最小公倍数教案

时间:2023-01-20 10:07:32 教案 投诉 投稿

最小公倍数教案

  作为一位杰出的教职工,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。优秀的教案都具备一些什么特点呢?以下是小编收集整理的最小公倍数教案,希望对大家有所帮助。

最小公倍数教案

最小公倍数教案1

  说课:

  “公倍数与最小公倍数”是纯数学知识,对于小学生来讲是抽象的概念,因此通过情景设计----让学生在寻找最佳慰问点,以此来激发学生学习的兴趣并导入新课。

  由于学生在学习“公约数与最大公约数”时已掌握了枚举法、分解质因数及短除法,因此在设计本节课时意图让学生通过已有知识经验去探究新知,而且,在探究活动中让学生根据自己的需要、根据自己的实际知识面来选择探究的问题,这样处理更能激发学生学习的欲望,调动每一个学生学习的积极性。在成果汇报时,让学生站到讲台前,讲述自己对某一问题的理解,并通过实例来补充说明,这样可以培养学生的自信心。

  教学目标:

  1、理解公倍数、最小公倍数的意义;会用列举法、分解质因数、短除法求两个数的最小公倍数;会求是互质数或有倍数关系的两个数的最小公倍数。

  2、在知识的探究过程中,让每个学生体验成功的喜悦,并培养学生大胆质疑的习惯。

  教学过程:

  一、情景导入

  1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站, B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。

  2、在这里,我们找A、B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的'这几个数字表示的是什么呢?

  出示课题:公倍数

  谁能用自己的话说一说什么叫公倍数?

  这一个是最小的,我们又称它为什么?

  补充课题:最小公倍数

  谁能再来说一说什么叫最小公倍数?

  今天我们就来研究公倍数与最小公倍数。

  二、探究

  1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。

  2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P.69-- P.71。

  3、成果汇报:(由学生任选一种方法)

  (1)公倍数有多少个?

  (2)求最小公倍数的几种方法:

  ①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):

  ②分解质因数:如:12与30的最小公倍数(见上右图)

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。

  =2×3×2×5=60

  从这两个分解质因数的式子里你能看出12与30的最大公约数是几?

  最大公约数与最小公倍数之间有什么关系?参见下左图。

  最小公倍数是两个数的最大公约数与各自独有质因数的乘积。

  短除法:如求:36和45的最小公倍数,参见上右图。

  讨论:与求最大公约数比较有什么异同之处?

  短除法与分解质因数有什么联系?

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20;65和130;4和15;18和24。

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。

  4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?

  三、回家作业布置(感兴趣的同学做)

  世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。

  教学反思:

  我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。

最小公倍数教案2

  教学目标

  使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。

  教学重点、难点

  重点、难点:求两个数的公倍数和最小公倍数

  教具、学具准备

  教 学过程

  备 注

  一、问题情境引入

  师:五(2)班小天使出鹰假日小队有甲乙两个小组,他们约定甲组每6天到社区参加一次劳动,乙组每9人到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?

  (问题情境的材料可视学生实际情况作调整)

  二、新课展开

  1、建立公倍数、最小公倍数的概念。

  (1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。

  学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:

  生甲:我们画了一条表示天数的数轴然后分别找出甲组、乙组第一次同时去后过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。

  可由学生边讲边画出示图,也可由教师根据学生回答板书。(图略)

  教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?

  生甲:还会相遇,不过画图找太麻烦了。

  生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。

  教师板书学生思路:

  甲组经过:6天、12天、18天、28天、30天、36天......

  乙组经过:9天、18天、27天、36天、45天......

  所以经过18天、36天......他们再次相遇。......

  (2)师:(指板书)请同学们观察一下,甲组经过的天数、乙组经过的天数实际上是什么数?

  生:甲组、乙组经过的天数分别是6的倍数和9的`倍数。(教书调整板书)

  6的倍数:6、12、18、24、30、36......

  9的倍数:9、18、27、36、45......

  教学过程

  备 注

  师:上节课我们学习了公约数,最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?

  生讨论得出:18、36既是6的倍数,又是9的倍数,是6和9的公约数,即是6和9的公约数,18和9的公倍数中最小的,可以称为最小公倍数。

  (3)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)

  师:那么什么叫公倍数、最小公倍数?

  学生讨论后得出;几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

  师:有没有最大公约数,为什么?

  生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公约数还有54、72、90......无穷无尽。

  2、用列举法求两个数的公约数、最小公约数。

  (1)师:刚才我们找了6和9的公约数、最小公约数,你能再找一找6和4的公倍数、最小公倍数吗?

  做课本第57页练一练第1题,学生试算后,反馈。

  生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。

  教师随学生记叙板书;

  6的倍数有:6、12、18、24......

  4的倍数有:4、8、12、16、20、24......

  6和4的公约数有:12、24......

  6和4的最小公约数是12。

  (2)师生共同方法。

  (3)练习:完成课本练一练第2、3、4、5题。

  三、课堂

  通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等关概念外,还应注意学习方法,情感等方面的。)

  四、作业《作业本》

  从倍数着手,层层深入,得出公倍数与最小公倍数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。

  课后反思:

  激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的,包罗万象,既有对学习方法的,又有对学习情感的,也有对自己的鞭策鼓励。这样的,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。

最小公倍数教案3

  一、教材简析

  《最小公倍数》是人教版五年级下册第88—90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。

  二、教学目标及教学重、难点

  根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:

  1、理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。

  2、能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。教学重点:公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。

  教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

  三、设计理念

  数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。

  在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本。让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。

  四、教学过程

  (一)故事引入感知概念

  出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。

  根据学生的汇报,教师完成板书:

  巴依老爷的休息日4、8、12、16、20、24、28

  账房先生的休息日6、12、18、24、30

  他们共同休息日12、24

  最早的休息日12

  【设计意图】

  以故事的形式提出问题,让学生通过解决这个生动有趣的`实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。

  (二)加深理解总结方法

  1、公倍数和最小公倍数的概念教学

  从“巴依老爷的休息日”、“账房先生的休息日”、“他们共同休息日”、“最早的休息日”引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”)。教师完成板书

  巴依老爷的休息日(4的倍数)4、8、12、16、20、24、28账房先生的休息日(6的倍数)6、12、18、24、30??他们共同休息日(4和6的公倍数)12、24

  最早的休息日(4和6的最小公倍数)12

  【设计意图】

  怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。

  2、用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)

  【设计意图】

  根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。

  (三)巩固运用

  再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)

  出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?”问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)

  【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。

  (四)解决问题深化理解

  在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)

  【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。

最小公倍数教案4

  教材分析:

  该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

  学情分析:

  五年级学生的'生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  教学目标:

  1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

  2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。

  3、渗透集合思想,培养学生的抽象概括能力

  教学重点:

  公倍数与最小公倍数的概念建立。

  教学难点:

  运用公倍数与最小公倍数解决生活实际问题

  教法学法:

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

  教学过程:

  一、任务导学

  师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

  师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)

  师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

最小公倍数教案5

  教学目标

  1.掌握公倍数、最小公倍数两个概念.

  2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.

  教学重点

  建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.

  教学难点

  理解求两个数最小公倍数的算理.

  教学步骤

  一、铺垫孕伏.

  1.导入:这节课我们开始学习有关最小公倍数的知识.

  (板书:最小公倍数)

  2.复习倍数的概念.

  二、探究新知.

  教学例1

  例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?

  4的倍数有:4、8、12、16、20、24、28、32、36……

  6的倍数有:6、12、18、24、30、36……

  4和6的公倍数有:12、24、36……

  其中最小的一个是12.

  1、学生分组讨论总结公倍数、最小公倍数的意义.

  2、用集合图表示4和6的公倍数.

  3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?

  明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.

  4、反馈练习.

  把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.

  明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.

  (二)教学例2

  引入:我们用分解质因数的方法求两个数的最小公倍数.

  例2:求18和30的最小公倍数.

  1、用短除式分别把18和30分解质因数.

  板书:18=2×3×3

  30=2×3×5

  教师提问:18的.倍数必须包含哪些质因数?

  (18的倍数包含18的所有质因数)

  30的倍数必须包含哪些质因数?

  (30的倍数包含30的所有质因数)

  18和30的公倍数必须包含哪些质因数?

  (既要包含18的所有质因数,又要包含30的所有质因数)

  2、观察集合图:18和30的最小公倍数应包含哪些质因数?

  教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.

  3、小组讨论:如果少一个或多一个质因数行不行?

  教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.

  板书:

  18和30的最小公倍数是2×3×3×5=90

  4、反馈练习.

  (1)先把下面两个数分解质因数,再求出它们的最小公倍数.

  30=()×()×()

  42=()×()×()

  30和42的最小公倍数是()×()×()×()=()

  (2)A=2×2B=2×2×3

  A和B的最小公倍数是()×()×()=()

  (3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?

  可能错在哪里?

  5、求最小公倍数的一般书写格式.

  ①引导学生把两个短除式合并成一个.

  板书:

  ②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.

  ③反馈练习:求30和45的最小公倍数.

  ④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.

  ⑤反馈练习:求下面每组数的最小公倍数

  6和824和20xx和2116和72

  三、全课小结.

  今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.

  四、随堂练习

  1.填空.

  A=2×2×5

  B=()×5×()

  A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.

  2.判断.

  (1)两个数的积一定是这两个数的公倍数.()

  (2)两个数的积一定是这两个数的最小公倍数.()

  五、布置作业.

  求下面每组数的最小公倍数.

  12和1530和4036和5422和33

最小公倍数教案6

  教学内容:求两个数的最小公倍数

  教学目标:

  使学生理解、掌握求两个数的最小公倍数的方法,并能正确地,合理地求两个数的最小公倍数。

  教学过程:

  一、复习

  1、什么是公倍数,最小公倍数?

  2、写出12、30的公倍数和最小公倍数?

  二、教学新课

  1、提出课题:“求两个数的最小公倍数”

  2、把12、30和它们的最小公倍数60,分别分解质因数。

  212230260

  26315230

  3515

  5

  12=2×2×3

  30=2××3×5

  60=2×2×3×5

  观察上面各数分解质因数的情况,你发现了什么?

  (最小公倍数60的质因数里,包含了12和30公有的质因数2、3,还有12独有的质因数2,30独有的质因数5。)

  3、利用上面的情况,用简便方法求12和30的最小公倍数。

  21230………用公约数2除

  3615……….用公约数3除

  25……..只有公约数1,不必再除

  把所有的除数和商连乘起来,得到:

  12和30的最小公倍数是2×3×2×5=60,也可以这样表示:

  [12。,30]=2×3×2×5=60

  4、求两个数的最小公倍数,先用这两个数的()连续去除,一直除到所得的商只有公约数1,然后把所有的`()和()连乘起来。

  5、尝试练习

  求下面每组数的最小公倍数。

  12和16,33和22,16和20,36和54,30和45,10和15

  三、教学求倍数关系,互质关系的最小公倍数。

  在下面各组数中找出倍数关系,互质关系

  12和36,9和5,36和12,4和9,25和75,20和3,51和17,8和11

  1、倍数关系

  2、互质关系

  3、想一想

  (1)如果大数是小数的倍数关系,那么()就是这两个数的最小公倍数。

  (2)如果两个数是互质数,那么这两个数的()就是它们的最小公倍数。

  四、巩固练习

  书本第56页1至4题。

  五、归纳

  六、布置作业

  反思:让学生了解求两个数的最小公倍数为什么要把两个数的公约数还要各自独有的约数。这是本节课的重点。

最小公倍数教案7

  教学内容:

  苏教版义务教育教科书《数学>五年级下册第43~44页例1 1、例1 2和“练一练’’,第46练习七第9~10题。

  教学目标:

  1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。

  2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

  3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。

  教学重点:

  求两个数的公倍数和最小公倍数。

  教学难点:

  理解求公倍数和最小公倍数的方法。

  教学准备:

  小黑板

  教学过程:

  一、揭示课题

  揭题:我们已经学习了公因数和最大公因数,今天这节课学习公倍数和最小公倍数。(板书课题)

  提问:看了这个课题,你有什么想法? 你对公倍数有哪些想法?对最小公倍数呢?

  引导:大家交流的想法,实际上是联系公因数和最大公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)

  二、学习新知

  1.认识公倍数。

  (1)出示例11,让学生说说知道了些什么,提出的什么问题。

  引导:用长3厘米、宽2厘米的长方形铺两个正方形,哪个正好铺满,哪个不能铺满?看图想一想是为什么,你能不能根据自己的想法写出算式来说明理由,并和同桌互相说一说?

  交流:哪个正方形能正好铺满,哪个不能铺满?

  提问:联系铺满长方形的图形,观察列出的算式,你觉得6和3、2这两个数有怎样的关系?

  说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。

  (2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。

  交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米的正方形)

  你发现正方形的边长厘米数只要满足什么条件,就能用这个长方形正好铺满? 像这样能被正好铺满的正方形有多少个,能找得完吗?

  (3) 引导:现在你发现,6、12、18、24这些数和2、3都有什么关系?说说你的想法。 指出:同学们的理解还真不错!大家发现6、12、18、24这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)

  追问:8是2和3的公倍数吗?为什么不是?

  那哪些数是2和3的公倍数呢?(板书:6,12 ,18,24是2和3的公倍数)为什么公倍数里要用省略号?你还能任意再说几个2和3的公倍数吗?

  2.求公倍数。

  出示例12,明确要找6和9的公倍数和最小的公倍数。

  让学生独立找出6和9的公倍数和最小的'公倍数,与同桌交流自己的 方法。 交流:你是怎样找出6和9的公倍数和最小的公倍数的?

  结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。

  小结:大家用不同的方法找出了6和9的公倍数有18,36,54其中’最小的是18。 18是6和9的最小公倍数。

  追问:有没有最大的公倍数?为什么?

  说明:两个数的公倍数有无数个,没有最大的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)

  3.用集合图表示公倍数。

  引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。 学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。

  让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。

  指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。

  三、巩固深化

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习七第9题。

  4.做练习七第10题。

  四、总结提升

  引导:今今天学习的是什么内容?什么是两个数的公倍数和最小公倍数? 可以怎样找两个数的公倍数和最小公倍数?写公倍数时要注意什么?

最小公倍数教案8

  教学目标:

  1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

  2.培养学生的观察能力、分析能力和归纳概括能力。

  3.培养学生良好的学习习惯。

  教学重点:

使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

  教学难点:

使学生学会并理解求两个特殊数的最小公倍数的方法。

  教学实录:

  一、引入:

  师:同学们,现在是什么季节?

  生:春天。

  师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。

  点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值

  二、新授

  1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?

  生①:解决了。

  生②:没有解决,过一段时间,它们会一起回来的。

  师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。

  (2)学生讨论

  (3)学生汇报

  师:哪个小组来展示你们的研究成果?

  生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。

  师:这种方法形象直观,非常好,还有不同和方法吗?

  生②:用数轴证明。(学生在展台演示)

  师:大家认为这种方法怎么样?

  生:简洁清楚。

  师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?

  生③:找倍数的方法证明。30的倍数有:30 60 90 120;40的倍数有:40 80 120 ,我发现它们有共同的倍数120,所以第120分钟它们会相撞。

  板书:30的倍数:30 60 90 120

  40的倍数:40 80 120

  (4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。

  [点评:培养学生的创新精神,首先要张扬学生的个性。教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法。]

  2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。

  学生验证。

  学生汇报。

  生:60的倍数有:60 120 180;90的倍数有:90 180。所以在180分钟时它们会相遇。

  师:恩,还是不行,我们发现60和90也有公倍数。

  3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。

  生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。

  师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?

  生:两个数公有的倍数就是他们的公倍数。

  师:公倍数有多少个?

  生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

  师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

  生①:举例:2、4和5的公倍数是20。

  生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

  师:那你能找出最大的或最小的公倍数吗?

  生:没有最大的,只有最小的。

  师:为什么?

  生:因为公倍数的个数是无限的,所以没有最大公倍数。

  点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。

  4.找最小公倍数

  4和8 5和10 6和15 6和9 4和5

  让学生找出每组数的公倍数。

  师:4和8你们怎么找得这么快?能给大家说一说你的方法吗?

  生:大数要是小数的倍数,大数就是它们的公倍数。

  师:你们还能发现了什么?

  小组讨论,之后汇报。

  生①:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

  生②:5和10的最小公倍数是10,并不是它们的乘积。

  生③:4和5两个数是互质数。互质数的最小公倍数师它们的乘积。

  点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。

  三、总结

  师:通过刚才的学习与练习,我们学会了用列举法求两个数的最小公倍数并且发现了一些特殊数求最小公倍数的方法。

  设计思路:

  “最大公倍数”是一节概念课,学起来比较枯燥。本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计强调了学习方法的'借鉴,让学生借鉴学习最大公因数的方法研究最小公倍数的意义,一开课,我就通过情景导入,既激发了学生的学习兴趣,又使学生在解决蜜蜂回巢的问题中初步理解公倍数和最小公倍数的概念,学会求最小公倍数的基本方法。在找公倍数的过程中,呈现出找法的多样性,引导学生分析出各种方法的优劣,促进了学生思维的个性化发展;然后变换情景中的问题作为进一步学习的材料,引导学生通过多个实例发现其中的规律,加深对公倍数和最小公倍数的概念的理解;最后,通过寻找最小公倍数的练习探索求特殊关系两个数最小公倍数的方法,加深了学生的理解与应用。同时,使学生初步感知从特殊到一般的规律,培养同学之间的协作精神。

  评析:本节课虽是概念教学,但学生思维活跃,情绪高昂,学得生动有趣。

  1. 结合学生实际创设问题情景。“最小公倍数”这一课,与学生的生活实际看似无多大联系,在本堂课的教学中,教师通过对教材内容作适当补充调整,为学生提供了生动有趣的信息,从而构建了一种解决问题的数学课堂。先以故事的形式提出问题,为学生提供了一个“公倍数”的实物模型,让学生借助具体实例,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。在此基础上,引导学生走进数学,抽象出公倍数、最小公倍数等数学概念。这样的设计,不仅激发了学生学习的强烈兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高与生活的特点。

  2. 让学生经历知识的形成过程。本节课,教师充分体现了这一新课程理念。如,在获取公倍数、最小公倍数的特征这个环节中,教师为学生创设了一定的情景,然后放手让学生合作解决,教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法,在此基础上抽象出公倍数、最小公倍数的概念。在初步获得所学知识后,教师又巧妙地引发学生更深层次地思考,使学生产生了深刻的体验,从中进一步感悟并理解公倍数和最小公倍数的概念。同时通过自主探究发现互质的两个数的最小公倍数是这两个数的乘积;倍数关系的两个数的最小公倍数是其中较大数。(作者:山东省济南市市中区教研室 董惠平 山东省济南市胜利大街小学 唐忠亮 吴颖昕 王婷)

最小公倍数教案9

  【教学内容】:

  人教版五年级下册教科书第88—90页内容。

  【设计理念】:

  数学于生活,有作用于生活。在本堂课的教学,我把数学与生活紧密的联系在一起,从而构建一种生活化的数学课堂。让学生根据现实生活中一些能够反映公倍数、最小公倍数的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验,进而激发学生兴趣,去解决这些实际问题,真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。真正达到“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”。

  【教学目标】:

  1、知识与技能:通过创设具体情境(三个情景片断)和操作活动,使学生认识并理解公倍数和最小公倍数的概念,初步了解两个数的公倍数和最小公倍数在现实生活中的应用,会找两个数的公倍数和它们的最小公倍数。

  2、过程与方法:通过自主探索解决问题的方法,使学生经历探索找两个数的公倍数和最小公倍数的过程,鼓励学生思考多样化,简洁化,进行有条理的思考。

  3、情感态度价值观:在自主探索与合作交流的.过程中,进一步发展与同伴的合作交流能力,获得成功的体验。使学生感受到数学于生活,体会公倍数和最小公倍数在生活中的实际价值。

  【教学重点】:

  1、理解公倍数与最小公倍数的概念

  2、能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

  【教学难点】:

  能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

  【教具、学具准备】:

  多媒体、日历。

最小公倍数教案10

  第三课时

  教学内容:求三个数的最小公倍数

  教学目标:

  使学生学会求三个数的最小公倍数的方法,并能正确地,合理地求三个数的最小公倍数。

  教学过程:

  一、复习

  什么是公倍数、最小公倍数

  怎样求两个数的最小公倍数

  求两个数的最小公倍数与最大公约数有什么联系

  当两个数是倍数关系时,大数就是这两个数的最小公倍数,小数就是这两个数的最大公约数。

  当两个数是互质数时,这两个数的最大公约数是1,这两个数的最小公倍数是这两个数的乘积。

  二、揭示课题

  这节课我们学习求三个数的最小公倍数。

  三、教学新课

  1、例3求12、16和18的最小公倍数。

  2、学生自学完成。

  3、对不懂的问题提出疑问。

  4、注意:用短除法求三个数的最小公倍数时,先要用三个数的公约数去除,然后再用任意两个数的.公约数去除。最后的结果要两两互质。

  5、试一试

  求15、30和60,3.4和7的最小公倍数。

  计算后,你发现了什么?

  (1)其中一个数是其他两个数的倍数,那么最大的数就是这三个数的最小公倍数。

  (2)当三个数是互质数时,三个数的乘积是这三个数的最小公倍数。

  四、巩固练习

  书本第57-58页

  五、反馈

  六、布置作业

  反思:本节课的难点是让学生知道为什么在求出三个数的公约数后还要求出两个数的公约数。然后把所有的除数和商乘起来。

最小公倍数教案11

  课题:找最小公倍数

  教学目标:

  1.结合具体情境,体会公倍数和最小公倍数的应用,并会利用例举法等方法找出两个数的公倍数和最小公倍数。

  2.培养学生分析归纳能力以及主动探究的精神。

  教学重点:理解两个数的公倍数和最小公倍数的意义

  教学难点:探究赵公倍数和最小公倍数的方法

  教具:多媒体课件

  教学过程:

  一.创设情境、引入新课

  1.课件展示蜜蜂采蜜

  师:同学们看看这是什么?

  生:蜜蜂。

  师:蜜蜂在干嘛呀?

  生:在采蜜。

  师:嗯,是的。那你们看现在蜜蜂王国日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来都非常拥挤,这可怎么办呢?

  (生自由发表意见,各抒己见)

  2.师:现在呢,有只小蜜蜂呢提出了这么一计策,把这些蜜蜂分成两个组,一组四分钟回来一次,一组六分钟回来一次,你们觉得这个问题完全解决了吗?同学们想一想。

  (片刻之后)师:同学们把书翻到第六十页,在这个表中把4的倍数用标出来,用 把6的倍数标出来。

  两分钟之后展示一位同学所标出来的。

  3.师:那4的倍数有哪些?

  生:4、8、12、16、20、24、28、32、36、40、44、48。

  师:那6的倍数又有哪些呢?

  生:6、12、18、24、30、36、42、48。

  又标了的有哪些?

  生:12、24、36、48。

  师:12、24、36、48既是4的倍数又是6的倍数,它们就叫做4和6的公倍数。

  师:那么我们的两组蜜蜂在这些时候又会碰上一起回家。那它们最快是在什么时候相遇呢?

  生:12分钟。

  师:12是4和6的最小公倍数。

  4.师:刚才我们是在50以内(包括50)的数中找4和6的倍数,如果继续找下去,还有吗?有多少个?

  生:有,有无数个。

  师:你能找出最大的一个吗?

  生:不能。

  师:4和6没有最大的公倍数,但有最小的公倍数,它就是我们这节课要学习的内容——最小公倍数。

  二.巩固练习

  1.师:现在如果把蜜蜂分成两组,一组6分钟回来一次,一组9分钟

  回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)

  师:50以内6的倍数有哪些?

  生:6、12、18、24、30、36、42、48。

  师:50以内9的倍数又有哪些?

  生:9、18、27、36、45。

  师:50以内6和9的公倍数有哪些?

  生:18和36。

  师:它们的最小公倍数是多少呢?

  生:18。

  师:我们的两组蜜蜂最快在18分钟的时候相遇了。

  2.小猴子要过河了,小猴子现在要做从三块石头上走过去,可是石头都有密码的,你们可以帮助小猴子顺利过河吗?

  (出示课件,50以内9的倍数、50以内5的倍数、50以内9和5的公倍数)学生 独立完成再汇报。(书上61页练一练的第2题) 师:刚刚我们都是用的什么方法来找最小公倍数的?

  生:列举法。

  师:那现在还有一种方法找最小公倍数,短除法。

  2 18 24

  9 12

  3 4

  18和24的.最大公因数就是:2×3=6.

  18和24的最小公倍数就是:2×3×3×4=72。

  3.求下列数的最小公倍数

  3和6 10和89和4

  4.联系实际,解决问题

  师:看看,这是什么?

  生:跑道。

  师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。

  (1)我跑一圈用6分钟

  (2)我跑一圈用4分钟

  (3)我跑一圈用8分钟

  师:你能提出问题吗?

  生1:他们同时出发男孩和女孩最快什么时候相遇?

  生2:他们同时出发男孩和老师最快什么时候相遇?

  生3:他们同时出发老师和女孩最快什么时候相遇?

  (独立完成)

  三.本堂小结

  师:通过这节课的学习你有什么收获?

  生先谈收获师再总结

  1.同学们都很好的掌握了用列举法找两个数的公倍数和最小公倍数的方法。

  2.学会了用短除法求两个数的最小公倍数。

最小公倍数教案12

  教学目标:

  1、理解公倍数,最小公倍数的意义.

  2、会用列举法,分解质因数,短除法求两个数的最小公倍数.

  3、会求是互质数或有倍数关系的两个数的最小公倍数.

  4、在知识的探究过程中,培养大胆质疑的习惯.

  教学过程:

  一、导入:

  同学们,昨天我们班在舞台旁30米长的花带上每隔2米种一株桂花,树种的太密了,下午要重种,改成每隔3米种一株。现在大家出出主意,下午怎样种才能又快又好的完成任务呢?我一边说一边把课前准备好的图片分给各小组,让各小组讨论交流后交由小组长汇报本组的方案。各组讨论后出现以下三种情况:

  1、全部拔起,重新测量后再种

  2、头尾不动,把中间的全部拔起,重新测量后再种

  3、除头、尾不动外,还有6米、12米、18米、24米共六株不用拔,只需拔10株,在每两株中间种一株,这样重种5株就可以啦。

  师:刚才有4组采用了第三种方案该种的,这种方案确实比前两种方案要好,现在请你们说说是怎么发现这些株数不用重种的?

  生:通过测量的方法发现的。还发现了6、12不仅是2的倍数同时也是3的倍数,所以觉得是2和3的公倍数就都不用动。

  师:你们怎么想到“公倍数”这么个好听的名字的?

  生:我们前面学习的几个公有的因数叫公因数,最大的叫最大公因数。那现在两个公有倍数就叫公倍数,30是最大的就叫最大公倍数。

  师:大家还有不同的意见吗?

  生:(议论纷纷)这个不是最大的,还有更大的。。。。

  师:确实如此,大家真能干!这节课我们就一起来探究这个问题。(出示课题:公倍数最小公倍数)

  师:谁能用自己的话说一说什么叫公倍数

  (几个数共有的倍数,叫做这几个数的公倍数)

  这一个是最小的,我们又称它为什么

  补充课题:最小公倍数谁能再来说一说什么叫最小公倍数

  (其中最小的一个,叫做这几个数的最小公倍数)

  今天我们就来研究公倍数与最小公倍数.

  二、探究:

  看了这个课题,你想在这节课中了解些什么请学生写在纸上,并贴到黑板上.

  (为什么不求最大公倍数求最小公倍数有哪些方法 哪些情况下可以很快说出两个数的最小公倍数是几 等)

  四人一组合作解决1~2个问题,举例说明,组长笔录.可以翻书请教,在P.69~71.

  成果汇报:

  (1)公倍数有多少个 (公倍数的个数是无限的,没有最大公倍数.)

  (2)求最小公倍数的几种方法:

  ①枚举法:

  根据学生举例填写集合圈并说出各部分所表示的内容:

  ②分解质因数:如:12与30的'最小公倍数

  12= 2 × 2 × 3

  30= 2 × 3 × 5

  60= 2 × 3 × 2 × 5

  12独有的质因数 30独有的质因数

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积.

  [12,30]=2×3×2×5=60

  从这两个分解质因数的式子里你能看出12于30的最大公约数是几

  最大公约数与最小公倍数之间有什么关系

  (12= 6 × 2

  30= 6 × 5

  6 × 2 × 5 = 60)

  最大公因数 各自独有的质因数

  最小公倍数是两个数的最大公因数与各自独有质因数的乘积.

  ③短除法:如:36和45的最小公倍数

  3 36 45 用公因数去除

  3 12 15

  4 5 除到商是互质数为止

  [36,45]=3×3×4×5=180

  讨论:与求最大公因数比较有什么异同之处

  (相同处:都用公因数去除, 除到商是互质数为止.

  不同处:求最大公因数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数.)

  短除法与分解质因数有什么联系

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20 65和130 4和15 18和24

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;

  当两个数有倍数关系时,最小公倍数是较大的数.

  4、总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问

最小公倍数教案13

  教学目标:

  1、理解两个数的公倍数和最小公倍数的意义。

  2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。

  3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。

  教学重点:理解两个数的公倍数和最小公倍数的意义。

  教学难点:探究找公倍数和最小公倍数的方法。

  教具准备:多媒体课件

  教学过程

  一、创设情境

  教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

  请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。

  根据学生的回答,教师逐步完成以下板书:

  妈妈的休息日:4、8、12、16、20、24、28

  爸爸的休息日:6、12、18、24、30

  他们共同的休息日:12、24

  其中最早的一天:12

  二、尝试探讨

  1、几个数的公倍数和最小公倍数的概念教学

  我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?

  师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)

  师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)

  我们再来看“爸爸的休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)

  师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?

  师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)

  师:刚才我们从30以内的`数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)

  师:这“其中最早的一天”,我们一起给它起个名字,叫什么?

  (根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)

  板书:

  4的倍数:4、8、12、16、20、24、28、……

  6的倍数:6、12、18、24、30、……

  4和6的公倍数:12、24、……

  4和6的最小公倍数:12

  教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示:

  出示集合图:

  4的倍数6的倍数4的倍数6的倍数

  4和6的公倍数

  三、深化概念

  师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。

  请同学们把书翻到51页看例子,填一填

  师:什么是公倍数?

  生:两个数公有的倍数就是他们的公倍数。

  师:公倍数有多少个?

  生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

  师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

  生①:举例:2、4和5的公倍数是20。

  生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

  师:那你能找出最大的或最小的公倍数吗?

  生:没有最大的,只有最小的。

  师:为什么?

  生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?

  板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  这就是我们今天要学习的内容。(揭示课题:最小公倍数)

  师:那么我们刚才是怎么找出最小公倍数的呢?

  生说,师写(列举法)

  [点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]

  4.[出示]找最小公倍数

  2和69和186和245和353和9

  3和57和54和99和11

  让学生找出每组数的公倍数。

  师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?

  小组讨论,之后汇报。

  生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

  生:2和6的最小公倍数是12,并不是它们的乘积。

  生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。

  师:你们还能发现了什么?

  生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。

  师总结

  师;你们能举一些这类的例子吗?

  5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数

  3和610和83和95和46和59和42和76和8

  [点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]

  四、利用最小公倍数解决生活问题,

  出示:

  (1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”

  齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。

  (2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?

  (设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)

  五、小结

  今天学习了什么内容?什么叫最小公倍数?

  我们今天学习了求最小公倍数的哪几种情况?

  怎样才能很快地求出它们的最小公倍数?

  板书:找最小公倍数

  一般关系列举法

  倍数关系较大数

  特殊关系

  互质关系两数的乘积

最小公倍数教案14

  教学目标:

  理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。

  教学重点:最小公倍数的概念。

  教学难点:两个数最小公倍数的算理。

  教法:新授、小组合作、自主探究

  学法:练习、自学、小组合作

  课前准备:课件

  教学过程:

  一、定向导学(3分钟)

  (一)复习

  1、什么是最大公因数?

  2、最大公因数与两个数的质因数之间有什么关系?

  3、怎样求两个数的最大公约数?

  (二)出示目标

  理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。

  二、自主学习(6分钟)

  自学内容:68-69页内容

  自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)

  自学思考:

  1、什么是公倍数?最小公倍数?并背诵。

  2、如何求两个数的最小公倍数?

  3、两个数的公倍数和他们的最小公倍数之间有什么关系?

  4、两个数有没有最大的公倍数?为什么?

  三、合作交流(15分钟)

  1.最小公倍数的概念。

  (1)学生先独立思考。

  (2)再合作讨论自己是如何做的。

  (3)全班交流。

  2.小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的公倍数。其中,6 是最小的公倍数,叫做它们的`最小公倍数。

  3.举例说明:求 6 和 8 的最小公倍数。

  (1)学生独立完成,全班交流。

  (2)学生的方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

  例如:6 的倍数:6,12,18,24,30,36,42,48,…

  8 的倍数:8,16,24,32,40,48,…

  6 和 8 公倍数:24,48,…

  6 和 8 的最小公倍数:24

  ②大数翻倍法:8,16,24,…

  6 和 8 的最小公倍数:24

  ③分解质因数法:

  8=2×2×2 6=2×3

  8 和 6 的最小公倍数包括 8 和 6 的公有质因数和各自独有的质因数。

  ④画图法。

  4.用喜欢的方法求 12 和 15 的最小公倍数。

  学生汇报。

  5.用分解质因数法求 18 和 8 的最小公倍数。

  四、质疑探究(4分)

  求下面每组数的最小公倍数,看看有什么发现?

  4 和 5 13 和 7 48 和 16 17 和 85

  小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。

  五、小结检测(6分钟)

  (一)小结:谈谈你本节课的收获?

  (二)检测:

  1.求下面每组数的最小公倍数。

  [15,9] [18,24] [18,27] [14,21]

  [32,40] [25,45] [26,39] [54,63]

  2.下面的说法对吗? 说一说你的理由。

  (1)两个数的最小公倍数一定比这两个数都大。

  (2)两个数的积一定是这两个数的公倍数。

  六、堂清(6分钟)

  找出下列每组数的最小公倍数。你发现了什么?

  3和6 2和8 5和6 4和9 3和 9 5和10

最小公倍数教案15

  课题一:两个数的

  教学要求 ①使学生理解公倍数、的概念。②使学生初步掌握求两个数的的方法。③培养学生抽象概括的能力和实际操作的能力。

  教学重点 理解公倍数、的概念。

  教学难点 求两个数的的方法。

  教学用具 投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和8 6和11 13和26 17和51

  2、求30和42的最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1 及画好的数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的倍数是哪几个?

  ②其中最小的一个是多少?有无最大的?为什么?

  (3)归纳并板书。

  ①4 和6公有的倍数有:12、24、36

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数 6的倍数

  4 8 16 20 12 24 6 8 30

  4 和6 的公倍数

  (4)抽象、概括。

  ①什么是公倍数、?(让学生说)

  ②指导学生看教材第71页有关公倍数、的概念。

  (5)尝试练习。

  做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  2 18 2 30

  3 9 3 15

  3 5

  18=233

  30=235

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的公倍数必须包含哪些质因数?(2335)

  (4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的`是:

  2335=90

  (5)教学求的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出了?

  (6)尝试练习。

  做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求的方法。

  ①谁能说说求的方法。

  ②指导学生看第74页求两个数的的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

【最小公倍数教案】相关文章:

《最小公倍数》教案03-03

公倍数与最小公倍数教案02-26

《最小公倍数》教案9篇04-04

《最小公倍数》教案范文5篇04-12

有关《最小公倍数》教案4篇04-22

【推荐】《最小公倍数》教案四篇04-27

《最小公倍数》教案汇编八篇04-22

《最小公倍数》教案范文八篇04-18

《最小公倍数》教案合集九篇04-18