小数的意义教案

时间:2023-01-05 09:08:41 教案 投诉 投稿

小数的意义教案 (15篇)

  在教学工作者开展教学活动前,编写教案是必不可少的,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?下面是小编精心整理的小数的意义教案 ,欢迎大家借鉴与参考,希望对大家有所帮助。

小数的意义教案 (15篇)

小数的意义教案 1

  教学目标

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义.

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  (三)培养学生的观察、分析、推理能力.

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点.

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(——)元=( )元

  (2)3角=(——)元=( )元

  (3)9分=(——)元=( )元

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数.(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外,在量屋子的高度时,它不够整米时,以米作单位也常用小数表示.

  2.教学小数的意义.

  (1)利用旧知识继续研究.

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1

  是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示.

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺.提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是

  3分米是多少米?用分数、小数怎样表示?

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示.

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把1米平均分成100份,1份是1厘米,写

  怎样把7厘米写成以米作单位的分数和小数?

  启发学生想:15厘米怎样写成以米作单位的分数和小数? 经小组

  第一位写1.所以15厘米是0.15米.

  明确把1米平均分成100份,一份或几份都可以用两位小数表示.

  ③把1米平均分成1000份,1份在尺子上是多少?(1毫米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001.

  9毫米、63毫米以米作单位写成小数分别是多少米?

  63毫米是0.063米.

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数.

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成IO00份,1份或几份可以用三位小数表示……)

  (3)启发学生概括小数的意义.

  启发性提问:

  ①上面例子都是把1米平均分成多少份?(10份,100份,1000份)

  ②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之几,千分之几)

  所以相邻两个单位间的进率也是10.

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数.

  小数的计数单位是十分之一、百分之一、千分之—……,分别写作0.1,0.01,0.001…等.

  阅读课本:95页结论.

  反馈:95页“做一做”.

  订正时说明意义,计数单位.

  (4)强化概念.

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题.

  2.填空(投影).

  3.判断下面各题是否正确?为什么?

  (四)作业

  练习二十第1~3题.

  课堂教学设计说明

  学生在第七册中已初步学习了小数,本节课使学生进一步明确了小数的产生,理解小数的意义,小数与分数的联系,小数的计数单位,从而对小数概念有更清楚的认识.

  教学小数的意义分两段进行.

  第一段,理解小数的意义,分两个层次.第一层利用日常生活实例和学生已有的知识经验,引导学生认识小数;第二层引导学生观察米尺的刻度,把1米平均分成10份、100份、1000份……,其中的1份或几份用一位小数,两位小数、三位小数……表示,使学生对小数的.认识深入一步.

  第二段:抽象概括、明确小数的意义.

  通过一系列的启发提问,引导学生概括出小数的本质特征,使学生进一步掌握分数、小数的联系及其所表示的意义,掌握小数的计数单位及相邻单位间的进率.

  练习设计围绕重点,巩固概念,并针对易错、易混题,让学生在正误对比中加深对知识的理解,同时达到提高学生思维能力的目的.

  板书设计

  小数的意义

  1米=10分米

  =100厘米

  =1000毫米

  把1米平均分成10份,每份长1分米.

  把1米平均分成100份,每份长1厘米.

  把1米平均分成1000份,每份长1毫米.

  一位小数表示十分之几,计数单位是0.1

  两位小数表示百分之几,计数单位是0.01

  三位小数表示千分之几,计数单位是0.001

  相邻两个计数单位间的进率都是10.

小数的意义教案 2

  教学内容:

  人教版小学数学四年级下册第4单元第32页。

  教学目标

  1.理解和掌握小数的意义。

  2.理解整数、小数、分数之间的联系。

  教学重点:理解和掌握小数的意义。

  教学难点:认识小数的计数单位。

  教学过程

  一、展示生活中的小数

  师:同学们,我们在生活中经常会看到小数的存在,你能举几个例子吗? (学生回答)

  我们一起来看,教室里有几个同学在进行测量。但是,他们测量的一边长1米,但是另一边不够1米,用米做单位,不够1米那应该怎么办呢?这时候,就可以用小数来表示了。

  二、创设情境,导入新课:

  这些数都是什么数?

  生:小数。

  师:小数是怎么产生的呢?

  在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。

  揭示课题:小数的意义。

  关于小数你想知道些什么?今天我们继续来学习课本中的新知识:“小数的意义”。

  三、探究新知:

  1.提出探究问题,引出小数的性质。

  我们把1米平均分成10份,每份用分数表示是多少米?

  每份用分数表示是米?

  1-1. 反馈交流。请学生结合图说明自己的想法。

  师:米还可以写成0.1米。这样我们就得到了一个小数0.1米。

  师:0.1米是怎样得到的?谁来说一说。

  生:把1米平均分成10份,每份用分数表示是米,用小数表示就是0.1米。

  箭头指向30的地方怎么表示? 0.3米是怎样得到的?

  我们可以看出把整数1平均分成10份,每一份是0.1, 3份是0.3,用分数表:。

  0.3的计数单位是0.1,的计数单位是。所以0.3表示3个0.1

  同理得出:指向7的箭头,用分数和小数分别怎么表示?

  把整数1平均分成10份,每一份是0.1, 7份是0.7,用分数表:。0.7表示7个0.1

  1-2.抽象概括:小数是分数的另一种表示形式。分母是10的分数可以用一位小数表示。一位小数的计数单位是十分之一,也写作0.1。

  2-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成100份,也用小数来表示吗?

  师:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。

  师:刚才0.01米是怎样得到的?谁来说一说。

  生:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。

  箭头指向4的地方怎么表示?0.04米是怎样得到的?

  我们可以看出把整数1平均分成100份,每一份是0.01, 4份是0.04,用分数表:。0.04的计数单位是0.01,的计数单位是。所以0.04表示4个0.01

  同理得出:指向8箭头,用分数和小数分别怎么表示?

  把整数1平均分成100份,每一份是0.01, 8份是0.08,用分数表:。0.08表示8个0.01

  2-2.抽象概括::小数是分数的另一种表示形式。分母是100的分数可以用两位小数表示。两位小数的计数单位是百分之一,也写作0.01。

  3-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成1000份,也用小数来表示吗?

  师:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。

  师:刚才0.001米是怎样得到的?谁来说一说。

  生:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。

  箭头指向6的地方怎么表示? 0.006米是怎样得到的'?

  我们可以看出把整数1平均分成1000份,每一份是0.001, 6份是0.006,用分数表:。0.006的计数单位是0.001,的计数单位是。所以0.006表示6个0.001

  3-2.抽象概括:小数是分数的另一种表示形式。分母是1000的分数可以用三位小数表示。三位小数的计数单位是千分之一,也写作0.001。

  刚才我们分的是一米,用整数“1”来表示,平均分成10份、100份、1000份......这样的一份或几份是十分之几、百分之几、千分之几......实际应用中,可以用小数来表示。像0.1、0.2、0.01、0.52、0.625等都是小数。

  5、各部分名称:

  (以0.625为例来说明)小数中的小圆点“.”叫做小数点。小数点右边第一位是十分位,十分位上2表示2个0.1,3表示3个0.1,因此十分位上的计数单位是0.1,也可以说成是十分之一;小数点右边第二位是百分位,计数单位是百分之一(0.01);小数点右边第三位是千分位,计数单位是千分之一(0.001); 。

  归纳:每相邻两个计数单位之间的进率是10。

  课堂小结:

  今天你有什么收获?

  1.小数的计数单位是十分之一、百分之-一、 千分之一......分别写作0.1、0.01、 0.001......。

  2.小数中, 每相邻两个计数单位间的进率是10。

  3.十分之几是一位小数,百分之几是两位小数,千分之几是三位小数。

小数的意义教案 3

  教学内容:教科书第76页的例1、例2,第76页做一做中的题目和练习十八的第1-2题。

  教学目的:

  1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  2、培养学生的迁移类推的能力。

  教学重点:初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  教学难点:培养学生的迁移类推的能力。

  教学过程

  一、复习

  1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克.两个小队一共采集了多少克?

  让学生先解答,再说一说整数加法的意义和计算法则。

  2.笔算。

  4.67+2.5=6.03+8.47=8.41-0.75=

  让学生列竖式计算,指名说一说自已是怎样算的,并注意检查学生竖式的书写格式是否正确。

  二、学习新知

  1、学习例1。

  (1)通过旧知识引出新课.

  教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例1让学生读题;理解题意。

  (2)引导学生比较整数加法和小数加法的意义。

  教师:例1与复习中的第1题有什么相同的`地方?例1应该用什么方法计算?为什么要用加法算?

  引导学生通过比较说出从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算,从例1可以看出小数加法的意义和整数加法的意义相同,也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算.

  (3)引导学生理解小数点对齐的道理。

  教师板书横式以后,让学生说一说怎样写竖式,并提出以下问题进行讨论

  (1)为什么要把小数点对齐?

  (2)整数加法应该怎样算?

  然后让学生计算,算完后接着讨论:

  (3)得数7.810末尾的0怎样处理?能不能去掉?为什么能去掉?

  2.让学生做第76页做一做中的题目。

  让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。

  3.引导学生比较小数加法和整数加法的计算法则。

  教师:小数加法与整数加法在计算上有什么相同的地方?启发学生说出小数加法和整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐。

  4.学习例2。

  (1)引导学生通过比较得出小数减法的意义。

  教师:例2的条件和问题与例1比有什么变化?例2的数量关系是什么?启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数,求第二小队采集的千克数;

  可以看出小数减法也是已知两个加数的和与其中的一个加数;求另一个加数的运算,所以它的意义与整数减法的意义是相同的。

  (2)利用知识迁移使学生理解小数点对齐的算理。

  让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐。

  然后教师把千克数改写成克数并列出竖式,提问:个位上是几减几?接着让学生看小数减法竖式,提问:被减数千分位上没有数计算时怎么办?利用小数的性质使学生理解被减数千分位上没有数可以添0再减,也可以不写0,把这一位看作0来计算,以后在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。

  5.比较小数减法与整数减法的计算法则。

  让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数加法与整数加法在计算上的关系是一样的。

  6、小结。

  教师:通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法则,齐读一遍。

  7、做第78页最上面做一做中的题目。

  订正时,让学生说一说是怎样计算并验算的。

  三、巩固练习

  做练习十八的第1-2题。

  1.做第1题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:你是根据什么来写减得的差的?使学生加深对小数减法的意义和加减法关系的认识。

  2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时,针对学生易出错的地方重点说一说。

  板书设计:小数的加法和减法

  例1:少先队采集中草药,第一小队采集了3.735千克,第二小队采集了

  4.075千克,两个小队一共采集了多少千克?

  3.735+4.075=7.81(千克)

  答:一共采集了7.81千克。

  例2:少先队采集中草药,两个小队一共采集了7.81千克。第一小队采集了3.735千克,第二小队采集多少千克?

  7.81-3.735=4.075(千克)

  答:第二小队采集了4.075千克。

小数的意义教案 4

  学生填完结果并订正

  第二教时

  2、师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好,老师提供两个大小一样的正方形,一张数位顺序表)

  3、生1:在两个大小一样的正方形里涂色比较。

  (2)连线。把相等的数用直线连起来。

  第五教时

  第六教时

  反馈:

  第九教时

  第十教时

  第十二教时

  教学内容:教科书P78~79的内容。

  教学目标:

  1、使学生通过整理和复习,弄清本单元学习了哪些知识,更牢固地掌握小数的意义和性质。

  教学目的:

  教学重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点、数大小变化的'规律。

  教学难点:用“四舍五入”法按要求求出小数近似数。

  教学过程:

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做整理和复习第1题(

  (1)学生在书上填写,集体订正。说一说这些小数的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.1 21

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么

  (3)、做整理和复习第2题。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做整理和复习第3题。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700 521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100 209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  (3)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (4学生练习,集体订正。

  (5)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是(

  )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“>”、“<”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

小数的意义教案 5

  [教学内容] 小数的意义(第2-5页)

  [教学目标]

  1、结合具体情境,体会生活中存在着大量的小数。

  2、通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义,会正确读写小数。

  [教学重、难点] 通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。

  [教学准备] 学生、老师准备计数器。

  [教学过程]

  一、生活中的小数

  (事先布置学生找一找生活中的小数)让学生说说生活中除了某些商品的`价格用到小数外,还在哪些地方见到过小数。

  结合树上的例子让学生尝试用自己的语言说明在每个情境中消失表示的是什么,由此激发学生进一步学习小数意义的兴趣。

  二、小数的意义

  1、自学小数的意义(看书第3页)

  2、小组交流

  3、汇报:出示正方形,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。

  4、以1米为例结合具体的数量理解小数

  把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。

  5、归纳小数的意义

  通过学生的讨论归纳出小数的意义。

  三、小数部分的数位及读写:

  1、小数部分的数位及数位间的进率

  先复习整数部分的数位,再介绍小数部分的数位,一位小数是十分之几,小数点右边的第一位是十分位;两位小数是百分之几,小数点右边的第二位是百分位;三位小数是千分之几,小数点右边的第三位是千分位。

  在计数器的各位上拨3个珠子,说一说各表示多少,体会数位间的进率。

  2、小数的读写

  让学生试读,注意提醒学生小数部分的读法与整数部分不同。

  3、写一写、读一读、说一说。

  对照计数器写出小数,并读一读,说出各数位上的数表示什么。让学生先独立完成,再小组交流。

  四、数学游戏:

  通过数和形的对应,加深对各数位间关系的理解。

  五、作业:

  第5页1-4

  [板书设计]

  小数的意义

  千 百 十 个 十 百 千

  位 位 位 位 ?分 分 分 数位

  位 位 位

  整数部分 小数点小数部分

小数的意义教案 6

  学习目标:

  1.体会小数所表示的意思,理解小数的意义。

  2.理解和掌握小数意义。

  教学重点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学难点:

  通过练习,体会小数的`意义,知道小数所表示的含义。

  教学准备:

  学生、老师准备计数器、小黑板

  教学方法:

  小组合作学习交流法

  教学过程:

  一、情景导入,呈现目标

  1.你的身高是多少?你会用小数来描述吗?

  2.你都在哪里见过小数?说一说,并写出几个你见过的小数来。

  二、探究新知(自学后完成下面问题)

  1.把1元平均分成十份,其中一份用分数表示是( )元,用小数表示是( )元。十分之三表示其中( )份,用小数( )表示。

  2.把1元平均分成100份,其中的一份用分数表示是( )元,其中的37份用分数( )表示,用小数( )表示。

  3. 1.11表示( )元( )角( )分。

  三、合作探究,当堂训练

  1. 用数表示下面各图中得涂色部分?(课本第2页第2题)

  2. 想一想填一填?(学生独立完成)

  3. 自己画一方格纸,并画出0.1、0.5、0.6?

  4.找一找生活中的小数,小组交流,选代表汇报。

  四、精讲点拨(根据学生出现的问题进行精讲。)

  五、学习收获,自我总结

  1.小组评价:你认为第几小组表现最棒,为什么?

  2.自我总结:通过今天的学习,我学会了 ,以后我会在______________ 方面更加努力的。

  板书设计:

  小数的意义

小数的意义教案 7

  教学内容

  小数的意义

  教学目标

  1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

  2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

  3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

  重点难点

  重点:体会十进制分数与小数的关系,初步理解小数的意义。

  难点:能够正确进行十进制分数与小数的互化。

  教具准备

  课件、正方形纸2张。

  教学过程

  一、情境导入。

  1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

  生:好。

  2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

  铅笔:元一支圆珠笔:元一支

  猪肉:元一斤黄瓜:元一千克

  教师:上面这些物品的价格有什么特点?

  学生:都不是整元数。(都是小数。)

  教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?

  学生依次读出:零点一、一点一一、九点五、五点九六。

  师:大家知道这些小数是几位小数吗?

  生:......

  2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  生:身高体重跳高跳远

  小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

  板书:小数的意义

  二、自主探究。

  1.一位小数的意义

  a.那么多的小数,我们今天就从开始入手研究。

  b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说表示什么意思?

  学习单元角米分米网格图

  c.生反馈表示什么意思。

  d.思考:我们选用的图都不一样,为什么都可以表示?

  你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10角,元就是把1元平均分成10份,它表示其中的`一份,所以1元的也可以写成元。

  生2:1米=10分米,米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成米。

  生:......

  2.两位小数的意义

  师:同学们真了不起,都善于思考问题,勇于探究,你们又是什么意思呢?

  a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说表示什么意思?

  学习单元分米厘米网格图

  b.生反馈表示什么意思。

  c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10分,元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成元。

  生2:1米=100米,米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成元。

  生:......

  3.三位小数的意义

  我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()

  小数我们写的完吗?其实呀,小数的位数越多就分的越细。

  大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

  三、巩固练习

  教师:可以表示成分数吗?可以表示成小数吗?

  学生:分别是和。

  教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

  同学们在小组内进行游戏交流,教师巡视指导。

  四、探究结果报告。

  教师:通过刚才游戏,你们发现了什么?(出示课件)

  师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作、、……

  1.像、这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

  2.像、这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

  3.像、25这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

  四、教师小结。

  小数中,每相邻两个计数单位间的进率都是10。

  五、课外拓展。

  分享最美数字

小数的意义教案 8

  设计说明

  《数学课程标准》指出:数学教学必须激发学生的兴趣,调动学生的积极性,引发学生的思考,同时要注重培养学生良好的学习习惯,掌握有效的学习方法。针对这一点,本节课的教学设计如下:

  1、重视学生的实践操作。

  在教学中通过估一估、量一量、想一想、说一说等实践活动,探究怎样把用“厘米”作单位的数改写成用“米”作单位的数和把用“克”作单位的数改写成用“千克”作单位的数,培养学生的估测意识、空间观念和动手操作能力,使学生体会到成功的喜悦。

  2、渗透转化思想,积累数学活动经验。

  数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括。在把低级单位的数转化成高级单位的数时,先用分数的形式表示,再转化成小数的形式,渗透了转化思想。转化思想有助于学生学习新的数学知识,分析和解决新的数学问题及积累数学活动经验。

  课前准备

  教师准备 PPT课件

  学生准备 直尺

  教学过程

  ⊙激趣导入

  1、导入:同学们,你们还记得1米有多长吗?用手势表示一下(学生用手势表示1米的长度),再看看我们使用的黑板有多长(学生估测黑板的长度)。要想准确地表示它的长度,需要进行测量。

  2、量一量。

  (1)以小组为单位测量黑板的长度。

  (2)汇报结果。

  组1:黑板长2米多。

  组2:量出2米后还多出36厘米。

  组3:量出是2.36米。

  3、交代学习目标,引出新课。

  师:小数在我们的生活中随处可见,它可以帮助我们解决生活中的问题,有着重要的作用,这节课我们继续学习小数的意义。

  设计意图:通过让学生测量黑板的长度,激发学生的学习兴趣,使学生进一步体会小数的.意义。

  ⊙探究新知

  (一)探究把低级单位的数转化成高级单位的数的方法。

  1、引导学生观察上面的结果,你有什么发现或疑问?

  (学生讨论、交流并汇报)

  2、小组合作学习:剩余的36厘米怎样用“米”作单位来表示呢?

  3、交流汇报,说一说自己是怎么考虑的,在探究中运用了什么思想方法。

  4、归纳学生的方法。

  (1)多出36厘米,把1米平均分成100份,1份就是1厘米,即1米=100厘米,1厘米=米。36厘米=米,也就是0.36米。

  (2)在把36厘米转化成0.36米的过程中,先用分数的形式表示,再转化成小数的形式。

  5、师生共同总结把低级单位的数转化成高级单位的数的方法:根据两个单位间的进率,先把低级单位前的数改写成分母是10,100,1000,…的分数,再把分数改写成小数的形式,并在后面加上所要化成的高级单位的名称。

  6、尝试练习。

  12克=千克=( )千克

  500克=千克=( )千克

  (学生在小组内讨论,并汇报结果)

  设计意图:通过估一估、量一量、想一想、说一说等实践活动,既能使学生获取新知,又能培养学生的分析、推理和概括能力,还使学生感受到合作的快乐,从而使学生学习数学的兴趣更加浓厚。

小数的意义教案 9

  教学目标

  1.使学生理解.

  2.初步学会较容易的除法是整数的小数除法的计算方法.

  教学重点

  使学生学会除数是整数的小数除法的计算方法.

  教学难点

  理解商的小数点要和被除数的小数点对齐的道理.

  教学过程

  一、铺垫孕伏

  (一)列式计算:一筒奶粉500克,3筒奶粉多少克?

  教师板书:500×3=1500(克)

  (二)变式:

  1.3筒奶粉1500克,一筒奶粉多少克?

  2.一筒奶粉500克,几筒奶粉1500克?

  教师板书:1500÷3=500(克)

  1500÷500=3(筒)

  (三)小结:整数除法是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  二、探究新知

  (一)理解.

  1.课件演示:

  2.小结:与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  3.练习:根据,写出下面两个除法算式的商.

  1。8×0。5=0。9

  0。9÷0。5= 0。9÷1。8=

  (二)教学小数除法的计算方法.

  例1.服装小组用21。45米布做了15件短袖衫,平均每件用布多少米?

  1.理解题意,并列式:21。45÷15

  2.小组讨论,理解算理,尝试计算.

  3.课件演示:除数是整数的小数除法(例1)

  4.练习:68。8÷4 85。44÷16

  5.总结计算法则:除数是整数的小数除法,按照整数除法的`法则去除,商的小数点要和被除数的小数点对齐.

  三、全课小结

  这节课你都学到了哪些知识?除数是整数的小数除法和整数除法有什么联系?又有什么区别?

  四、课堂练习

  (一)计算下面各题.

  42。84÷7 67。5÷15 289。8÷18

  (二)只列式不计算.

  1.两数的积是201。6,一个因数是72,另一个因数是多少?

  2.把86。4平均分成24份,每份是多少?

  3.64。6是17的多少倍?

  (三)判断下面各题是否正确.

  五、布置作业

  (一)计算下面各题.

  101。7÷9 79。2÷6 716。8÷7

  (二)一台拖拉机5小时耕5。55公顷地,平均每小时耕地多少公顷?

  六、板书设计

  例1.服装小组用21。45米布做了15件短袖衫,平均每件用布多少米?

小数的意义教案 10

  教学目标:

  1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

  2.经历探索小数意义的过程,培养归纳能力。

  3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

  教学重难点:理解小数的意义和小数的计数单位。

  教具准备:米尺、课件。

  教学过程:

  一、回顾导入

  1.读一读信息(课件出示)想一想,这样写符合实际吗?

  (1)老师的体重是565千克。

  (2)小明的身高是145米。

  (3)笑笑的数学测验成绩是935分。

  2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?

  3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。

  二、探索新知识

  1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?

  指名测量,其他同学观看。

  2.汇报测量结果。

  3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。

  4.出示米尺图。

  上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?

  5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?

  十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

  6.出示米尺。

  指着板书:有什么新发现?学生汇报。

  7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

  让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。

  学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。

  8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

  小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

  进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。

  三、巩固练习

  第一层练习:分数小数互化。

  第二层练习。

  1.填空

  (1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。

  (2)1里面有( )个0.1和( )个0.01。

  (3)0.52是由( )个0.1和( )个0.01组成的。

  2.判断:

  (1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )

  (2)1毫米写成小数是0.01米。 ( )

  第三层练习: 猜数游戏。

  小明和小红的数各是多少?

  四、总结

  师生共同回顾本节课内容。

  反思:

  “小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。

  小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的`概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。

  在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。

  引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。

  最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。

  反思这节课,也有一些地方预设的不够充分:

  1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。

  2.练习量较大,没有考虑学生实际。

  “课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

小数的意义教案 11

  教学目标:

  1、初步理解小数与分数之间的内在联系,明确一位小数用十分之几来表示,两位小数用百分之几来表示,三位小数用千分之几来表示。掌握相邻两个计数单位间的进率。

  2、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。

  教学重点:

  理解和掌握小数的意义。

  教学难点:

  理解小数的意义。

  教学过程:

  一、导入课题

  三年级我们已经初步认识了小数,今天我们继续研究小数的意义。板书课题。

  二、小数的意义

  板书0.1 0.01猜猜第三个写什么?0.001你们很会推理。

  像0.1,小数点后面只有一位数,就是一位小数。老师先写了一个一位小数,又写了一个两位小数,最后写了一个...?

  板书一位小数两位小数三位小数

  1、一位小数

  这节课咱们要认识小数的意义,就从0.1开始研究。把一个正方形看做1,0.1该怎样表示呢?请你试着画一画、涂一涂,在自己的正方形纸上表示出0.1。

  出示学生作品:有错的,有对的。

  到底哪位同学的意见是正确的呢?我们能用原来的知识来说明其中的道理吗?

  学生:把正方形纸看成一元,0.1元就是一角,一元里面有10个一角,所以应该把正方形纸平均分成10份,其中的一份就是0.1。

  大家的意见统一了,谁来说说0.1究竟表示什么?

  小结:把1平均分成10份,其中的一份是十分之一,也就是0.1。

  板书:=0.1

  那这样的2份、3份、5份呢?板书:=0.2 =0.3 =0.5

  同学们观察一下,刚才我们看到的这些小数都是...?一位小数

  师:你能说一说一位小数表示的意思了吗?

  小结:一位小数表示十分之几。

  一份,也就是十分之一,叫做一位小数的计数单位,写作0.01

  板书:计数单位:十分之一写作:0.1

  0.2里面有几个0.1?0.3呢?0.5呢?

  出示课件:涂色部分是多少?(0.9)0.9里面有几个0.1?

  再添上1个0.1是多少?(10个0.1)

  课件演示:10个0.1是1,1里面有10个0.1。

  2、两位小数。

  (1)第二个小数0.01表示什么意思?还是那张纸,看做1,如果想表示0.01,想一想你会怎么做呢?

  课件展示:正方形用来表示1,0.01就表示百分之一。

  涂色部分是0.01,空白部分呢?0.99表示什么?

  0.99里面有几个0.01?

  请你在自己的方格纸上涂出自己喜欢的两位小数,想一想它表示什么,里面有几个0.01?

  (2)学生自由活动,点名回答。

  (3)两位小数有什么特点?

  小结:两位小数表示百分之几,计数单位是百分之一,写作:0.01。

  出示课件:涂色部分表示多少?(0.09)里面有几个0.01?再添上1个0.01是多少?演示,板书:10个0.01是0.1,0.1里面有10个0.01

  3、认识三位小数。

  (1)根据一位小数和两位小数的特点,你能总结三位小数的特点吗?

  让学生自己归纳出三位小数。三位小数可以表示为千分之几,计数单位是千分之一,写作:0.01。

  4、一位小数、两位小数、三位小数计数单位之间的`关系可以用一幅图表示。

  课件演示:一个正方体平均分成10份,其中一份是十分之一,也就是0.1;继续平均分成10份,其中一份占正方体的百分之一,也就是0.01;还能平均分成10份,一份占正方体的千分之一,也就是0.001。

  5、数轴上认识小数

  出示课件:我们在正方形和正方体上找到了小数,数轴上的小数你能找到吗?

  (1)、课件演示:0.1;9.1数轴下面的数字变了,小数就发生了变化。

  (2)、在数轴上找到3.14,3.141

  三:知识眼延伸

  3.14这个小数,小数点后面还有很多的数,这是我们六年级要学习的圆周率。

  课件:

  1、介绍圆周率

  2、介绍0.618

  四:课堂总结:

  如果这节课满分是1,你会为自己的表现打多少分呢?

小数的意义教案 12

  [教学目标]

  1.理解小数乘以整数的意义,掌握它的计算方法。

  2.通过运用迁移的方法学会新知识,培养类推的能力。

  3.培养学生认真观察、善于思考的学习习惯。

  [教学过程]

  本节课分四个环节进行。

  课前谈话:同学们已学习了小数加法和减法的意义及计算方法,这学期要在这个基础上,继续学习小数乘法和除法的意义及计算方法等知识。今天,我们先学习小数乘以整数的意义和计算方法。出示课题:小数乘以整数

  (一)复习旧知,引入新知

  1.指名板演。(用竖式计算)65×5=976×14=订正时,可让学生说说整数乘法的意义及计算方法。

  2.口答。(出示投影片)

  (1)填空。5.6扩大()倍是56。9.76扩大()倍是976。

  (2)去掉下面各数的小数点后,分别扩大多少倍?3.24.780.0370.06

  (3)下面各数分别缩小10倍、100倍、1000倍后各是多少?485853450

  3.填表,并说一说你发现了什么规律。(出示投影片)

  订正时要注意引导学生先从左向右观察:一个因数不变,另一个因数扩大10倍、100倍、1000倍,积也随着扩大10倍、100倍、1000倍。

  再引导学生从右向左观察发现:一个因数不变,另一个因数缩小10倍、100倍、1000倍,积也随着缩小10倍、100倍、1000倍。

  最后归纳出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍……,积也随着扩大(或缩小)10倍、100倍、1000倍……。

  教师谈话:刚才我们复习了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律,及因数的变化引起积的变化规律,这些知识都是为今天学习新知识做准备。下面我们运用这些知识一起研究小数乘以整数的意义和计算方法。

  教学意图:让学生充分回忆旧知识,为学习新知识进行迁移做好准备。教师要注意让全体学生参与,动口、动手、动脑。

  (二)运用迁移,学习新知

  1.理解小数乘以整数的意义。

  出示例1:花布每米6.5元,买5米要用多少元?

  读题后,请学生列出加法算式并板书:

  6.5+6.5+6.5+6.5+6.5

  提问:这个加法算式中的加数有什么特点?这样的加法算式怎样计算比较简便?

  (几个加数相同,都是小数。求n个相同加数的和可以用乘法计算比较简便。)

  提问:你能列出乘法算式吗?想一想它的意义是什么呢?

  (6.5×5,表示5个6.5相加是多少,或6.5的5倍是多少)

  板书:6.5×5

  教师:6.5×5是小数乘以整数,小数乘以整数的意义是什么呢?

  出示思考题,并组织学生讨论。

  (1)小数乘以整数的意义与整数乘法的意义相同吗?(相同)

  (2)它们有什么不同?(小数乘以整数中的几个相同加数是小数,而整数乘法中的几个相同加数仅限于整数)

  (3)小数乘以整数的意义是什么呢?

  讨论后概括出:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  练一练,说出下列各题的意义。0.9×463×68.4×15(4个0.9相加的和是多少?6个63相加的`和是多少?15个8.4相加的和是多少?)

  2.理解法则。

  教师:我们学习了小数乘以整数的意义,下面继续研究它的计算方法。同学们可联系前面复习的知识,认真思考,积极发言。

  出示思考题,组织学生讨论,并试做。

  (1)怎样把6.5×5转化为整数乘法进行计算?

  (2)把6.5×5转化为整数乘法后,积发生了什么变化?

  (3)要想使积不变,应该怎么办?

  讨论后,教师指名回答,并板书学生的思考过程。

  答:买5米要用32.5元。

  教学意图:让学生初步理解小数乘以整数的意义和计算方法。采用的方法是让学生在旧有知识的基础上运用迁移的方法,通过讨论、尝试,自己探索新知。

  (三)反馈调节,归纳方法

  1.反馈调节。

  (1)完成“做一做”。(指名板演,其他同学在练习本上完成)14个9.76是多少?练习时,要注意行间巡视;订正时,根据学生的问题及时调节。

  (2)计算。0.86×70.375×124(指名板演,其他同学在练习本上完成)订正时,要让学生说一说计算时是怎样想的。

  2.归纳方法。观察并讨论:例题和练习题每题的积的小数位数与被乘数小数位数有什么关系?小数乘以整数的计算方法是什么?(积的小数位数和被乘数小数位数相同)

  总结计算方法:小数乘以整数,先按整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

  总结后,组织看课本,让学生提问题。

  教学意图:在练习的基础上,进一步理解算理,并通过学生观察、讨论,自己发现规律,总结计算方法。

  (四)巩固练习,孕伏发展

  1.说出下面各式的意义。0.8×43.5×719.6×12

  2.下面各题的积有几位小数?看谁说得又对又快。4.3×80.72×63.726×80.54×7

  3.根据282×12=3384,不用计算直接说出各式的积。28.2×12=2.82×12=0.282×12=

  4.列出乘法算式,并计算。(全班动笔)(1)5个2.05是多少?(2)4.95的7倍是多少?

  5.计算。0.45×1081.056×25(可分组进行)

  订正:0.45×108=48.6,1.056×25=26.4,这两题的积的末尾是0,应先数好积的小数位数,点上小数点,再消去“0”。

  6.小明看到远处打闪以后,经过4秒钟听到雷声,已知雷声在空气中每秒传播0.33千米,打闪的地方离小明多远?(从打闪起到看到闪电的时间略去不算)解题前,要向学生说明看见的闪电是光,光在空气中的速度是每秒传播30万千米,远远大于声音在空气中的速度。因此从打闪起到看到闪电的时间可略去不记。订正:0.33×4=1.32(千米)

  7.课堂小结。小结前,可先让学生提出问题,解疑后,再总结。

  8.孕伏发展。

  计算6.5×0.56.5×0.82

  教师:你们知道这两个算式的意义吗?应该怎样计算呢?这是下节课要研究的内容。同学们如有兴趣,课后可以想一想。

  小数乘以整数的意义和计算方法由收集及整理,转载请说明出处

小数的意义教案 13

  教学内容:

  教材32页内容。

  教学目标:

  1.让学生通过动手操作理解小数的意义。

  2.使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  3.培养学生的观察、分析、推理能力.

  教学重、难点:

  理解小数的意义。

  教学准备:

  每个学生空白正方形、平均分成了十份的正方形和平均分成了一百份的正方形纸各一张。

  教学方法:

  引导操作、观察分析、推理归纳。

  教学过程:

  一、引入课题

  1.三年级的时候我们认识了小数,同学们都记得吧?小数与我的生活息息相关,随处可见,请同学们说说生活中的小数。(课件出示)

  师:像这样的小数,还有很多,观察可以分类吗?

  小数点后面有一个数字叫一位小数,小数点后面有两个数字叫两位小数,小数点后面有三个数字叫三位小数。

  同学们,你们说了这么多,老师说几个,你们愿意吗?

  师:板书:0.1 0.01 0.001

  这里的0.1、0.01、0.001表示什么意思,他们之间的进率又是多少?引出课题《小数的意义》

  二、探究意义

  (一)教学0.1

  1.如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。请将你心目中的0.1在这张纸上用颜色涂出来。(电脑演示正方形纸、1)

  2.(展示、汇报)说说你是怎么表示出0.1的。小结:要想准确地表示出0.1,我们应该先把这个正方形平均分成十份,再涂出其中的一份,就是0.1。还可以用什么数来表示?

  3.取出一张平均分成了十份的正方形,准确地表示出0.1。

  4.请涂出其中的3份,涂色部分用小数怎样表示?用分数表示是( ),0.3里面有多少个0.1,空白部分呢?(用小数表示,用分数表示)

  5.投影:阴影部分用小数怎样表示?有多少个0.1,空白部分呢?

  观察得出:一位小数就表示十分之几(板书)

  6.想一想,1里面有( )个0.1。

  (二)教学0.01

  1.回顾一下,刚才我们是怎样得到0.1的?

  2.你能在纸上表示出0.01吗?请你在格字图上表示出来(生取出平均分成一百份的正方形纸片)。说说你是怎么表示的`?空白的部分呢?(电脑演示过程)

  3.请看老师这张图片,你想到了什么小数?

  4.看到0.23,你还想到了什么小数。

  5.请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

  6.观察得出:两位小数就表示百分之几(板书)

  (三)教学0.001

  通过0.1,0.01的教学,推理得出0.001的意义。

  请你观察前两组的数,你有什么新的发现?(一位小数、十分之几,两位小数、百分之几,得出:三位小数、千分之几等等)。

  三、提炼小数意义

  1.小结:像这些用来表示十分之几、百分之几、千分之几……的数,我们把它叫做小数。

  2.师:其中的一份,如十分之一、百分之一、千分之一,我们把它叫做计数单位,也可以写作0.1、0.01、0.001等等。如0.3的计数单位是0.1,它有3个0.1。0.25的计数单位有( ),它有( )个0.01。

  3、电脑出示练习题。

  四、小结。

  五、布置作业。

小数的意义教案 14

  (一)教学目标

  1.能体会分米、厘米、毫米的含义,建立相应的长度观念 。

  2.记住这些单位之间的进率。

  3.能估计一 些较短物体的长度。

  4.会量较短物体的长度。

  (二)教学重点与难点

  1.教学重点:理解1分米、1厘米、1毫米的实际含义。

  2.教学难点:建立分米、厘米、毫米的具体观念。

  (三)教学准备

  1.教具准备:实物投影仪、米尺、透明塑料尺、壹分硬币 、两支铅笔。

  2.学具准备:每人学生尺一把、壹分硬币一枚、线一根、长铁钉一枚。

  (四)教学过程

  1.搭好桥梁。

  (1)小朋友,想知道一个人有多高,黑板有多长,数学书本 又有多宽,可采用什么方法?(用尺量)

  (2)你怎么想到要用尺量呢?(尺上有刻度)

  (3)出示米尺:小朋友比划一下一米大约有多长?

  (4)估计:黑板大约有多长?教师实际量一量,得黑板长3米多。

  多的部分不到1米,究竟是多少?我们需要用比米小的单位来帮忙。

  2.实践操作。

  (1)认识厘米。

  ①实物投影仪上放上塑料尺,请学生观察,从“0”刻度线 到标有“1”刻度线之间的长度就是1厘米。(板书:厘米cm)

  ②学生在自己的尺上找1厘米的长度(手指宽,橡皮厚,1分 硬币的最大宽……),并用尺比量一量。

  ③量一量:铁钉有多长?(3cm)

  ④出示两支铅笔,一支10厘米,一支1厘米多一些,估计这两支铅笔大约有几个厘米长。

  (2)认识分米。

  ①这支铅笔长10厘米,还可以叫做1分米长(板书:分米dm) ,所以1分米=()厘米。

  ②同上,学生在尺上找1分米的长度,找身边的物品长(宽) 大约是1分米的物品,可实际去量一量。(衬衣两纽扣之间、手掌宽……)

  ③在米尺上数一数,1米有几分米?也就是几个10厘米。1分米=10厘米,那么1米=()厘米。

  ④想一想:1米、1分米、1厘米有多长?

  小游戏:伯;说我比划,即同桌1人说1米(或1分米、1厘米) ,另一人马上用手比划出来。

  (3)认识毫米。

  ①还有一支铅笔为1厘米多一些,究竟是多少长呢?我们需要认识更小的长度单位——毫米(板书:毫米一)

  ②1毫米用手难以比划·了,我们就用铅笔芯来点吧。

  ③长度是1毫米的`物品很难找吧?(1分硬币的厚度,数学练习簿的厚度……)

  ④猜一猜,再在尺子-上数一数()毫米=1厘米,

  3.归纳运用。

  (1)今天我们学习了什么单位?(长度单位)(完成课题 )

  你会给这些单位从大到小排排队吗?

  你知道它们之间有什么关系吗?(进率)

  (2)看看课本上是这样说的吗?(课本第85-86页)

  (3)练一练:课本第87页“练一练”1、2、3。(先观察,估计一下各物品的长度,再测量)

  (4)练一练:课本第87页“练一练”4、5、6。(其中6为同桌 合作题)

  (5)拿出线,同桌合作量一量是多少长?(1米2分米,4厘米6 毫米)

小数的意义教案 15

  教学目标

  知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。

  过程与方法:①培养学生的动手操作能力及观察力。②培养学生的'抽象概括能力。

  情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。

  教学重点:理解小数的意义及每相邻两个单位时间的进率是十。

  教学难点:概括和理解小数的意义。

  教法:启发引导法

  学法:合作交流

  教具学具准备:直尺。

  教学过程

  一、定向导学(5分)

  1、判断下面哪些数是整数?

  4、12、38、3.01、105、0.007、20xx、100.06。

  整数每相邻的两个计数单位之间的进率都是( )。

  板书课题

  2、揭示目标:

  理解小数的意义及每相邻两个单位时间的进率是十。

  二、自主学习(10分)

  自学内容:课本p32-33上半页

  方法:边看书边完成下面的要求。时间:5分钟

  要求:

  1、把1米平均分成10份,每份是( )米,写成小数是( )米;

  把1米平均分成10份,3份是( )米,写成小数是( )米。

  2、把1米平均分成100份,每份是( )米,写成小数是( )米;

  把1米平均分成100份,15份是( )米,写成小数是( )米。

  3、把1米平均分成1000份,每份是( )米,写成小数是( )米;

  把1米平均分成1000份,27是()米,写成小数是( )米。

  (1--6组的4号发言,1号评价)

  三、合作交流:5分钟

  1、什么是小数?

  2、小数的计数单位是多少?

  (7组的4号发言,1号评价)

  四、质疑探究(5分)

  每相邻两个计数单位之间的进率是多少?

  五、小结检测(15分)

  1、小结:

  谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  2、检测:

  a、填空。

  (1)0.1是( )分之一,0.7里有( )个0.1。

  (2)10个0.1是( ),10个0.01是( )。

  (3) 写成小数是( ), 写成小数是( )。

  b、判断:

  (1)0.40里面有4个0.01。 ( )

  (2)35克=0.35千克( )

  元=0.7 元 ( )

  =0.01 ( )

  米 =0.3米 ( )

  =0.03 ( )

  =0.030 ( )

  c、把小数改写成分数。

  0.9 0.09 0.0359

  3、堂清作业:教材p33页,p36、1.2

  板书设计:

  小数的意义

  十分之一--------- 0.1

  百分之一---------0.01

  千分之一---------0.001

  分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。

【小数的意义教案】相关文章:

《小数的意义》的教案02-17

《小数的意义》教案07-11

小数的意义教案07-29

小数的意义教案15篇12-18

小数的意义教案 15篇01-05

小数的意义教案(精选15篇)02-09

小数的意义教案(15篇)01-12

小数的意义教案精选15篇01-24

《小数的意义》教案15篇01-23