一元二次方程教案

时间:2024-07-15 22:30:33 晓凤 教案 投诉 投稿

一元二次方程教案(精选15篇)

  作为一名无私奉献的老师,通常会被要求编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?以下是小编整理的一元二次方程教案,仅供参考,希望能够帮助到大家。

一元二次方程教案(精选15篇)

  一元二次方程教案 1

  教学目标

  知识与能力:

  1.理解一元二次方程根的判别式。

  2.掌握一元二次方程的根与系数的关系

  3.同学们掌握一元二次方程的实际应用.了解一元二次方程的分式方程。

  过程与方法:培养学生的逻辑思维能力以及推理论证能力。

  情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。

  重、难点

  重点:根的判别式和根与系数的关系及一元二次方程的应用。

  难点:一元二次方程的实际应用。

  一、导入新课、揭示目标

  1.理解一元二次方程根的判别式。

  2.掌握一元二次方程的根与系数的关系

  3.掌握一元二次方程的实际应用.

  二、自学提纲:

  一.主要让学生能理解一元二次方程根的`判别式:

  1.判别式在什么情况下有两个不同的实数根?

  2.判别式在什么情况下有两个相同的实数根?

  3.判别式在什么情况下无实数根?

  二.ax2+bx+c=o(a≠0)的两个根为x1.x2那么

  X1+x2=-x1x2=

  三.一元二次方程的实际应用。根据不同的类型的问题.列出不同类型的方程.

  三.合作探究.解决疑难

  例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。

  巩固提高:

  已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长

  例题2:

  .已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。

  .巩固提高:

  已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.

  (1)求证:不论m为任何实数.方程总有两个不相等的实数根;

  (2)若方程两根为x1.x2.且满足

  求m的值。

  例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,

  (1)求1月份到3月份销售额的平均增长率:

  (2)求3月份时该电脑的销售价格.

  练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

  若商场平均每天要赢利1200元,则每件衬衫应降价多少元?

  则降价多少元?

  四、小结

  这节课同学有什么收获?同学互相交流?

  五、布置作业:

  课前课后P10-12

  一元二次方程教案 2

  教学内容

  间接即通过变形运用开平方法降次解方程.

  教学目标

  理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

  通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.

  重难点关键

  1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

  2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

  教学过程

  一、复习引入

  (学生活动)请同学们解下列方程

  (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9

  点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=± 或mx+n=± (p≥0).

  如:4x2+16x+16=(2x+4)2

  二、探索新知

  列出下面二个问题的方程并回答:

  (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

  (2)能否直接用上面三个方程的解法呢?

  问题1:印度古算中有这样一资骸耙蝗汉镒臃至蕉樱吒咝诵嗽谟蜗罚?八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.

  大意是说:一群猴子分成两队,一队猴子数是猴子总数的 的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的.道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?

  点评:问题1:设总共有x只猴子,根据题意,得:x=( x)2+12

  整理得:x2-64x+768=0

  问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500

  整理,得:x2-36x+70=0

  (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.

  (2)不能.

  既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

  x2-64x+768=0 移项→ x=2-64x=-768

  两边加( )2使左边配成x2+2bx+b2的形式 → x2-64x+322=-768+1024

  一元二次方程教案 3

  教学目标

  (1)会用公式法解一元二次方程;

  (2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;

  (3)渗透化归思想,领悟配方法,感受数学的内在美.

  教学重点

  知识层面:公式的推导和用公式法解一元二次方程;

  能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.

  教学难点:求根公式的推导.

  总体设计思路:

  以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.

  教学过程

  整体教学流程:形成表象,提出问题

  分析问题,探究本质

  得出结论,解决问题

  拓展应用,升华提高

  归纳小结,布置作业.

  形成表象,提出问题

  在上一节已学的用配方法解一元二次方程的基础上创设情景。

  解下列一元二次方程:(学生选两题做)

  (1)x2+4x+2=0 ; (2)3x2-6x+1=0;

  (3)4x2-16x+17=0 ; (4)3x2+4x+7=0.

  然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?

  接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)

  (1)3x2+4x+2=0; (2)3x2-2x+1=0;

  (3)4x2-16x-3=0 ; (4)3x2+x+7=0.

  思考:新的四题与原题的解题过程会发生什么变化?

  设计意图:1.复习巩固旧知识,为本节课的学习打下更好的基础;

  2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.

  分析问题,探究本质

  由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.

  进而提出下面的问题:

  既然过程是相同的',为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?

  让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.

  ax2+bx+c=0(a≠0) 注:根据学生学习程度的不同,可

  ax2+bx=-c 以采用学生独立尝试配方, 合x2+

  x=-

  作尝试配方或教师引导下进行

  x2+

  x+

  =-

  +

  配方等各种教学形式.

  (x+

  )2=

  然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2-4ac”的重要性.

  当b2-4ac≥0时,

  (x+

  )2=

  注:这样变形可以避免对a正、负的讨论,

  x+

  =

  便于学生的理解.

  x=-

  即x=

  x1=

  , x2=

  当b2-4ac<0时,

  方程无实数根.

  设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.

  得出结论,解决问题

  由上面的探究过程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定. 当b2-4ac≥0时,

  x=

  ;

  当b2-4ac<0时,方程无实数根.

  这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.

  进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

  运用公式法解一元二次方程.(设计两个环节:共同练习和独立完成)

  [共同练习]

  (1)2x2-x-1=0; (2)4x2-3x+2=0 ;

  (3)x2+15x=-3x; (4)x2-

  x+

  =0.

  此环节的设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤.

  [独立完成]

  用公式法解一元二次方程:

  (1)x2+x-6=0; (2)x2-

  x-

  =0; (3)3x2-6x-2=0;

  (4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.

  此环节的设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获.

  拓展运用,升华提高

  分两个环节:用一用和想一想(此环节基于学生课堂掌握的情况而定,可作为课后思考题).

  [用一用]

  解决本章引言中的问题:

  要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以小)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?

  雕像上部的高度AC,下部的高度BC应有如下关系:

  即BC2=2AC.

  设雕像下部高xm,于是得方程

  x2=2(2-x)

  整理得:x2+2x-4=0.

  解这个方程,得

  x=

  ,

  x1=-1+

  ,x2=-1-

  .

  精确到0.001,x1≈1.236,x2≈-3.236.

  考虑实际意义, x≈1.236.所以雕像下部高度应设计约为1.236m.

  在前面的基础上进一步提问: (结合学生的实际情况,可以放在课后思考.)

  (1)如果雕像的高度设计为3m,那雕像的下部应是多少?4m呢?

  (2)进而把问题一般化,这个高度比是多少?

  之后简单介绍黄金分割数,使学生感受到数学的奥妙.

  此环节的设计意图:①运用所学的知识解决实际问题;②能力层面上的拓展----化归思想.

  [想一想]

  清清和楚楚刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.

  此环节的设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.

  归纳小结,布置作业

  结合上面用一用,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.

  作业: (结合学生的实际情况,可以分层布置.)

  ㈠作业本;

  ㈡拓广探索:P46第12题

  ㈢阅读思考P46-----黄金分割数,有兴趣的同学可以上网查阅相关资料,或进一步探究根与系数的其他关系.

  一元二次方程教案 4

  一、素质教育目标

  (一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.

  (二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.

  二、教学重点、难点

  1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.

  2.教学难点:根据数与数字关系找等量关系.

  三、教学步骤

  (一)明确目标

  (二)整体感知:

  (三)重点、难点的学习和目标完成过程

  1.复习提问

  (1)列方程解应用问题的步骤?

  ①审题。

  ②设未知数。

  ③列方程。

  ④解方程。

  ⑤答.

  (2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).

  2.例1 两个连续奇数的积是323,求这两个数.

  分析:

  (1)两个连续奇数中较大的奇数与较小奇数之差为2。

  (2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的`奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.

  以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.

  解法(一)

  设较小奇数为x,另一个为x+2,

  据题意,得x(x+2)=323.

  整理后,得x2+2x-323=0.

  解这个方程,得x1=17,x2=-19.

  由x=17得x+2=19,由x=-19得x+2=-17,

  答:这两个奇数是17,19或者-19,-17.

  解法(二)

  设较小的奇数为x-1,则较大的奇数为x+1.

  据题意,得(x-1)(x+1)=323.

  整理后,得x2=324.

  解这个方程,得x1=18,x2=-18.

  当x=18时,18-1=17,18+1=19.

  当x=-18时,-18-1=-19,-18+1=-17.

  答:两个奇数分别为17,19;或者-19,-17.

  解法(三)

  设较小的奇数为2x-1,则另一个奇数为2x+1.

  据题意,得(2x-1)(2x+1)=323.

  整理后,得4x2= 324.

  解得,2x=18,或2x=-18.

  当2x=18时,2x-1=18-1=17;2x+1=18+1=19.

  当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17

  答:两个奇数分别为17,19;-19,-17.

  引导学生观察、比较、分析解决下面三个问题:

  1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?

  2.解题中的x出现了负值,为什么不舍去?

  答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。

  3.选出三种方法中最简单的一种.

  练习

  1.两个连续整数的积是210,求这两个数.

  2.三个连续奇数的和是321,求这三个数.

  3.已知两个数的和是12,积为23,求这两个数.

  学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.

  分析:数与数字的关系是:

  两位数=十位数字×10+个位数字.

  三位数=百位数字×100+十位数字×10+个位数字.

  解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.

  据题意,得10(x-2)+x=3x(x-2),

  整理,得3x2-17x+20=0,

  当x=4时,x-2=2,10(x-2)+x=24.

  答:这个两位数是24.

  练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)

  2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.

  教师引导,启发,学生笔答,板书,评价,体会.

  (四)总结,扩展

  1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.

  数与数字的关系

  两位数=(十位数字×10)+个位数字.

  三位数=(百位数字×100)+(十位数字×10)+个位数字.

  ……

  2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.

  四、布置作业

  教材P.42中A1、2、

  一元二次方程教案 5

  【教材分析】

  一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  【教学目标】

  1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(≠0)并知道各项及其系数。

  2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。

  【教学重点与难点】

  理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。

  【教法、学法】

  因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

  【教学过程】

  一、复习旧知,类比新知

  1、一元一次方程的概念

  像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程

  2、一般形式:

  是常数且

  设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。

  二、生活情境,自主学习

  (1)正方形桌面的面积是2m

  ,设正方形桌面的边长是x m,可得方程

  (2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,

  设花圃的宽是x m则花圃的长是m,

  可得方程

  (3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程

  (4)长5米的梯子斜靠在墙上,梯子的'底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程

  设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

  三、探究学习:

  1、概念得出

  讨论交流:以上所列方程有哪些共同特征?

  设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的。

  2、巩固概念

  下列方程中那些是一元二次方程。

  设计意图:

  这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.

  3、一元二次方程的一般形式:

  设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的。

  4.典型例题

  例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项

  设计意图:此题设置的目的在于加深学生对一般形式的理解。

  5.巩固练习

  把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项

  设计意图:此题设置的目的在于加深学生对一般形式的理解

  6、拓展应用

  (1)、若是关于x的一元二次方程,则()

  A、p为任意实数B、p=0 C、p≠0 D、p=0或1

  (2)、若关于x的方程mx

  -2x+1=2x(x-1)是一元二次方程,那么m的取值范围是

  (3)、若方程是关于x的一元二次方程,则m的值为

  设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。

  7.课堂小结

  设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。

  【课后作业】

  1、下列方程中哪些是一元二次方程?试说明理由。

  2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:

  一元二次方程教案 6

  教学目的

  使学生掌握有关面积和体积方面以及“药液问题”的一元二次方程应用题的解法.提高学生化实际问题为数学问题的能力.

  教学重点、难点

  重点:用图示法分析题意列方程.

  难点:将实际问题转化为对方程的求解问题.教学过程 复习提问

  本小节第一课我们介绍了什么问题?

  引入新课

  今天我们进一步研究有关面积和体积方面以及“药液问题”的一元二次方程的应用题及其解法.

  新课

  例1 如图1,有一块长25c,宽15c的长方形铁皮.如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231c2的无盖长方体盒子,求截去的小正方形的边长应是多少?

  分析:如图1,考虑设截去的小正方形边长为xc,则底面的长为(25-2x)c,宽为(15-2x)c,由此,知由长×宽=矩形面积,可列出方程.

  解:设小正方形的边长为xc,依题意,得(25-2x)(15-2x)=231,

  即x2-20x+36=0,

  解得x1=2,x2=18(舍去).

  答:截去的小正方形的边长为2c.

  例2 一个容器盛满药液20升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液5升,问每次倒出药液多少升?

  ∴x=10.

  答:第一、二次倒出药液分别为10升,5升.

  练习 P41 3、4

  归纳总结

  1.注意充分利用图示列方程解有关面积和体积的应用题.

  2.要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式.

  布置作业:习题22.3 8、9题

  课后反思

  第三课时

  教学目的

  使学生掌握列一元二次方程解关于增长率的应用题的方法.并进一步培养学生分析问题和解决问题的'能力.

  教学重点、难点

  重点:弄清有关增长率的数量关系.

  难点:利用数量关系列方程的方法.

  教学过程

  复习提问

  1.问题:(1)某厂生产某种产品,产品总数为1600个,合格品数为1563个,合格率是多少?

  (2)某种田农户用800千克稻谷碾出600千克大米,问出米率是多少?

  (3)某商店二月份的营业额为3.5万元,三月份的营业额为5万元,三月份与二月份相比,营业额的增长率是多少?

  新课

  例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增产的百分率是多少?

  分析:用译式法讨论列式

  一月份产量为5000吨,若月增长率为x,则二月份比一月份增产5000x吨.

  二月份产量为(5000+5000x)=5000(1+x)吨;

  三月份比二月份增产5000(1+x)x吨,

  三月份产量为5000(1+x)+5000(1+x)x=5000(1+x)2吨.再根据题意,即可列出方程.

  解:设平均每月增长的百分率为x,根据题意,

  得5000(1+x)2=7200,即(1+x)2=1.44,

  ∴1+x=±1.2,x1=0.2,x2=-2.2(不合题意,舍去).

  答:平均每月增长率为20%.

  例2 某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少?

  解:设每月增长率为x,依题意得

  50+50(1+x)+50(1+x)2=182,

  答:二、三月份平均月增长率为20%.

  归纳总结

  依题意,依增长情况列方程是此类题目解题的关键.

  布置作业:习题22.3 7题

  一元二次方程教案 7

  一、教学目标

  知识与技能

  (1)理解一元二次方程的意义。

  (2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

  过程与方法

  在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

  情感、态度与价值观

  通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

  二、教材分析:教学重点难点

  重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

  难点:准确理解一元二次方程的意义。

  三、教学方法

  创设情境——主体探究——合作交流——应用提高

  四、学案

  (1)预学检测

  3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?

  五、教学过程

  (一)创设情境、导入新

  (1)自学本P2—P3并完成书本

  (2)请学生分别回答书本内容再

  (二)主体探究、合作交流

  (1)观察下列方程:

  (35-2x)2=900 4x2-9=0 3y2-5y=7

  它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?

  (2)一元二次方程的概念与一般形式?

  如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数 a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56

  (三)应用迁移、巩固提高

  例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?

  x2-x=1 3x(x-1)=5(x+2) x2=(x-1)2

  例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

  解:去括号得

  3x2-3x=5x+10

  移项,合并同类项,得一元二次方程的一般形式

  3x2-8x-10=0

  其中二次项系数为3,一次项系数为-8,常数项为-10.

  学生练习:书本P4练习

  (四)总结反思 拓展升华

  总结

  1.一元二次方程的定义是怎样的'?

  2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

  3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。

  反思

  方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0 且c≠0.

  (五)布置作业

  (1)必做题P4 习题1.1A组 1.2

  (2)选做题: 若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。

  一元二次方程教案 8

  教学目标

  1.能够利用配方的方法,得到实系数一元二次方程的求根公式,会在复数集中解实系数一元二次方程。

  2.能够模仿初中学过的分解因式的方法,在复数范围内对二次三项式进行因式分解。

  3.能够类比初中学过的根与系数的关系,推导出实系数一元二次方程根与数的.关系。

  教学重点与难点

  1.在复数集中解实系数一元二次方程;

  2.在复数范围内对二次三项式进行因式分解.

  教学流程

  配方—-求根公式——练习分解因式——韦达定理

  教学过程

  1.复习实数的平方根

  实数a的平方根=

  2.最简单的一元二次方程

  3.推广

  4.请同学们自己编一道解为共轭虚根的一元二次方程,并求解。

  5.研究实系数一元二次方程的解

  以上方程中的系数都是实数,今天我们研究实系数一元二次方程的解。

  6.回头再解前面的方程

  7.分解因式

  8.韦达定理

  对于实系数一元二次方程,当其有实数根时,我们在初中已经学习过了根与系数的关系:,(即韦达定理).

  实系数一元二次方程的韦达定理:

  特别地,当时,为一对共轭虚根,即,∴,.

  9.课后练习:

  (1)在复数集中分解因式:.

  (2)方程在复数集中解的个数为()

  (A)2(B)4(C)6(D)8

  (3)在复数范围内解方程(i为虚数单位).

  (4)已知1-i是实系数一元二次方程的一个根,则=.

  (5)若两个数之和为2,两个数之积为3,则这两个数分别为.

  (6)在复数集中分解因式:=.

  (7)若方程有虚数根z,则|z|=.

  一元二次方程教案 9

  教学目标:

  1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

  2、理解什么是一元二次方程及一元二次方程的一般形式。

  3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  教学重点

  1、一元二次方程及其它有关的概念。

  2、利用实际问题建立一元二次方程的数学模型。

  教学难点

  1、建立一元二次方程实际问题的数学模型.

  2、把一元二次方程化为一般形式

  教学方法:指导自学,自主探究

  课时:第一课时

  教学过程:

  (学生通过导学提纲,了解本节课自己应该掌握的内容)

  一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

  1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

  2、你发现上述三个方程有什么共同特点?

  你能把这些特点用一个方程概括出来吗?

  3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

  你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

  二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

  1、下列哪些是一元二次方程?哪些不是?

  ①②③

  ④x2+2x-3=1+x2 ⑤ax2+bx+c=0

  2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

  (1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

  3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

  4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?

  5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

  三、反思:(学生,进一步加深本节课所学内容)

  这节课你学到了什么?

  四、自查自省:(通过当堂小测,及时发现问题,及时应对)

  1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个

  (1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

  3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.

  作业:必做题:习题7.1

  选做题:(挑战自我)p41随堂练习

  1、已知关于的方程是一元二次方程,则为何值?

  2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?

  3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?

  4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?

  (1)(2)

  板书设计:一元二次方程

  定义:一个未知数整式方程可以化为

  一般形式ax2+bx+c=0(a、b、c为常数,a≠0)

  二次项一次项常数项

  系数为a系数为b

  教学反思

  这次我参加了区里组织的优质

  课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的.时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。

  首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间

  其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。

  再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。

  我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。

  一元二次方程教案 10

  教材分析:

  1.本节以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本节内容是在前面所学方程、一元一次方程、整式、方程的解的基础上进行学习,也是后面学习二次函数的一个基础。

  2.这些概念是全章后继内容的基础。

  3.让学生体会数学来源于生活,又服务于生活的基本思想。

  学情分析:

  1.授课班级学生基础较差,学生成绩参差不齐,差生较多。教学中应给予充分思考的时间,注意讲练结合,以学生为本,体现生本课堂的理念。

  2.该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,从而充分调动学生主动性和积极性,使课堂气氛活跃,让学生在愉快的环境中学习。

  3.作为该班的班主任,同时又担任该班的数学教学,对学生学习情况有比较深入地了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的设计上要针对学生的差异采取分层设计的方法,着重加强对学生的'双基训练。

  教学目标:

  一、知识与技能:

  1.理解一元二次方程的概念,能判断一个方程是一元二次方程。

  2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.

  二、过程与方法:

  1.引导学生分析实际问题中的数量关系,组织学生讨论,让学生类比、抽象出一元二次方程的概念。

  2.培养独立思考,合作交流学,分析问题,解决问题的能力。

  三、情感态度与价值观:

  1.培养学生主动探究知识、自主学习和合作交流的意识.

  2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.

  3.让学生体会数学来源于生活,又服务于生活的基本思想,从而意识到数学在生活中的作用。

  教学重点:一元二次方程的概念及一般形式,利用概念解决实际问题。

  教学难点:

  1.由实际问题向数学问题的转化过程.

  2.正确识别一般式中的“项”及“系数”.

  3.一元二次方程的特点,如何判断一个方程是一元二次方程。

  教学过程:

  一、创设情境,引入新课

  1.问题1:广安区为增加农民收入,需要调整农作物种植结构,计划无公害蔬菜的产量比翻一番,要实现这一目标,和20无公害蔬菜产量的年平均增长率是多少?(通过放幻灯片引入)

  设无公害蔬菜产量的年平均增长率为x,20的产量为a(a≠0),翻一番的意思就是a变为2a,那么

  (1)用代数式表示20的产量;

  (2)年蔬菜的产量比年增加了2x,对吗?为什么?你能用代数式表示出来吗?

  学生思考交流得出方程a(1+x)2=2a

  整理得,x2+2x-1=0…………①

  2.通过幻灯片引入情境,提出问题:

  问题2:广安市政府在一块宽200m、长320m的矩形广场上,修筑宽相等的三条小路(两条纵向、一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛,要使花坛的总面积为57000m2,问小路的宽应为多少?

  设小路的宽为x m,则横向小路的面积如何表示?纵向的呢?重叠部分的面积是多少?小路所占的面积用x的代数式如何表示?

  这个问题的相等关系是什么?

  320×200-(320x+2×200x-2x2)=57000

  整理得x2-36x+35=0

  谁还能换一种思路考虑这个问题?

  把6个小花坛拼起来是一个多长多宽的矩形,由此你会得出什么样的方程?

  (320-2x)(200-x)=57000

  整理得x2-36x+35=0…………②

  比较一下,哪种方法更巧妙?

  3.通过幻灯片引入情景。问题3:广安重百商场销售某品牌服装,若每件盈利50元,则每月可销售100件。若每件降价1元,则每月可多卖出5件,若每月要盈利6000元,则商场决定每件服装降价多少?

  设每件降价x元,则现在的盈利为(50-x)元,降价后销售量为(100+5x)件。可列方程为:(50-x)(100+5x)=6000

  一元二次方程教案 11

  教学目标:

  (1)理解一元二次方程的概念

  (2)掌握一元二次方程的一般形式,会判断一元二次方程的.二次项系数、一次项系数和常数项,数学教案-一元二次方程。

  (2)会用因式分解法解一元二次方程

  教学重点:

  一元二次方程的概念、一元二次方程的一般形式

  教学难点:

  因式分解法解一元二次方程

  教学过程:

  (一)创设情景,引入新课

  实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

  由学生说出这几个方程的共同特征,从而引出一元二次方程的概念,初中数学教案《数学教案-一元二次方程》。

  (二)新授

  1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

  练习

  2:一元二次方程的一般形式(形如aX+bX+c=0)

  任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

  3:讲解例子

  4:利用因式分解法解一元二次方程

  5:讲解例子

  6:一般步骤

  练习

  (三)小结

  (四)布置作业

  板书设计

  数学教案-一元二次方程

  一元二次方程教案 12

  学习目标

  1、一元二次方程的求根公式的推导

  2、会用求根公式解一元二次方程.

  3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯

  学习重、难点

  重点:一元二次方程的求根公式.

  难点:求根公式的条件:b2 -4ac≥0

  学习过程:

  一、自学质疑:

  1、用配方法解方程:2x2-7x+3=0.

  2、用配方解一元二次方程的步骤是什么?

  3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的.方法,迅速求得一元二次方程的实数根呢?

  二、交流展示:

  刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?

  三、互动探究:

  一般地,对于一元二次方程ax2+bx+c=0

  (a≠0),当b2-4ac≥0时,它的根是

  用求根公式解一元二次方程的方法称为公式法

  由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.

  注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.

  (2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.

  四、精讲点拨:

  例1、课本例题

  总结:其一般步骤是:

  (1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)

  (2)求出b2-4ac的值.(先判别方程是否有根)

  (3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后写出方程的根.

  例2、解方程:

  (1)2x2-7x+3=0 (2) x2-7x-1=0

  (3) 2x2-9x+8=0 (4) 9x2+6x+1=0

  五、纠正反馈:

  做书上第P90练习。

  六、迁移应用:

  例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.

  例4、求方程 的两根之和以及两根之积

  拓展应用:关于 的一元二次方程 的一个根是 ,则 ;

  方程的另一根是

  一元二次方程教案 13

  教学目标

  1. 了解整式方程和一元二次方程的概念;

  2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

  3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  教学重点和难点

  重点:一元二次方程的概念和它的一般形式。

  难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

  教学建议:

  1. 教材分析:

  1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

  2)重点、难点分析

  理解一元二次方程的定义:

  是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

  (1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。

  (2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。

  (3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。

  教学目的

  1.了解整式方程和一元二次方程的概念;

  2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  教学难点和难点: 重点:

  1.一元二次方程的有关概念

  2.会把一元二次方程化成一般形式

  难点: 一元二次方程的含义.

  教学过程设计

  一、引入新课

  引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

  分析:

  1.要解决这个问题,就要求出铁片的长和宽。

  2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

  3.让学生自己列出方程 ( x(x十5)=150 )

  深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

  二、新课

  1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来,初中数学教案《一元二次方程》。事实上初中代数研究的`主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

  2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

  3.强化一元二次方程的概念

  下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

  (1)3x十2=5x—3:

  (2)x2=4

  (3)(x十3)(3x·4)=(x十2)2;

  (4)(x—1)(x—2)=x2十8

  从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

  4. 一元二次方程概念的延伸

  提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

  引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

  ax2+bx+c=0 (a≠0)

  1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

  2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

  3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

  强化概念(课本P6)

  1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

  (1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0

  (4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

  2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

  (1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

  课堂小节

  (1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

  (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

  (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

  课外作业:略

  一元二次方程教案 14

  对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

  本节课主要讲述的是一元二次方程的概念及其一般式。在本节课之前学生已经掌握了一元一次方程的概念以及解法,所以,为本节课一元二次方程概念的学习打下基础。另外,本节课是后续学习解一元二次方程的基础,它的学习起到了很好的铺垫作用。

  故而,既锻炼了学生的类比推理能力,还能够完善学生在方程这一部分的知识,让学生在方程这一部分形成比较完善的体系。

  二、说学情

  合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

  本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元二次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

  (一)知识与技能

  理解一元二次方程的概念及其一般式,了解一元二次方程根的概念。

  (二)过程与方法

  通过解决问题的过程,逐渐形成数学建模的`数学思想以及提高类比迁移的能力。

  (三)情感态度价值观

  通过数学建模,提高对数学的学习兴趣。

  四、说教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

  (一)教学重点

  理解一元二次方程的概念及其一般式。

  (二)教学难点

  建立数学模型列方程。

  五、说教法和学法

  古人云:教学有法,教无定法,贵在得法。这句话说明教学是有一定的方法,但是却没有固定的方法,难能可贵的是选择适合自己以及自己学科的方法。所以,我针对数学学科以及学生等特点,制定了如下的教学方法:讲授法、练习法、小组讨论法。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

  (一)新课导入

  首先是导入环节,我采用复习旧知的导入方法。我会让学生回顾之前学习过哪些方程,并对一元一次方程的定义进行回顾。在学生充分回忆以后,明确本节课学习初中阶段的最后一种方程,《一元二次方程》。

  这样的设计既可以考察学生对之前知识的掌握情况,还能够为今天学习一元二次方程的概念打下基础。

  (二)新知探索

  接下来是新知探索环节,首先我请学生类比一元一次方程,给一元二次方程下定义。

  学生根据已有基础,能够得出一元二次方程文字描述。即方程的两边都是整式,方程中只含有一个未知数,未知数的最高次数是2。

  为了加深学生对一元二次方程概念的理解以及对于一般式的掌握。我出示例1,矩形铁皮长100cm,宽50cm。将四周突出部分折起,制作一个无盖方盒。如果要制作的无盖方盒的底面积为 ,铁皮各角应切去多大的正方形?

  学生能够列出方程 ,化简得 。

  追问学生,这个方程是不是一元二次方程呢?学生通过判断,让学生再写出几个一元二次方程。

  为了加深学生对于一元二次方程的理解,适当的给出反例,让学生判断是否为一元二次方程。所以,我出示题目,用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?并追问,这个方程是不是一元二次方程呢?通过正例和反例的对比,学生对于一元二次方程已经有了非常直观的理解。

  通过正例和反例的对比比较,提高学生的辨析能力,而且通过这种辨析,能够加深学生对于概念一般式的理解,在辨析的过程中逐步的形成对概念的认识。达到了循序渐进的目的。

  接下来,请学生利用前面的多个方程,让学生以小组讨论的方式思考什么样形式的方程是一元二次方程?在学生讨论的过程中我会加入到学生的讨论当中去,发现问题及时纠正及指导。在学生充分讨论以后,小组派代表进行回答。师生共同总结出:一元二次方程的一般形式是 ,其中 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

  对于 这一部分是学生容易忽略的,所以我会加以强调。追问:为什么要规定 呢?由此让学生明确 这一重要条件。

  最后简单讲解一下一元二次方程的根的概念。

  新课标指出,学生是学习的主体,教师是教学的组织者引导者。在这一过程中,通过适当的引导,放手让学生进行探究,充分体现学生的主体性以及教师的引导性,符合课标这一理念。

  (三)课堂练习

  第三个环节是课堂练习环节,出示问题,将方程 化成一元二次方程的一般形式,并写出其中二次项系数、一次项系数和常数项。

  通过这样一个问题的设置,能够将本节课的重要知识点再进行巩固一遍,巩固对一元二次方程的一般形式的认识,为后面讨论一元二次方程的解法作准备。

  (四)小结作业

  最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结什么是一元二次方程、一般式以及一般式中的注意事项。这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。

  在作业布置上,我让学生思考一元二次方程应该如何求解呢?通过这样的方式能够为下节课的学习留下悬念,调动学生的积极性。

  七、说板书设计

  我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计。

  一元二次方程教案 15

  一、教材分析

  (一)、教材的地位和作用《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。同时为今后学习一元二次不等式及二次函数打下基础。

  (二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:

  ①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

  ②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

  ③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。

  (三)、教学重难点及关键

  介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。

  二、学生分析

  任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。这就要求我们教师必须从学生的认知结构和心理特征出发。九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。使得他们很快就能融入课堂,接受知识也事半功倍。当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。从而激发学生学习的兴趣,促进学生个性的形成和发展。要让学生成为课堂真正的主人,变厌学为乐学。

  三、教法与学法分析

  ①教法分析:本节课坚持“以学生为主体,教师为主导”原则。为了使学生在知识上和能力上都有所提高,本节课我采用探究式教学法和合作交流法。首先是探究式教学法,根据学生的认知规律,对学生创设合适的学习情景,引导学生自主探索、积极参与课堂活动,其目的在于培养学生探索精神以及学生学习探究方法。其次是合作交流法,就是让学生共同讨论,有浅入深、有特殊到一般的提出问题,引导学生自主探索,合作交流,从而有效激发学生学习的积极性。

  ②学法分析:在教师的组织引导下,采用自主探索,合作交流研讨式学习方法,让学生思考问题、获取知识、掌握方法,借此培养学生的动手、动脑、动口的能力,使学生真正的成为学习中的主体。

  四、教学过程设计

  为了体现在教学中循序渐进,讲练结合的特点,本节课安排了情景引入、新课学习、

  归纳小结、巩固练习、课堂小结、课后作业六个环节组成。

  (一)、情景引入

  给出3个数据x,6,3,请同学们自己编一道方程,并求出这个方程的解。这个设计在于引导学生回忆复习已经学过的一元一次方程。通过自己编方程的形式引起学生们的注意,同时也激发了学生学习的兴趣。紧接着我又出示这样三个数据:6,3,x2,你还能编一个方程出来吗?因此在一个有趣的问题中引入本节课《一元二次方程》。从而激发学生的求知欲望,顺利地进入新课。

  (二)、新课学习

  因为数学来源与生活,所以以学生的.实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例:

  一张矩形的铁片,长100厘米,宽50厘米。在他的四角各切去一个同样地正方形,然后将四角突起部分折起就能制作一个无盖的方盒。如果要制作的无盖方盒的底面积为3600平方厘米,那么铁片各角应切去多大的正方形?

  应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,同时突破难点之一的“由实际问题列出一元二次方程”。通过上述情景分析,让学生小组讨论,然后列出方程。

  英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是就定义教定义。因此,我在课本的基础上,又补充第2个实例:

  要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛。比赛组织者应邀请多少个队参加比赛?

  这里我设计了三个问题帮助学生理解:①全部比赛共有多少场?

  ②如果邀请x个队比赛,每个队都要与其它队共赛多少场?③甲对与乙队,乙队与甲对的比赛是同一场比赛,所以全部比赛共有多少场呢?小组讨论,并列出方程。

  《新教学理念》指出:教师要把课堂还给学生,让学生成为课堂上真正的主人。同时用提问的方式引导学生,也让学生更有兴趣的去分析和发现问题,从而解决问题。

  (三)归纳小结

  在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征,同时一元一次方程相比较,找出两者的区别与联系,并类比一元一次方程的概念来得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:

  (1)是整式方程

  (2)只含有一个未知数

  (3)未知数的最高次数是2。因为任何一个一元一次方程都可

  以化为“ax+b=c(a≠0)”的形式,由此类比得出一元二次方程的一般形式为“ax2+bx+c=0(a≠0)”;并由一元一次方程项及系数的概念联想得出一元二次方程的项及系数的概念。

  (四)巩固练习

  为了使学生进一步明确一元二次方程的概念,我出示以下练习。判断下列各式是否是一元二次方程:

  ①x2+2x-y=3

  ②mn+3=0

  ③a2=4

  ④13x2+2x+1=0

  我让学生巩固练习,在巩固中提高。从学生心理条件来讲,喜欢参与一些有

  挑战性的活动,而老师又希望学生达到一定的熟练程度。因此通过这组练习加深学生对一元二次方程的理解和掌握。同时,对概念进行变式应用,可以开拓学生思维,培养学生的创新意识。

  紧接着,我遵循巩固与发展想结合的原则,先引导学生学习课本例题,接着进行赏析。这个例题已经明确让我们“将方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数”。其实,即使课本没有这样指明,或者说,课本安排这道例题的用意,就是让学生养成将一元二次方程化为一般形式后再进行研究的良好习惯。因为,所谓的“二次项、一次项和常数项”都是在一元二次方程化为一般形式后的项。

  接着,就是练习了。在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。

  (五)课堂小结

  最后我再引导学生做如下思考:

  (1)这节课你学会了什么数学知识?

  (2)这节课你又学会了什么数学方法?

  (3)通过这节课的学习,你觉得对你又有什么帮助呢?

  一节有趣的数学课,就是要照顾到每一个层次的学生,让每一个人都有一种成就感。因此整个过程我让学生同桌之间进行,以培养学生的归纳、概括的能力。

  (六)布置作业

  考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做、思考题三类。以便同时兼顾到学有困难和学有余力的学生。

  教学评价

  现代数学教学观念要求学生从“学会”向“会学”转变。根据《新课程标准》的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。

【一元二次方程教案】相关文章:

一元二次方程教案01-15

一元二次方程的解法教案12-30

实际问题与一元二次方程教案06-17

《用公式法解一元二次方程》教案03-29

《一元二次方程》教学反思03-30

《用一元二次方程解决问题》教案08-31

一元二次方程教学反思04-04

解一元二次方程教学反思04-01

一元二次方程的解法教学反思05-31