。

  师:为了幼儿不按既定的思维模式,教师有意识地提醒幼儿:记录的时候仔细看看,它有几个面,每个面都是长方形吗,还是几个面?

  3.幼儿讲述自己记录的长方体

  4.小结:有六个面,并且全是长方形的六面体或对应的两个面是正方形、其他四个面为长方形的六面体均为长方体。

  三.找找生活的正方体和长方体

  闭上眼睛想想,你在哪里看见过正方体和长方体?活动室、家中、社区等。

  幼:幼儿闭上眼回忆的时候,教师给予语言提示,帮助幼儿回忆、梳理

  四.按特征标记将正方体与长方体分类。

  出示贴有正方体与长方体标记的两个篮子。“这里有两个篮子,篮子上分别贴有什么样的标记?”(正方体、长方体。)请你们把桌子上的各种形体送进带有特征标记的篮子。幼儿共同检查

  幼:共同互相检查过程中可能会有矛盾,掌握得好的幼儿自然能将对方说服。

  五.延伸活动

  出示正方体长方体展开图,这两张可能是什么图?为什么?我把它们放在区角,你们去试一试吧。

  幼:运用自己所掌握的知识来解答,巩固所学。

长方体和正方体的教案7

  教学目标

  (一)理解并掌握长方体和正方体体积的计算方法。

  (二)能运用长、正方体的体积计算解决一些简单的实际问题。

  (三)培养学生归纳推理,抽象概括的能力。

  教学重点和难点

  长方体和正方体体积的计算方法,以及其体积公式的推导。

  教学用具

  教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

  学具:1厘米3的立方体20块。

  教学过程设计

  (一)复习准备

  1.提问:什么是体积?

  2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

  教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)

  教师:如果再拼上一个1厘米3的正方体呢?

  教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

  (二)学习新课

  1.长方体的体积。

  (1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

  教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

  同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:

  教师:这些长方体有什么共同点?不同点?

  问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?

  (因为它们都含有同样多的体积单位——12个1厘米3。)

  教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  学生讨论后,师生共同归纳:

  表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。

  同样的道理,表示宽的'数还表示摆了几排,表示高的数还表示有几层。

  (2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

  学生说出摆法和体积后。请看电脑动画图像:

  一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。

  教师板书:

  同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。

  学生操作,看电脑动画图像。教师板书:

  3(厘米) 3(厘米) 2(厘米) 18(厘米3)

  教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?

  学生口答后,老师用电脑图演示。然后板书:

  5(厘米) 4(厘米) 3(厘米) 60(厘米3)

  教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

  学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

  教师板书:长方体的体积=长×宽×高

  教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书:v=abh。

  出示投影图:

  (3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。

  答:它的体积是84厘米3。

  练习(投影出题,学生口答。)

  一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)

  2.正方体体积。(1)请学生看电脑动画录像:

  长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?

  问:这个正方体的体积可以求出来吗?

  学生口答,老师板书:3×3×3=27(厘米3)。

  投影出一个正方体图。(可以用翻页变换它的棱长。)

  问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?

  学生口答,老师板书:2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。

  用v表体积,a表示棱长,公式可写成:v=aaa或者v=a3。

  (2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  学生口答,老师板书:53=5×5×5=125(分米3)。

  答:体积是125分米3。

  做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说长方体和正方体的体积计算方法和字母公式。

  教师:请讨论长方体和正方体的体积计算方法相同还是不相同。

  学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

  (三)巩固反馈

  1.口答填空。课本p35练习七:2,3。

  2.口答填表:

  3.判断正误并说明理由。

  ①0.23= 0.2×0.2×0.2;( )

  ②5x2=10x;( )

  ③一个正方体棱长4分米,它的体积是:43=12(分米3);( )

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )

  (四)课堂总结

  1.长方体的体积计算方法及公式。

  正方体的体积计算方法及公式。

  板书设计

长方体和正方体的教案8

  教学目标:

  1.认识长方体和正方体,初步掌握各自特征和内在联系。帮助学生在动手操作的实践中初步建立空间观念,培养学生观察、分析、推理的能力。

  2.在认识长方体和正方体的相互联系和变化规律的过程中,初步培养学生辩证唯物主义观点。

  教学过程:

  一、导入新课,揭示课题

  1.师:我们学过哪些基本平面图形?长方形和正方形之间有什么关系?

  2.出示一张纸。师:这是什么图形?(长方形)如果把这样大小的许多纸重叠在一起,你们看,是什么形状?(长方体)

  3.师:在日常生活中,长方体形的物体我们常见到,如保健箱、粉笔盒等等,你们能说出一些来吗?(砖、墨水瓶盒子、教科书……)

  师:长方体和正方体在日常生活中与我们联系很多,在工农业生产中用途很广。今天我们就来学习它。

  板书:长方体和正方体的认识

  二、示范操作,认识面、棱、顶点

  1.拿出一根萝卜,用刀切一刀,要求学生观察并且动手摸一摸切出的面。在学生感受的基础上,告诉学生这叫做“面”。

  2.将切出的萝卜平面朝下,再垂直切一刀,取出其中的一块,出示给学生看。

  师:这块萝卜有几个面?两个面相交的边叫什么呢?(棱)

  3.继续切,把萝卜一面平摆在桌面上,再垂直切一刀,出现了一个新情况,让学生观察后回答,有几个面,有几条棱。

  师:三条棱相交的点叫做顶点。

  师:刚才我们通过切萝卜的活动认识了物体的面、棱、顶点。

  4.教师出示长方体模型,学生取出长方体实物,进行观察,并且摸一摸长方体的面、棱、顶点。然后回答:一个长方体有几个面?几条棱?几个顶点?

  【评析:教者在帮助学生初步认识长方体时,教学上有以下几个特点:1.通过出示一张纸复习长方形特征,再由许多张同样大的纸重叠起来,使原来的长方形出现了“厚度”,使它起了质的变化,成为长方体。使学生认识到两者有内在的联系,又有原则的区别,学生重新构建的知识自然得体。2.认识长方体的面、棱、顶点等知识是本课的教学重点,教者通过实物演示等教学活动让学生动手摸一摸、看一看、议一议、数一数、想一想,使多种感官协同参与教学过程。在学生亲自感受的基础上获取的基础知识印象深刻,记得牢,用得上,不易忘。】

  三、认识长方体

  1.要求学生认真观察手中的长方体实物,并自学课本,同时在黑板上出示下列自学题:

  (1)长方体有几个面?每个面是什么图形?哪些面的面积相等?为什么?

  (2)长方体有几条棱?哪些棱的长度相等?

  (3)长方体有几个顶点?

  2.讨论后,教师根据学生回答简要板书。

  (1)长方体有6个面,都是长方形。把上下面、左右面、前后面称为相对的面,相对的面面积相等。

  (2)长方体有12条棱,同方向的棱长度相等。

  (3)长方体8个顶点。

  3.接着教师出示有一组相对的面是正方形的长方体,告诉学生这也是长方体,在它的6个面中有一组相对的面是正方形。

  板书:在长方体中,也可能有一组相对的面是正方形。

  4.指导学生进行想象。

  (1)师:①以上我们学习了有关长方体的知识,回忆一下看,长方体有哪些特征?根据这些特征,联系生活实际中你们见到的一些实物,说说它们的面、棱、顶点(学生根据教师的提问各抒己见,进行讨论)。②谁能说说教室这个长方体的面、棱和顶点?

  (2)出示长方体模型。①师:你能看到长方体的哪几个面?②一般我们能看到长方体的三个面。③出示透视图。告诉学生:这幅图称为长方体的透视图。

  (3)尝试练习:判断下列图形中哪些是长方体,说明哪些不是长方体,为什么。

  【评析:长方体有几个面?什么样的面?有几条棱?几个顶点?通过学生观察学具,教师演示教具,学生自学课本并在课本上圈圈画画,再经过课堂讨论后,归纳总结,得到解决。这些知识的获得是学生参与教学的全过程的结果。教师教得生动,学生学得活泼,饶有兴趣。】

  5.认识长方体的长、宽、高。

  (1)指导学生观察模型,指着模型的一个顶点问:相交于一个顶点的有几条棱?是哪三条棱?告诉学生:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,我们把横的棱长称为长,纵的棱长称为宽,竖的棱长称为高。

  (2)教师取出一个长方体模型,让学生指出这个长方体的长、宽、高。再把同一模型换三个位置,分别由学生指出它的长、宽、高。

  (3)要求学生拿出各自带着的录音磁带盒,要求:①在教师规定的统一摆放位置,分别量出它的长、宽、高各是多少厘米。②让学生在各自不同的摆放位置,量出长、宽、高并报出数据,让其他学生猜出报数据学生测量时的摆放位置。

  (4)尝试练习(略)。

  四、认识正方体

  1.以练习二十二第4题,长方体的长、宽、高都是5厘米的立体图形为例,告诉学生:“长、宽、高都相等的长方体叫做正方体,也叫做立方体。”

  2.学生取出正方体学具,教师要求学生动手量一量12条棱的长度,观察6个面的形状和大小。教师提出问题:发现了什么?

  经过讨论,让学生阅读课本,根据课本的叙述,要求学生讲出:(1)正方体的特征。(2)正方体和长方体的关系。

  五、总结比较

  师:我们分别学习了有关长方体和正方体的知识,请取出按照练习二十二第5题要求制作的纸样,再请大家比较比较:

  1.长方体和正方体有什么特征?

  2.长方体和正方体有哪些相同点和不同点?

  3.两者的关系怎样?

  【评析:长方体长、宽、高的基础知识和正方体的有关基础知识以及长方体与正方体的内在联系,教师都是通过学生的实践活动自然引入和过渡的,既自然又得体,符合学生的认知规律和思维特点。】

  六、巩固练习

  1.判断。

  (1)长方体和正方体都有6个面,12条棱,8个顶点。( )

  (2)长方体的六个面都是长方形。( )

  (3)正方体是由六个正方形组成的图形。( )

  (4)正方体是特殊的长方体。( )

  2.看图填空。(单位:分米)

  (1)右图是一个( )体, 它有( )个面,( )条棱,( )个顶点。

  (2)右图左边的面是( )形,长是( ),宽是( ),面积是(),它和( )面的面积相等。

  (3)( )面的面积是15平方分米。

  (4)要做一个这样的长方体框架至少要( )分米铁丝。

  3.讨论。

  出示一叠纸。

  (1)先拿去一部分,剩下的'纸是什么形状?

  (2)再拿走一部分,剩下的纸是什么形状?

  (3)剩下一张纸,是什么形状?

  (4)为什么上课前我们说一张纸是长方形,而现在说一张纸是长方体?(以前我们不研究纸的厚度)

  七、游戏

  出示两个同样的长方体容器,要求两名学生往里倒水,使容器里的水的形状为长方体,看谁倒得快。

  【评析:本课的知识点多,纯属概念性的,巩固练习时,学生易产生厌倦情绪,为此,教者改变了传统方式,根据教学目标另行设计了一套练习题,使学生在填填、写写、画画及游戏中,不知不觉地巩固了基础知识。】

  教学本课之前,先布置学生在家里预习,同时准备些长方体和正方体的形状带来。再让学生把准备的长方体拿出来,如有的拿烟盒、有的拿牙膏盒、有的拿菊花盒等,同桌共同探讨,看它有几个面,几条棱,几个顶点,让学生自己板书。再拿出你的正方体观察一下,正方体的情况是怎样的?让学生对比长方体和正方体的异同?长方体和正方体是一种什么关系?还让学生探讨长、宽、高的含义。联系实际让学生说一说在我们身边有那些长方体和正方体的实物。先说长方体,学生纷纷举手回答:有的说笔盒、音响、还有肥皂、书、黑板等;正方体有魔方、积木等。最后让学生动手制作长方体和正方体。

  所以本节课的成功之处就是把学生推到了主动学习上来,感到自己是学习的主人,在合作、探讨的过程中,有利于学生开动脑筋。

长方体和正方体的教案9

  活动目标:

  1.初步认识正方体、长方体,感知它们的特征。

  2.能运用观察、比较的方法认识形体。

  3.在活动中体验帮助别人的快乐。

  4.知道按事物不同的特征进行排序会有不同的结果,初步了解排序的可逆性。

  5.提高逻辑推理能力,养成有序做事的好习惯。

  活动准备:

  各种正方体、长方体积木及玩具。

  活动过程:

  一、通过小故事,引起幼儿的兴趣。

  师:今天老师接到一个电话,前几天森林里刮大风,把小兔子家的房子吹倒了,小兔子非常着急,怎么办呢?(小朋友帮助小兔搭房子)二、引导幼儿观察搭房子的材料--积木,认识正方体、长方体。

  (一)认识搭房子的材料1.师:我们一起看看搭房子的材料是什么呀?这些积木都一样吗?

  2.请每个幼儿拿一块积木,看一看、摸一摸自己拿的积木是由什么图形组成的?(先让幼儿自由讲讲,再请个别幼儿回答)(二)引导幼儿数一数手里的积木一共有几个图形组成。

  1.师:有的小朋友的积木是由长方形组成的,有的小朋友的积木是由正方形组成的,也有的小朋友的积木是由长方形和正方形组成的,你能告诉我,你的积木上一共有几个图形吗?(幼儿数,老师观察)2.请用不同方法数的幼儿倒前面来示范数。

  3.全体幼儿用与刚才不同的方法再次数数。

  (三)引导幼儿观察每个面的形状。

  1.师:小朋友都很能干,都数出了积木上由六个图形,谁来告诉我,你的积木上是六个什么图形?

  2.小结:由六个长方形或四个长方形、两个正方形组成的形体是长方体,由六个一样大的正方形组成的形体是正方体。

  三、帮小兔子搭房子。

  1.师:现在,就请小朋友用这些材料来搭房子吧,要搭得既坚固又漂亮。(幼儿建构房子)

  2.参观房子,说一说搭房子的积木是什么形体的?

  四、迁移经验,运用自己感知的正方体、长方体的特征判断自己的礼物是什么形体。

  1.师:小朋友帮助了小兔子,小兔子非常感谢你们,所以给你们每人送了一份礼物,从你们的椅子下面拿出来看一看,说一说,你的礼物是什么形体的?

  2.分别请拿正方体礼物的`幼儿和拿长方体礼物的幼儿到前面来,其它幼儿检查是否正确。

  五、活动延伸请幼儿课后在幼儿园、在家里找一找,有哪些东西也是正方体和长方体的,然后告诉小朋友和老师。

  活动反思:

  本节课我通过比较法、观察法、对比法,让幼儿能直观看到形与体的区别和本质联系,从而了解平面和立体的不同,感知各自的特点,从而解决活动的重难点使活动有效开展。活动开展中,幼儿兴趣浓厚,经过操作比较,能大胆表达形与体的区别,知道体是在形的基础上构成的,而且在拓展环节,幼儿能拓展思维,积极表述生活中那些物品是正方体的,使经验知识得到了进一步的内化。

长方体和正方体的教案10

  教学目标:

  1.掌握长方体和正方体的特征,认识它们之间的关系。

  2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3.渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重、难点:

  1.长方体和正方体的特征。

  2.立体图形的识图。

  教学过程:

  一、复习准备:

  1、请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形。老师明确:这些图形都在一个平面上,所有叫做平面图形。

  2、教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。

  教师提问:这些物体是什么图形?

  3、引入:今天这节课我们主要进一步认识长方体和正方体的特征。

  教师板书:长方体和正方体的认识

  二、学习新课:

  (一)长方体的特征。

  1、请同学取出自己准备的长方体。

  教师提问:请用手摸一摸长方体是由什么围成的?

  请用手摸一摸两个面相交处有什么?

  请摸一模三条棱相交处有什么?

  教师板书:面、棱、顶点

  2、参考讨论提纲来研究长方体的特征。

  讨论提纲:

  ①长方体有几个面?面的位置和大小有什么关系?

  ②长方体有多少条棱?棱的位置、长短有什么关系?

  ③长方体有多少个顶点?

  小组讨论,然后完成p28的表格。

  面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。

  棱:12条,相对的4条棱长度相等。

  顶点:8个。

  3、教师:请完整地说一说长方体的特征。

  4、出示长方体框架观察。

  教师提问:框架上的12条棱可以分几组?怎样分?

  相交于一个顶点的三条棱长度相等吗?

  教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  (二)正方体特征。

  1、出示正方体的特征。

  教师提问:看一看这个长方体与原来长方体比较有什么变化?

  (长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。)

  2、对照长方体的特征学生自己研究正方体的特征。

  学生讨论、归纳后,教师板书:正方体

  面:6个完全相同的正方形。

  棱:12条棱长度都相等。

  顶:8个。

  3、学生讨论比较长方体和正方体的特征。

  相同点:面、棱、顶点的数量上都相同;

  不同点:在面的形状、面积、棱的长度方面不相同。

  教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

  (正方体是特殊的长方体)

  教师板书集合图:

  (三)制作长方体。

  制作准备:

  橡皮泥八小团,细棒十二根(分成三组,每组四根长短相同)

  制作过程:

  1.按下图的顺序,逐步搭成一个长方体的架子。

  2.成品如图。

  让学生动手操作,然后说一说在制作的过程中有什么发现。

  三、巩固反馈:

  1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

  2、根据图中数据口答。

  (1)(2)

  (1)长方体的长是()厘米,宽()厘米,高()厘米,12条棱长的和是()厘米。

  (2)这幅图中的几何体是()体,12条棱长的和是()分米。

  (3)如图一个长方体,它的长、宽、高

  分别是9厘米,3厘米和2.5厘米,它上

  面的面长是()厘米,宽()厘米,左

  边的面长()厘米,宽()厘米,相交

  于一个顶点的三条棱长和是()厘米。

  3、判断.正确的在括号里画√,错误的画×。

  (1)长方体的六个面一定是长方形。()

  (2)正方体的六个面面积一定相等。()

  (3)一个长方体(非正方体)最多有四个面面积相等。()

  (4)相交于一个顶点的三条棱相等的长方体一定是正方体。()

  四、课堂总结:

  谁来说一说长方体和正方体的特征和它们之间的关系?

  五、课后作业:

  1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?

  2、完成p29的“做一做”。

  (冀教版)五年级数学教案 长方体和正方体的认识

  长方体和正方体的认识

  教学内容:

  冀教版数学五年级下册第五单元长方体和正方体的认识。

  教学目标:

  1. 知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

  2. 通过动手操作,知道长方体、正方体的不同的展开图,加深对长方体、正方体特点的认识。

  3. 激发学习数学的兴趣,渗透一种转化的'思想,及研究方法的学习,体会学科的价值。

  教学重难点:

  长方体、正方体的特征和长方体、正方体的关系。

  教学设备:

  幻灯片、一个正方体纸盒、一个长方体纸盒、直尺。

  教学过程:

  一 谈话引入

  出示实物图。让学生找出图中的长方体和正方体物体。(幻灯显示)

  师:同学们请看,这些物体你们认识吗?你能从中找出形状是长方体或正方体的实物吗?

  生:墨水瓶的形状是长方体……

  生汇报,教师进行分类。

  说出生活中见到的长方体和正方体物体。

  师:生活中你还见过哪些物体的形状是长方体或正方体?

  生:牙膏盒的形状是长方体,骰子的形状是正方体的。

  生:……

  指名发言要更多倾向于差生。

  二 自主探究

  1.认识面、顶点、棱的特征。

  指出面、棱和顶点。

  师:生活中这样的物体有很多,拿出你准备的长方体,像老师这样摸一摸你有什么感觉?

  生:上面有平平的面,还有边和尖尖的角。

  师:这个平平的面我们就叫做长方体的面、面与面之间的边叫做棱,三条棱相交的点叫做顶点。(也可以试着让学生说一说他们的名称)教师板书。

  拿出正方体物体:你们能指出面、棱和顶点吗?

  再让学生指一指长方体的。

  面的特征。

  师:数一数长方体有几个面?正方体有几个面?

  生:长方体有6个面、正方体有6个面。

  师:你是怎么数的?这些面有多少特征?

  (让学生按照一定的规律来数)

  生:相对的面的面积相等。

  师:你用什么办法验证你的猜测呢?(可以在小组内说一说)

  生用一定的方法验证相对的面的面积相等。

  生:我用算的方法来验证……

  生:我用剪的方法验证,是这样做的……

  生:我用画的方法……

  顶点、棱的特征。

  师:观察用细棒和珠子做成的正方体和长方体。

  师:长方体和正方体分别用了多少根小棒、多少颗珠子?(珠子也就是长方体和正方体的"顶点",所用的小棒就相当于"棱"。)

  生:正方体用了8颗珠子12根小棒,证明正方体有8个顶点,12条棱。

  生:……

  师:说说你是怎么数的?它们的棱各有什么特点呢?

  让学生按照一定的顺序来数。

  整理特征。

  师:刚才我们通过观察找到了长方体和正方体的特征,你能把它们的特征整理在表格中吗?

  名称 面 顶点 棱

  正方体 6个面,所有的面完全相等。 8个顶点 12条棱,所有的棱的长度都相等。

  长方体 6个面,相对的面完全相等。 8个顶点 12条棱,每组4条棱的长度相等。

  学生先自己整理然后在小组内交流。

  2. 探究长方体和正方体的关系。

  师:仔细观察表格,正方体和长方体有哪些相同的地方?哪些不同的地方呢?

  生:正方体和长方体都有……,不同的地方是……

  学生汇报得出:正方体是特殊的长方体。

  认识长、宽、高。

  师:相交于一个顶点有三条棱,这三条棱的长度谁知道叫什么名字呢?你是怎么知道的?

  生:……

  师:拿出你准备的长方体,这样放着谁能说出它的长、宽、高?如果这样放呢?(变换不同的方向说出)

  师:你们能看图说出每个长方体的长宽高分别是多少吗?

  师:你能测量长方体的长、宽、高吗?

  完成练一练第一题。

  师:正方体的棱长有什么特点?那正方体每条棱的长度都叫做正方体的棱长。

  练一练第二题。

  三 巩固新知

  练一练的第三题。

  师:看练一练的第三题,谁能把题读一读,然后回答。

  生:……

  师:前面的面积是多少平方厘米呢?……

  生:……

  总结

  回顾这堂课,你有什么收获?

长方体和正方体的教案11

  教学目标:

  1、知识技能目标:掌握长方体和正方体的特征,理解长方体和正方体的关系。

  2、能力目标:指导启发学生运用观察、测量等方法,探究长方体和正方体的有关特征,开发学生智能。

  3、情感态度目标:通过观察、摆弄实物帮助学生建立起空间观念。

  教具学具:

  教师准备:墨水盒、牙膏盒、魔方、乒乓球等。

  学生准备:边长1厘米的小正方体(每组至少8个)、长方体和正方体实物。

  教学手段:多媒体辅助教学

  教学过程:

  一、导入新课

  师:请同学们来回忆:我们学过了哪些平面图形?(生答)这些图形都是由什么围成的?(线段)。课前老师曾让同学们把数学书最后两页的组合图形纸板沿虚线内折,然后围起来,你围成了什么形体?举起来让大家看看。(长方体和正方体)长方体和正方体与我们学过的平面图形有什么不同?(它们是由面围成的,有一定的厚度。)

  师:像这样由面围成的图形,都占有一定的空间,我们把他们叫做立体图形。比如:(出示实物)墨水盒、魔方、牙膏盒、皮球、灯罩等这些物体的形状都是立体图形。你能不能举出几个形状是长方体或正方体的例子?(学生举例)

  那么长方体和正方体都有哪些特征呢?这节课,我们就来认识长方体和正方体。(板书课题)

  二、探究新知

  1、认识长方体各部分名称

  师:长方体有什么特征呢?要探讨这个问题,首先让我们来认识一下长方体各部分的名称。请同学们拿出准备的长方体学具或实物,用手摸一摸,你摸到了长方体的哪一部分?然后打开书20页,看看你摸到的部分在长方体中叫什么?看谁最先找到答案。(根据学生回答板书:面、棱、顶点)

  师:请同学们放下书,看老师的演示,边看边用手摸摸长方体学具,感觉一下长方体的.面、棱、顶点。(电脑演示长方体的面、棱、顶点)

  2、认识长方体的特征(分组合作学习)

  师:认识了长方体的面、棱、顶点,下面我们就来研究长方体的这几部分各有什么特征?(出示学习提纲):1、长方体有几个面?这些面是什么图形?相对的面面积有什么关系?2、长方体有几条棱?每组相对的棱长度有什么关系?3、长方体有几个顶点?请同学们根据学习提纲自由选择方法合作学习21页内容。看看你用了哪些方法,都学会了什么?(研讨)

  师:谁能把你们的学习结果汇报一下。

  生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。

  师:你有这样的长方体吗?(有,出示)哪是相对的面?有几组?(指实物回答)

  生:长方体相对的面面积相等。

  师:你怎么知道的?

  生:我用剪子把相对的面剪下来比较。(师电脑演示“相对面相等”)

  师:说说棱的特点。

  生:长方体有12条棱。

  师:可以分成几组?

  生:可以分成3组,每组有4条,每组的4条棱长度相等。(教师演示“相对棱相等”)

  师:你用什么办法来证明相对的棱长度相等?

  生1:用尺子量的。

  生2:(出示:长方体棱的框架)如果相对棱不相等,这个长方体就会变形了。

  师:噢,你用的是反证法来说明。

  生:老师我把长方体的棱分成了4组,每组有3条,就是从一个顶点引出的3条棱。

  师:这种分法也是正确的,而且很独特。谁再说说长方体的顶点?(长方体有8个顶点)(演示“顶点”)

  1、认识长方体的长、宽、高

  师:刚才我们把三条棱相交的一点叫做顶点,这也就是说过长方体的一个顶点有三条棱,这三条棱的长度分别叫什么?请同学们看书后回答。

  2、认识长方体直观图

  师:下面请同学们再次拿出长方体学具,将它放在眼前的不同方位,观察:你看到了长方体的几个面?都是什么图形?

  生:(1个、2个、3个)都是长方形的。

  生:不对,从我这里看,它的左面和上面就是平行四边形。

  师:同学们观察的非常细致。(电脑演示直观图)我们在作图时,除了前面和后面外,其它各面都画成平行四边形,但实际上是长方形。(师边说边作图,并强调看不见的棱用虚线来表示)

  3、自学正方体

  师:想一想:如果将长方体的长、宽、高调整,使长、宽、高相等,会得到什么形体呢?(教师演示将长方体变成一个正方体)它也叫立方体。出示魔方:它有什么特征呢?(出示自学提纲):1、正方体有几个面?大小怎样?2、正方体有几条棱?长短有什么关系?3、正方体有几个顶点?请同学们边观察边自学22页。(汇报、板书)

  4、比较二者的异同

  师:同学们观察学具看板书,谁能说说长方体和正方体的有什么相同之处和不同之处。(学生叙述,师用两种色笔分别圈画。)通过以上比较,你发现了什么?(长方体的所有特征正方体都具有,而正方体的特征长方体不一定全有。由此,我们可以得出结论:正方体是一种特殊的长方体。)我们可以用这样的图来表示它们之间的关系。(师演示集合图)

  三、过渡:这节课,我们认识了长方体和正方体的实物与图形,归纳了长方体和正方体的特征,还分析了二者的关系。下面我们来做做练习,检验自己是否对长方体和正方体有了明确的认识。

  四、巩固应用(电脑出示)

长方体和正方体的教案12

  教学内容:

  求一些不是完整六个面的长方体、正方体的表面积

  教学目标:

  1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

  2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲

  教学重点:

  能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

  教学难点:

  求一些不是完整六个面的长方体、正方体的表面积。

  教具运用:

  课件

  教学过程:

  一、复习导入

  师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的.计算方法,请大家试着解决下面的两个问题。(出示课件)

  1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

  2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

  二、新课讲授

  1.教材25页第5题

  (1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

  (2)学生读题,看图,理解题意。

  (3) “上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)

  (4)学生尝试独立解答。

  (5)集体交流反馈。

  方法一:10×12×2+6×12×2=240+144=384 (cm2)

  方法二:(10×12+6×12)×2=(120+72)×2=384 (cm2)

  答:这张商标纸的面积至少需要384平方厘米。

  2.教材26页第8题

  (1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)

  (2)学生读题,看图,理解题意。

  (3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)

  (4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

  3×3×5=9×5=45 (dm2)

  答:制作这个鱼缸时至少需要玻璃45平方分米。

  三、课堂作业

  完成教材第26页练习六第9、10题。

  四、课堂小结

  提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?

  五、课后作业

  完成练习册中本课时练习。

  板书设计:

长方体和正方体的教案13

  一、教学目的

  1.通过学生的自主发现掌握长方体的特征,会辨认长方体。

  2.培养学生动手操作的能力,观察能力和抽象、概括能力。

  3.精心组织学生活动,激发学生学数学的兴趣,体现数学充满着探索与创新,感受数学的严谨性以及数学结论的确定性。

  二、教学重点

  掌握长方体的特征。

  三、教学难点

  建立立体图形的空间观念。

  四、教具准备

  教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。

  学具:长方体和正方体的纸盒。

  五、教学过程

  1.分类、操作、引出新知

  (1)教师出示一幅图:你能将它们根据一定标准分类吗?

  (2)师生共同概括:像粉笔盒等长方体和正方体,和排球、土豆等都占据一定空间把它们称为立体图形。

  请同学们说说在日常生活中哪些物体的形状是长方体。

  (板书:长方体的认识)

  长方体我们从哪些方面来认识呢?

  (3)拿出一块橡皮,横切一刀,露出一个面,让学生触摸,并说说感觉,教师明确这部分叫面。再切一刀,再让学生触摸两面相交的线,说出感觉,明确这在立体图形中叫做棱。什么叫棱?

  将橡皮的一个面扣放在桌面上,与两个面垂直再切一刀,触摸三条棱相交的点,说出感受,明确它叫顶点。什么叫顶点?

  (4)找实物指出它的长、宽、高。

  今天,我们就从面、棱、顶点三个方面来学习长方体的认识。

  2.实践操作,探究新知

  (1)认识长方体的特征。

  那么长方体的特征是什么?请同学们自己数一数、量一量、比——比后,完成表格。

  (提示:放手让学生运用各种感官和学习用具独立探究、自主发现面、棱、顶点的知识。)

  (2)教师巡回指导,指导要点如下:

  ①数面、棱、顶点时,如何数比较科学。

  ②采用多种学习方法。

  (提示:如测量、计算、比较及用身体某个部分去接触面、棱、顶点等。)

  ③独立填写“我的发现”一表。

  面

  棱长

  顶点

  (学生在学习时,采用动手实践,自主探索,多种学习方法,既学到了知识又培养了能力。)

  汇报:师生共同归纳。

  (除了各部分的数量外,还要引导学生认识。)

  a.按棱的长度可分为3组,每组内4条棱平等且长度相等;

  b.相交于一个顶点的棱有3条,长度不一定相等;

  c.相交于一个顶点的3条棱的长度分别叫长方体的长、宽、高;

  d.长方体的形状、大小是由长方体的长、宽、高决定的;

  e.面的.特殊情况。

  完成做一做,反馈订正。

  小结。

  五、课堂练习

  拿一个火柴盒量一量,它的长、宽、高各是多少?然后说一说每个面的长和宽是多少?计算棱长总和。

  综合练习

  (1)长方体的六个面一定是长方形。 ( )

  (2)长方体的三条棱长的长度分别叫做长方体的长、宽、高。 ( )

  (3)有六个面、十二条棱、八个顶点的形体一定是长方形。 ( )

  (4)长方形纸是长方形不是长方体。 ( )

  (5)有6个面,且6个面都是长方形,它一定是长方体。 ( )

  实践与应用

  (1)一个长方体的棱长总和是96厘米,已知长是8厘米,高是7厘米,宽是多少厘米?

  (2)用一根168厘米的铁丝,焊接成一个长方体教具,长20厘米,宽12厘米,它的高是多少厘米?

  (3)用一根长100厘米的铁丝,做成一个长·9厘米,宽6厘米,高4厘米的长方体后,还剩多少厘米?

长方体和正方体的教案14

  教学目标

  1.理解并掌握长方体和正方体体积的计算方法.

  2.能运用长、正方体的体积计算解决一些简单的实际问题.

  3.培养学生归纳推理,抽象概括的能力.

  教学重点

  长方体和正方体体积的计算方法.

  教学难点

  长方体和正方体体积公式的推导.

  教学用具

  教具:1立方厘米的立方体24块,1立方分米的立方体1块.

  学具:1立方厘米的立方体20块.

  教学过程

  一、复习准备.

  1.提问:什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

  教师提问:拼成了一个什么形体?(长方体)

  这个长方体的体积是多少?(4立方厘米)

  你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

  如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

  谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

  来学习怎样计算长方体和正方体的体积.

  板书课题:长方体和正方体的体积

  二、学习新课.

  (一)长方体的体积

  1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

  出的长方体的长、宽、高.

  2.学生汇报,教师板书:

  教师提问:这些长方体有什么共同点?(体积相等)

  不同点?(数据不同)

  为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

  12个1立方厘米)

  教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

  立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

  3.

  第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

  一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

  第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

  一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

  第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

  一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

  思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

  方体的体积有没有关系?是什么关系?

  (长方体的体积正好等于它的长、宽、高的乘积)

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书: V=abh.

  出示投影图:

  4.自学例1.

  一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

  7×4×3=84(立方厘米)

  答:它的体积是84立方厘米.

  (二)正方体体积.

  1.

  教师提问:此时的长,宽,高各是多少?

  变成了什么图形?

  这个正方体的体积可以求出来吗?

  2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

  棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

  3.归纳正方体体积公式.

  教师板书:正方体体积=棱长×棱长×棱长.

  用V表体积,a表示棱长

  V=a·a·a或者V=

  4.独立解答例2.

  光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  (分米3)

  答:体积是125立方分米.

  (三)讨论长方体和正方体的体积计算方法是否相同.

  学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

  b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

  三、巩固反馈.

  1.口答填表.

  ① ( ) 2.判断正误并说明理由.

  ② ( )

  ③一个正方体棱长4分米,它的体积是: (立方分米)( )

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

  四、课堂总结.

  今天这节课我们学习了新知识?谁来说一说?

  五、课后作业.

  1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2。7千克,这块石料重多少千克?

  六、板书设计教学目标

  1.理解并掌握长方体和正方体体积的计算方法.

  2.能运用长、正方体的体积计算解决一些简单的实际问题.

  3.培养学生归纳推理,抽象概括的能力.

  教学重点

  长方体和正方体体积的计算方法.

  教学难点

  长方体和正方体体积公式的推导.

  教学用具

  教具:1立方厘米的立方体24块,1立方分米的立方体1块.

  学具:1立方厘米的立方体20块.

  教学过程

  一、复习准备.

  1.提问:什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

  教师提问:拼成了一个什么形体?(长方体)

  这个长方体的体积是多少?(4立方厘米)

  你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

  如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

  谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

  来学习怎样计算长方体和正方体的体积.

  板书课题:长方体和正方体的'体积

  二、学习新课.

  (一)长方体的体积

  1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

  出的长方体的长、宽、高.

  2.学生汇报,教师板书:

  教师提问:这些长方体有什么共同点?(体积相等)

  不同点?(数据不同)

  为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

  12个1立方厘米)

  教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

  立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

  3.

  第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

  一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

  第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

  一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

  第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

  一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

  思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

  方体的体积有没有关系?是什么关系?

  (长方体的体积正好等于它的长、宽、高的乘积)

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书: V=abh.

  出示投影图:

  4.自学例1.

  一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

  7×4×3=84(立方厘米)

  答:它的体积是84立方厘米.

  (二)正方体体积.

  1.

  教师提问:此时的长,宽,高各是多少?

  变成了什么图形?

  这个正方体的体积可以求出来吗?

  2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

  棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

  3.归纳正方体体积公式.

  教师板书:正方体体积=棱长×棱长×棱长.

  用V表体积,a表示棱长

  V=a·a·a或者V=

  4.独立解答例2.

  光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  (分米3)

  答:体积是125立方分米.

  (三)讨论长方体和正方体的体积计算方法是否相同.

  学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

  b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

  三、巩固反馈.

  1.口答填表.

  ① 2.判断正误并说明理由.

  ③一个正方体棱长4分米,它的体积是: (立方分米)

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.

  四、课堂总结.

  今天这节课我们学习了新知识?谁来说一说?

  五、课后作业.

  1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2。7千克,这块石料重多少千克?

  六、板书设计

长方体和正方体的教案15

  教学要求

  在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。

  教学重点

  理解底面积。

  教学用具

  投影仪

  教学过程

  一、创设情境

  1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

  2、填空。

  (1)长、正方体的体积大小是由确定的`。

  (2)长方体的体积=。

  (3)正方体的体积=。

  二、探索研究

  1.观察。

  (1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

  结论:长方体的体积=底面积×高

  正方体的体积=底面积×棱长

  2.思考。

  (1)这条棱长实际上是特殊的什么?

  (2)正方体的体积公式又可以写成什么?

  结论:长方体(或正方体)的体积=底面积×高,用字母表示:

  V=sh

  三、课堂实践

  1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

  2.做第35页的“做一做”的第2题。

  首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

  3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

  四、课堂

  学生今天学习的内容

  五、课后实践

  做练习七的第10、11、12题。

【长方体和正方体的教案】相关文章:

《长方体和正方体体积》教学反思(精选18篇)04-06

大班数学正方体与长方体教案及反思09-25

《长方体和正方体的认识》教学反思范文(通用15篇)03-11

《长方体和正方体表面积》教学反思范文(精选15篇)03-10

《长方体和正方体的表面积》数学教学反思(通用15篇)03-03

大班数学教案:认识正方体09-29

正方体作文08-24

《长方体的认识》教案设计(通用11篇)10-05

《长方体的认识》教学设计06-26

《上和下》教案09-08