质数与合数的教案

时间:2023-01-21 13:28:59 教案 投诉 投稿

质数与合数的教案

  在教学工作者实际的教学活动中,常常要写一份优秀的教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?以下是小编为大家整理的质数与合数的教案,仅供参考,大家一起来看看吧。

质数与合数的教案

质数与合数的教案1

  【教学内容】 人教版五年级数学下册第二单元质数和合数例1。

  【教学目标设计

  1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。

  2、过程与方法:采用探究式学习法,通过观察、自主学习-合作、交流验证-分类、比较-抽象-归纳总结-巩固 。 提高学习过程,培养学生观察和概括能力,培养学生积极探究的意识。

  3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。

  【教学重难点】

  1. 掌握质数、合数的概念。

  2. 正确地判断一个数是质数还是合数?

  【教具学具准备】:课件

  教学过程:

  一. 导入新课:

  1.导入课题:前面我们学习了奇数和偶数。那么自然数还有没有其他的分法?今天这节课我们就一起来研究“质数与合数”(板书课题)

  2.说出自己的学号、爸爸、妈妈、爷爷或奶奶的年龄,老师判断这个数是质数还是合数?

  3.激发兴趣。

  二.探究新知。

  1.说出1~20各数的因数。(课件出示,开火车的形式)

  2.观察思考 这些数的因数的个数一样多吗?(生:不一样)

  3.师:你能把这些数按因数的个数进行分类吗? ( 学生讨论,分类 )

  4.学生报结果(学生完成表格)

  5. 观察比较,发现特点,归纳概念。

  (1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数的个数有什么特点?

  一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

  (2)师:观察4,6,8,9,10,12,14,15,16,18,20这几个数的因数的个数有什么特点?

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  (3)师:1既不是质数,也不是合数。

  6.最小的质数是几?有没有最大的质数?最小的合数是几?有没有最大的'合数?

  7.展示老师和学生制作的思维导图。

  8.判断自己的学号是质数还是合数?

  三.自学例1:

  1.指名汇报预习的结果。

  2.质疑。

  3.找质数的方法是:筛选法。

  4.修改自己圈的质数。

  5.出示质数歌。

  四.智慧大闯关:

  1.判断下面的数字是质数还是合数?

  (1)全年12个月,大月有31天,小月是30天,平年2月是28天, 闰年2月是29天。

  (2)五(1)班上学期有52人,这学期又转来1名学生,现在共53人。

  2. 下面的说法正确吗?说一说你的理由。

  (1)所有的奇数都是质数。 ( )

  (2)所有的偶数都是合数。 ( )

  (3)在1,2,3,4,5,…中,除了质数以外都是合数。( )

  (4)两个质数的和是偶数。 ( )

  3.猜数。

  4.猜一猜老师的电话号码是多少?

  (1)是奇数,但不是质数也不是合数。

  (2)比最小的质数大1。

  (3)比最小的合数大2。

  (4)10以内最大的奇数。

  (5)是奇数,但不是质数也不是合数。

  (6)10以内既是奇数,又是合数。

  (7)和第6个数相同。

  (8)10以内最大的质数。

  (9)10以内最大的偶数。

  (10)和第一个数相同。

  (11)是最小的偶数。

  5.数学游戏。

  五.数学文化:

  结合数学文化进行思想教育。

质数与合数的教案2

  教学目标:

  1、掌握质数和合数的概念,并知道它们之间的联系和区别。

  2、能够判断一个数是质数还是合数。

  教学重难点:

  质数和合数的概念。根据概念判断一个数是质数还是合数。

  教学准备:

  教学课件

  教学互动过程:

  一、创设情景,引入课题。

  1、简单回顾因数和倍数的知识。

  2、让学生列出1—20各数的因数,小组比一比,看谁列得快。

  3、请同学们观察自己列出的这些数的因数,看看它们因数的个数有什么特点。(小组合作探究、讨论、汇报)

  4、让学生按照汇报情况把这些数进行分类。

  5、引出质数和合数的概念:因数只有1和它本身的数叫质数(也叫素数);除1和它本身以外,还有其他因数的数叫合数。(同时板书)

  明确质数和合数的概念,结合刚才的分类进行初步理解。

  二、学习质数和合数

  1、在刚才的'分类中,1好象没有被分到哪一类,那么1是质数还是合数呢?

  2、了解了质数和合数的概念,现在同学们来判断一下,10以内的数中,哪些是质数,哪些是合数?

  学生独立思考,根据概念判断,踊跃汇报。

  3、组织学生做“我说你判断”的游戏,同桌之间互相说出一个数,请对方根据概念判断其为质数还是合数。

  4、我们已经找出了10以内的质数,那么,大家能找出100以内的质数吗?

  小组讨论找100以内的质数的方法,根据找10以内的质数的方法找,发现用这种方法找太慢。

  5、对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?

  6、下面同学们就用排除法来找一找100以内的质数。

  小组讨论,合作探究,商讨寻找质数的方案。

  7、同学们的方案真是严密呀,一个都不漏掉。现在同学们把课本24页表格中的自然数用排除法找出质数吧。

  按照小组讨论的方案依次划掉不是质数的数,完整划出100以内自然数中的质数。

  三、阅读材料,知识拓展,进行课堂练习。

  1、让学生阅读教材第24页阅读材料“分解质因数”,了解如何对一个数分解质因数。

  学生阅读材料,明确质因数的概念,知道如何对一个数进行分解质因数:把一个合数分解成几个质数的积。

  2、说出几个合数,让学生对这几个数进行分解质因数:36、42、144、228。

  3、让学生做练习四第1、2、3、题。

  (教师巡视,了解学生对知识的掌握情况,个别指导。)

  四、总结

  组织学生说说这节课学到了哪些知识,以及有些什么收获。

  板书设计:

  质数和合数

  因数只有1和它本身的数叫质数(也叫素数)。

  除1和它本身以外,还有其他因数的数叫合数。

  规定:1不是质数,也不是合数。

  10以内的自然数:2、3、5、7是质数;4、6、8、9、10是合数。

质数与合数的教案3

  【教学内容】

  质数和合数(课本第14页例1及第16页练习四1~3题)。

  【教学目标】

  1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2.知道100以内的质数,熟悉20以内的质数。

  3.培养学生自主探索、独立思考、合作交流的能力。

  4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  【重点难点】

  质数、合数的意义。

  教学过程:

  【复习导入】

  1.什么叫因数?

  2.自然数分几类?(奇数和偶数)

  教师:自然数还有一种新的'分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  【新课讲授】

  1.学习质数、合数的概念。

  (1)写出1 ~20各数的因数。(学生动手完成)

  点四位学生上黑板写,教师注意指导。

  (2)根据写出的因数的个数进行分类。(填写下表)

  (3)教学质数和合数概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

  如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)

  2.教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  17 22 29 35 37 87 93 96

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:17 29 37

  合数:22 35 87 93 96

  3.出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。

  ③注意1既不是质数,也不是合数。

  【课堂作业】

  完成教材第16页练习四的第1~3题。

  【课堂小结】

  这节课,同学们又学到了什么新的本领?学生畅谈所得。

  教学板书:

  质数和合数

  一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  1既不是质数,也不是合数。

  教学反思:

  教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

质数与合数的教案4

  教学目标:

  1、创设情境,让学生经过探索理解质数和合数的概念,并能判断质数合数。

  2、培养学生自主探索、独立思考、合作交流的能力。

  3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力

  教学重难点:理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。

  教学过程:

  一、课前谈话

  师:你们知道吗?数学在生活中真的是无处不在,如果把你们学号当成一个数,谁能试着用你学过的整除知识描述你的'数?

  二、教学过程:

  (一)情境引入:

  (1)把你的学号看成一个数,这个数是几,你手里就有多少个这样小正方形。(摆上正方形)就用他们拼出新的长正方形。因为拼起来很烦琐,所以把你想到的拼的结果画到方格纸上(摆方格纸)在图形中写上这个数,还要标上长宽或边长(举例)

  教师提示:(同时演示)比如我的数是40,我就用40个小方格,可以拼出这样的85和58的长方形,别看摆法不同,但属于同一种的

  (2)在3分钟内,我们比一比看谁拼得最多,谁就是冠军。

  (3)学生反馈汇报:谁拼得多?还有更多的吗?

  生反馈24号4种,并验证

  (4)看来24号同学是这次比赛的冠军。是最聪明的,你们同意吗?找个代表说说理由。

  (5)验证刚才总结出的结论

  (二)揭示质数、合数

  (1)为什么这些数只能拼出一种来,这些数有什么共同点

  (2)拼出不只一种的都有谁, 为什么这些数拼出的不止一种呢?这些数又有什么共同点呢?

  (3)投影概念读一读

  (4)研究数字1

  揭示:1既不是质数也不是合数(板书)读一读

  (5)小练习:现在我可以说自然数中不是质数就是合数,对吗?

  三、巩固练习,加深认识。

  出示学生表

  1、抢答练习:一些数快速判断质数合数

  2.判断

  3.猜学号认同学

  4.自我介绍

  2、出示哥德巴赫猜想

  四、小结收获

  板书设计:

  质数合数

  只有1和它本身没有其他约数叫质数

  除了1和它本身还有其他约数叫合数

质数与合数的教案5

  在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。

  学情分析

  1、学生对于抽象概念的学习积极性不高,理解概念和适时判断的能力还不强;

  2、学生观察1至20各数因数个数的规律还存在困难,对于概念的理解和判断会很模糊。

  教学目标

  1、帮助学生理解质数、合数的概念,熟记20以内的质数,能准确判断100以内的数是质数,还是合数。

  2、组织学生通过观察分析、动手操作、合作交流等方式理解概念、感受数学。

  3、活化抽象的概念,增进学生应用数学的.意识,激发学生学习数学的热情。

  教学重点和难点

  1、质数、合数的意义。

  2、质数、合数与奇数、偶数的区别。

质数与合数的教案6

  教学内容:

  人教版九年义务教育六年制小学数学第十册 P58~59页

  教学目标:

  1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。

  2、培养学生观察、比较、概括和判断的能力。

  3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。

  教学重点:

  理解质数和合数的意义。

  教学难点:

  判断一个数是质数还是合数的方法。

  教具:

  多媒体课件。

  教学过程:

  一、准备复习,创设情境。

  1、求7和10的约数。

  2、25有几个约数?

  二、探究发现,理解新知。

  (一)教学例1

  1、出示例1,写出下面每个数所有的约数(1~12)。

  (1)先小组合作完成例一,分别填出每个数的所有的约数,并指出各有几个约数。

  (2)例1反馈。

  (3)同学们观察一下这些数约数的特点:思考:在自然数范围内,按照每个数的约数个数的特点进行分类,可以分为哪几类?先独立分类,再小组交流。

  (4)学生汇报分类情况。

  2、比较每类数约数的特点,教学质数与合数的`定义。

  (1)先观察有2个约数的数。谁能发现,它们的约数有什么特点呢?归纳特点,给出质数的定义。

  (2)第三种类型的数与质数的约数比较,又有什么不同?概括合数的定义。

  (3)1既不是质数,也不是合数。

  (4)举出质数的例子?

  (5)举出合数的例子。

  3、自然数按照每个数的约数的多少,又可以怎样分类?

  (二)教学例2

  1、出示例2。判断下面各数,哪些是质数,哪些是合数?

  17、22、29、35、37、87。

  (1)同桌先交流一下,再汇报。

  (2)37为什么是质数?87为什么是合数?

  (3)小结。

  (三)看书质疑

  (四)游戏。

  (五)出示100以内质数表。学生练习记质数。

  三、巩固练习,发展提高。

  1、在自然数1~20中:

  (1)奇数有————,偶数有————;

  (2)质数有————,合数有————。

  2、下面的判断对吗?

  (1)所有的奇数都是质数。( )

  (2)所有的偶数都是合数。( )

  (3)在自然数中,除了质数都是合数。( )

  (4)一个合数,至少有3个约数。( )

  3、猜一猜,老师的电话号码是多少。

  四、总结。

  (略)

  五、作业:

  62页1~2。1

质数与合数的教案7

  教学目标

  1.经历并探究奇数、偶数相加的规律。

  2.运用数的奇偶性解决一些简单问题。

  3.培养探索精神,树立科学严谨的学习态度。

  教学重难点

  学习重点:掌握奇数、偶数相加的规律。

  学习难点:灵活地运用奇数、偶数相加的规律。

  教学工具

  PPT课件

  教学过程

  一、复习导入,引入新课。(7分钟)

  1.课件出示:

  (1)什么叫做奇数?什么叫做偶数?

  (2)什么样的数叫做质数?什么样的数叫做合数?

  2.找出20以内的奇数、偶数、质数和合数。(课件出示)

  (1)奇数有:

  (2)偶数有:

  (3)质数有:

  (4)合数有:

  3.引入新课:这节课我们一起来探究奇数、偶数相加的规律。

  二、自主探究,总结探究奇数、偶数相加的规律。(18分钟)

  1.课件出示例2,读题,理解题意。

  2.引导学生找几个奇数、偶数然后加起来,通过探究,你们发现了什么规律?

  3.根据学生的汇报进行小结。

  4.验证猜想

  奇数-偶数=( )

  奇数-奇数=( )

  偶数-偶数=( )

  学案

  1.回顾学过的概念。

  (1)在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

  (2)一个数,如果只有1和它本身两个因数,这样的数叫做质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  2.独立思考,集体交流。

  (1)奇数有:1、3、5、7、9、11、13、15、17、19

  (2)偶数有:0、2、4、6、8、10、12、14、16、18、20

  (3)质数有:2、3、5、7、11、13、17、19

  (4)合数有:4、6、8、9、10、12、14、15、16、18、20

  3.明确本节课的`学习内容。

  (1)观看课件,获取相关信息。

  (2)偶数+奇数=( )

  奇数+奇数=( )

  偶数+偶数=( )

  4.小结:

  偶数+奇数=奇数

  奇数+奇数=偶数

  偶数+偶数=偶数

  5.验证交流。

  奇数-偶数=奇数

  奇数-奇数=偶数

  偶数-偶数=偶数

  三、巩固练习(10分钟)

  1.完成教材第16页第4题。

  2.完成教材第17页第6、7题。

  四、课堂总结,拓展延伸。(5分钟)

  1.通过本节课的学习,你有什么收获?

  2.读一读教材第17页“你知道吗?”

  课后小结

  在学习了质数和合数,奇数和偶数的基础上来探究奇数、偶数相加的规律。本节课的教学主要采用游戏法,让学生在游戏活动中加强交流,探索规律,形成自主、合作、探究的数学学习氛围。同时,也让学生体验到学习知识的乐趣,激发学生学习数学知识的兴趣。

  本节课首先复习奇数、偶数、质数、合数的概念来引入新课,然后采用探究性问题让学生自主、合作、探究数的奇偶性,激发了学生学习的兴趣,营造了和谐、愉快的学习氛围。练习题的设计也具有针对性,有助于培养学生运用数的奇偶性来解决问题的能力。

  课后习题

  1.判断题。(对的画“√”,错的画“×”)

  (1)在2,3,4,5…中,除了合数以外都是质数。( )

  (2)所有的偶数一定是合数,并且所有的质数一定是奇数。( )

  (3)1既不是质数,也不是合数。( )

  (4)两个质数的和都是偶数。( )

  答案:(1)√(2)×(3)√(4)×

  2.不计算,判断下列算式的结果是奇数还是偶数。(在结果是奇数的算式下画横线,在结果是偶数的算式下面画波浪线)

  328+736 836-655

  1000-427-144

  1+2+3+4…+19

  23×16-11×7

  答案:328+736 836-655

  1000-427-144

  1+2+3+4…+19

  23×16-11×7

质数与合数的教案8

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)五年级下册第14页质数与合数的概念及例1。对于质数合数的概念,教材通过让学生找出1~20各数的全部因数,然后按因数的个数分类,在此基础上给出概念。例1是让学生运用质数的概念找出100以内的所有质数。由于小学用到的质数比较少,所以教材只要求找出100以内的质数,这些质数不必要求学生都背,但是熟悉20以内的质数是必须的。

  (二)核心能力

  在认识质数与合数的过程中,培养观察、分析、归纳的能力;在找100以内质数的过程中,学会有条理的分析和解决问题。

  (三)学习目标

  1、通过观察引导、归纳推理,理解质数(素数)和合数的意义,会正确判断一个数是质数还是合数。

  2、根据质数合数的意义,找出100以内的质数,学会有条理的分析和解决问题,并能熟练判断20以内的数哪个是质数,哪个是合数,

  (四)学习重点

  质数、合数的意义

  (五)学习难点

  正确掌握判断质数和合数的方法。

  (六)配套资源

  实施资源:《质数和合数》名师教学课件、百数表

  二、教学设计

  (一)课前设计(课前复习)

  (1)找出1~20各数的因数。

  (2)观察找出的1~20各数的因数,看看它们的个数有什么规律?

  (二)课堂设计

  1、谈话引入

  师:学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?

  师:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来。哪些人学号是偶数呢?都站过了吗?可见自然数可以怎样分类?分类依据是什么?

  师:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。

  2、问题探究

  (1)认识质数和合数

  ①引导观察,分类思考

  师:课前大家都找出了1~20各数的全部因数,谁来展示一下。

  生展示引导学生评价是否正确。

  师:现在请所有同学一起来观察大屏上(课件出示)这些数字的所有因数,看看你发现了什么?

  师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?

  全班交流,归纳小结。

  可以分成三类:

  有一个因数:1

  有两个因数:2、3、5、7、11、13、17、19

  有两个以上因数:4、6、8、9、10、12、15、16、18、20

  ②认识质数

  师:先观察只有两个因数的特征,他们的因数有什么特点呢?

  (出示:只有1和它本身两个因数)

  师:我们给这样的数取名为:质数(或素数)(课件出示)一个数,如果只有1和它本身两个因数,这样的数叫做质数。

  师:谁能举出几个质数的例子,并说说为什么是质数。举得完吗?说明了什么?(质数有无数个)

  师:最小的质数是几?最大的呢?

  ③认识合数

  师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?

  引导小结:除了1和它本身以外,还有别的因数。

  师:我们给这样的数取名为:合数。(板书:合数)(课件出示)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  师:谁再举出几个合数的例子?举得完吗?说明了什么?(合数也有无数个)

  想一想:最小的合数是几?最大的呢?

  ④1既不是质数也不是合数

  师:现在还剩一个1,它是质数还是合数?

  交流明确:1既不是质数,也不是合数。

  ⑤小结

  师:按照因数个数的多少,自然数又可以分为哪几类呢?

  明确:按照因数的个数,把自然数分为质数、合数和1三类。

  【设计意图】通过课前找1~20各数因数,到课中观察因数的个数并发现问题,引导学生分类,从而引出概念。在理解概念的基础上,通过学生举例,进一步加强对概念的理解,明晰概念后,引导学生归纳小结,完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  (2)100以内的质数

  师:如果请你们找出100以内的质数都有哪些,可以怎样来找?

  生讨论汇报。

  预设1:可以把每个数都验证一下,看哪些是质数。

  预设2:先把2的倍数画去,但2除外,画掉的这些数都不是质数。3的倍数也可以……

  师:你们认为哪种方法比较简便一些?(预设2的方法)

  引导小结:利用百数表和2、3、5倍数的特征,选用筛除法去找质数。

  四人小组合作,利用百数表找出100以内的质数,并思考:在找的过程中,画到几的倍数就可以了?

  全班交流汇报,教师课件演示。

  【设计意图】本环节主要依托小组活动,先制定找的方法,然后实际操作。在找的过程中不断加强对所学知识的理解和综合应用,帮助学生构建完整的知识体系,培养学生良好的数感。

  (3)沟通联系,形成能力

  师:通过今天的学习,自然数都可以怎样分类?

  学生交流后,明确:

  自然数按因数的个数分为:质数、因数和1;

  自然数按是否是2的倍数分为:奇数和偶数。

  师:请大家结合所学的这些知识介绍自己的学号。

  随机抽取学生介绍,并适时拓展。

  3、巩固练习

  (1)将下面各数分别填入指定的圈里。

  27 37 41 58 61 73 83 95

  11 14 33 47 57 62 87 99

  (2)下面的说法正确吗?说说你的理由。

  ①所有的质数都是奇数。

  ②所有的偶数都是合数。

  ③所有的奇数都是质数。

  ④所有的合数都是偶数。

  辨析:

  ①所有的质数都是奇数

  学生举反例反驳。

  引导:你是怎样很快的找到这个数的,能说说方法吗?

  交流,明确:先写出所有的质数,再找其中不是奇数的。

  板书找的过程,并标注特殊数。

  引申:这句话怎样改就对了?

  交流,明确:除2外,所有的`质数都是奇数。

  辨析:“所有的偶数都是合数”、“所有的奇数都是质数”、“所有的合数都是偶数”。

  学生分组辨析,每两大组辨析其中的一句话。

  小组合作,用刚才列举的方法找到特殊数。

  小组代表上台板演辨析的过程。

  对比,明确:

  除2外,所有的质数都是奇数,所有的偶数都是合数;

  因为9、15等特殊数的存在,“所有的奇数都是质数,所有的合数都是偶数”是错的。

  (3)括号内填入正确的质数。

  15=()+()18=()+()

  22=()+()49=()×()

  4、全课总结

  师:通过今天的学习你有什么收获?

  小结:知道自然数按因数的个数的多少,可以分为三类:质数、合数和1,并且知道质数和合数的定义。

  (三)课时作业

  (1)填空。

  ①在1~9这9个自然数中,相邻的两个质数是()和(),相邻的两个合数是()和()。

  ②一个三位数,百位上的数是最小的合数,十位上的数是最小的奇数,个位上的数既是质数又是偶数,这个三位数是()。

  答案:①2和3;8和9 ②412

  解析:综合应用概念,熟练找出10以内的质数和合数。【考查目标1、2】

  (2)老师家的电话号码是多少?

  ①八位号码从左到右排列,第一位上的数是既是2的倍数又是3的倍数的最小一位数。

  ②第二位上的数是最小的质数;第三位是最小的合数;第四位上的数既不是质数也不是合数。

  ③第五位上是小于10的最大合数;第六位上是最大的一位数;第七位上是自然数中最小的奇数;最后一位上是8的最大因数。

  答案:62419918。

  解析:综合练习题目,既复习因数、倍数的概念及找因数倍数的方法,又巩固质数、合数的概念,培养学生的数学推理能力。【考查目标2、3】

质数与合数的教案9

  教学内容

  质数和合数

  教材第14页的内容及练习四第1~3题。

  教学目标

  1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

  2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

  3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

  重点难点

  重点:初步学会准确判断一个数是质数还是合数。

  难点:区分奇数、质数、偶数、合数。

  教具学具

  投影仪。

  教学过程

  一、创设情境,激趣导入

  师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

  师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?

  学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

  二、探究体验,经历过程

  1.认识质数与合数。

  师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

  学生分组进行,找出之后进行分类。

  生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

  师:很好,我们可以把它们分类,大家把分类结果填在表中。

  投影展示学生的分类结果。

  【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

  师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

  师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

  想一想:最小的质数(合数)是几?最大的呢?

  师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

  课件出示:可以把非0自然数分为质数和合数以及1,共三类。

  2.制作质数表。

  投影出示例1。

  师:怎样找出100以内的质数呢?

  生1:可以把每个数都验证一下,看哪些是质数。

  生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

  【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

  三、课末总结,梳理提升

  这节课我们学习了质数和合数的'概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

  板书设计

  教学反思

  1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。

  2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。

质数与合数的教案10

  教学目标:

  1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。

  2、过程与方法:采用探究式学习法,通过操作、观察自主学习、提出猜想、合作、交流验证、分类、比较、抽象、归纳总结、巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。

  3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。

  教学重点:

  理解质数和合数的意义

  教学难点:

  判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类

  教具学具准备:

  学生每人准备一张学号牌、课件

  教学过程:

  (一)创设情境,激趣导入

  1、介绍学号数字9和12,引出整数的第一次分类:偶数、奇数。

  2、学生介绍数字时出现质数,教师借机引入本节课学习内容:质数和合数。

  3、学生汇报预习结果,同时提出学习目标。

  (二)主动参与,探索新知

  1.课前预习。每个同学都有自己的学号,课前大家已经在自己的学号牌上写出1—20的所有因数。(课前完成)

  2、交流:课件出示1—12所有的因数,现在请所有同学一起来观察屏幕,看看你把1—12依据什么标准进行分类的?你又是如何理解质数与合数的?课前大家在预习的时候已经有了自己的想法,现在在组内互相说一说。(交流、汇报)

  【设计意图:根据给定的标准观察、分析,突出了有关概念的本质特征,又能使学生体会到分类标准的合理性。通过对“1”的研究,完善对非0自然数的认识,促进学生对质数和合数概念的理解。】

  3、教师提问:我们班有29个人,谁的学号是质数?谁的学号是合数?1号同学呢?引出整数的第二次分类(板书)

  4、判断下面各数,哪些是质数,哪些是合数。

  17 22 29 35 37 87

  学生先自己想一想,然后分组讨论,汇报交流。

  【设计意图:课堂上充分发挥学生的主体作用,营造独立思考的时间和空间,使他们积极参与课堂讨论,促进学生的自主学习和探究。】

  (三)动手实践,制作100以内的`质数表。

  1、51是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。

  2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?

  (把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)

  3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!

  【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步发展了学生的数感。】

  (四)巩固练习,拓展延伸

  1、你能写成几个质数相乘的形式吗?

  6= 、、、 28 = 、、、、

  2、判断下面这段话中的数字是质数还是合数。

  2月8日,13名河北唐山农民自费来到遭受最严重冰雪灾害的湖南郴州抗冰救灾,他们每天凌晨5点准时起床,忙到晚上12时才能休息,每天工作近20小时,16天时间他们帮助灾区重建了10座电塔。

  3、猜一猜:小红家的电话号码是多少?

  最小的合数,它的因数只有1和3,既不是合数也不是质数,10以内最大的偶数它的最大的因数是8,10以内3的倍数同时又是偶数,10以内最大的合数

  【设计意图:通过设计一组有层次的练习,既巩固了新知,又联系了以前的知识。通过交流,充分展示学生的思维,强化探究学习的效果,取长补短,达到共同进步。】

  4、课堂反馈:

  (五)归纳总结,师生评价

  1、总结:本节课学习了什么?你有什么收获?还有什么疑问?

  2、回到课始情境,你能打开密码锁了吗?里面是什么?屏显示:“快乐学习,快乐成长”八个大字。

  3、师:这就是老师送给你们的礼物。你们快乐吗?说说感受。

  【设计意图:通过总结与反思,及时反馈,学生内化知识。通过评价,使学生体验成功,树立学好数学的信心。】

质数与合数的教案11

  1、使学生掌握质数和合数的概念,知道它们之间的联系和区别。

  2、能正确判断一个常见数是质数还是合数。

  3、培养学生判断、推理的能力。

  教学重点 质数和合数的概念。

  教学难点 正确判断一个常见数是质数还是合数。

  教学过程

  一、复习准备

  1.谁能说说什么是约数?

  2.请写出下面这些数的所有约数。

  15, 20, 34, 55

  二、新课引入

  师:想一想,如果要给1~12这12个数分类,你会怎么分?

  生:按奇数和偶数分。

  按一位数两位数分。

  师:同学们还有新的分法吗?(没有了)这节课老师要给你们介绍一种新的分法,这是按一个数的约数的个数来分,可以把它分成质数和合数两类。那什么是质数?什么是合数呢?这节课我们将一起来认识一下。(板书:质数和合数)

  三、新课讲解

  1.学习质数和合数

  (1)找出12个数的所有约数

  师:怎样按约数的个数来分类呢?下面先请同学们找出这12个数的所有约数。

  请两位同学到黑板上各写出6个数的约数,全班判断答案是否正确

  (2)对这12个数进行分类

  师:请同学们按照约数的多少,把这12个数分成以下三类:

  只有一个约数 有两个约数 有两个以上约数

  全班检验分法是否正确。

  (3)引出质数与合数的定义

  只有一个约数 有两个约数 有两个以上约数

  1

  4,6,8,9,10,12

  2,3,5,7,11

  既不是质数也不是合数 质数 合数

  观察分出的三类约数各有什么特征,让学生说出质数与合数的定义

  师:质数和合数的主要区别在哪里?(约数的个数不同,只有两个约数的是质数,有两个以上约数的是合数)

  师:仔细观察这5个质数的约数,都有什么特点?(只有1和它本身)

  师:根据这个特点能试着给质数下定义吗?

  指数的定义:一个数,如果只有1和它本身两个约数,我们把这样的数叫做质数(或素数)。

  师:仔细观察这6个合数的约数,它们都有1和它本身两个约数,为什么就不是质数呢?(除了1和它本身外还有别的`约数)

  师:根据这个特点能试着给合数下定义吗?

  合数的定义:一个数,如果除了1和它本身两个约数外还有别的约数,我们把这样的数叫做合数。

  师:你觉得判断一个数是质数还是合数,定义的关键词是什么?

  理解只有除了还有这两个关键词的区别。

  提出:只有是除了就没有的意思

  您现在正在阅读的五年级下册《合数与质数》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级下册《合数与质数》教学设计师:那为什么数1分到第三类呢?(它只有约数1一个约数,因此它不能分到质数(两个约数)类,也不能分到合数(两个以上约数)类)

  师:因此,我们说1既不是质数,也不是合数

  2、质数、合数的判断方法

  出示例2

  判断下面各数,哪些是质数,那些是合数?

  17, 22, 29, 35, 37

  师:你会根据什么方法来判断呢?(检查这个数的约数的个数)

  师:是不是要把这个数的所有约数都找出来才能判断吗?(不用,根据质数和合数的定义,除1和它本身外,只要看还能不能找出其它的一个约数就可以判断了)

  师:非常好,现在同学们试试用这种方法判断这几个数是质数还是合数。

  抽学生口答,并说出判断的依据

  练习:做一做

  3. 探索100以内的质数表

  师:判断这个数是质数还是合数,如果每次都要算出这个数的约数的个数,麻烦吗?(麻烦)下面老师介绍一种更简便的方法查质数表法。只要我们把一定范围内的质数都找出来,判断时,只要查一查表内有没有这个数,有就是质数,没有就不是质数。

  师:那怎么做100以内的质数表呢?

  阅读练习十三第1题,按十三题的方法找100以内的质数:

  (1) 写出2~100的数

  (2) 依次划去2,3,5,7的倍数,2,3,5,7本身不划

  翻开书本60页,对照质数表是否与自己的结果相同。

  四、巩固练习

  1. 练习十三第3,4题

  2.找出20以内的质数与合数

  3. 说一说

  (1)既不是质数,又不是合数的自然数可能是 .

  (2)即使偶数,又是质数的数肯定是

  (3)即使奇数,又是合数的数肯定是

  (4)即使质数,又是奇数的最小的是

  五、作业

  练习十三第2题

  预习分解质因数

质数与合数的教案12

  教学目标:

  1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。

  2、培养学生观察、比较、概括和判断能力。

  3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。

  教学重点:

  理解质数和合数的意义。

  教学难点:

  判断一个数是质数还是合数的方法。

  教学过程:

  课前谈话:

  给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。

  一、复习旧知

  说一说,在我们学习的空间,你可以得到哪些数?(要求与同学说的尽量不重复)

  给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。

  板书对应的集合图。

  自然数

  (能不能被2整除)

  把学生列举的数填写在对应的集合圈里。

  问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

  说明:这是一种有价值的分类方法,在以后的学习中很有用。

  问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

  二、进行新课

  今天我们就用找约数的方法来给自然数分类。

  复习:什么叫约数?怎样找一个数所有的约数?

  同桌合作,找出列举的各数的所有的约数。(同时板演)

  引导学生观察:观察以上各数所含约数的个数,你能把它们分成几种情况!

  根据学生的回答板书。

  自然数

  (约数的个数)

  (只有两个约数)(有3个或3个以上的约数)

  二、进行新课

  引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

  明确合数的概念,提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

  明确:这是一种新的分类方法。看了集合圈,你想说什么?(学生看图说自己的想法,巩固奇数和合数的知识)

  猜一猜:奇数有多少个?合数呢?

  明确:因为自然数的个数是无限的,所以,奇数和偶数的个数也是无限的。运用新知,解决问题。

  出示例1下面各数,哪些是质数?哪些是合数?

  152831537789111

  学生独立完成。

  问:你是怎么判断的?

  明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约数,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

  说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的`100以内的质数表。用质数表检查对例1的判断是否正确。

  完成练一练。

  三、练习巩固

  1、检查下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

  22293549517983

  2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

  学生操作后,提问:剩下的都是什么数?

  告诉学生:古代的数学家就是用这样的方法来找质数的。

  四、全课总结

  学到这里,一种新的分类方法,你掌握了吗?学生回答;相机揭示课题,质数和合数

  讨论:质数、合数、奇数、偶数之间是怎样的关系呢?

  五、布置作业(略)。

质数与合数的教案13

  教学目标

  1.理解质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数。

  2.引导学生通过动手操作、观察比较、猜想验证、归纳总结出质数、合数的含义。

  3.培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认知发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  教学重难点

  1.掌握质数与合数的概念。

  2.熟练记忆100以内的质数。

  教学过程:

  一、复习导入

  1.什么叫奇数?什么叫做偶数?

  是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。最小的奇数是1,最小的偶数是0。

  2.请说一说20和5的因数各有哪些?

  有的数的因数个数多,有的数因数个数少。一个数最小的因数是1,最大的因数是它本身。

  【设计意图】

  通过练习找一个数的因数,让学生明白一个数的因数的个数是有多有少的,初步让学生知道按因数的个数分类怎么分。

  二、探究新知

  1.找出1~10各数的因数。

  1的因数有:1。

  2的因数有:1,2。

  3的'因数有:1,3。

  4的因数有:1,2,4。

  5的因数有:1,5。

  6的因数有:1,2,3,6。

  7的因数有:1,7。

  8的因数有:1,2,4,8。

  9的因数有:1,3,9。

  10的因数有:1,2,5,10。

  2.按因数的个数分,你可以分成几类?

  只有一个因数:1

  只有两个因数:2、3、5、7

  有两个以上个因数:4、6、8、9、10

  3.明确概念:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。如2,3,5,7都是质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。4,6,15,49都是合数。

  注意:

  1不是质数,也不是合数。

  4.100以内的质数表。

  5.100以内质数顺口溜。

  2和3,5和7,11、13又17,

  19、23、29、31,37和41,

  43、47、53、59、61,67和71,

  73、79、83、89、97.

  【设计意图】

  通过质数表和顺口溜让学生熟练记住100以内的质数。

  6.想一想:最小的质数和最小的合数分别是多少?

  三、课堂练习

  1.判断下面说法是否正确?

  (1)所有的偶数都是合数。

  (2)所有的奇数都是质数。

  (3)3的所有倍数都是合数。

  (4)一个合数,最少有3个因数。

  (5)1既不是质数,也不是合数。

  2.将下面各数分别填入指定的圈里。

  2737415861738395

  11143347576287999

  3.思维训练。

  两个质数,和是9,积是多少?

  四、课堂总结

  通过本节课学习你有哪些收获?

  教后思考:

质数与合数的教案14

  教学目的:

  1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

  2、培养学生观察、比较、抽象、慨括的能力。

  3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

  教学难点:质数、台数、济数、偶数的区别

  教学过程:

  课前谈话:

  给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小的分类方法。明确:分类的际准很重要。

  一、复习旧知

  说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

  给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

  板书对应的集合图。

  自然数

  (能不能被2整除)

  把学生列举的数填写在对应的集合圈里。

  问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

  说明:这是一种有价值的分类方法,在以后的`学习中很有用。

  问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

  二、进行新课

  今天我们就用找约数的方法来给自然数分类。

  复习:什么叫约数?怎样找一个数所有的约数?

  同桌合作、找出列举的各数的所有的约数。(同时板演)

  引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

  根据学生的回答板书。

  自然数

  (约数的个数)

  (只有两个约数)(有3个或3个以上的约数)

  引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

  明确合数的概念、提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

  明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

  猜一猜:奇数有多少个?合数呢?

  明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

  出示例1 下面各数,哪些是质数?哪些是合数?

  15 28 31 53 77 89 1ll

  学生独立完成。

  问:你是怎么判断的?

  明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

  说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

  完成练一练。

  三、练习巩固

  1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

  22 29 35 49 51 79 83

  2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

  学生操作后,提问:剩下的都是什么数?

  告诉学生:古代的数学家就是用这样的方法来找质数的。

  四、全课总结

  学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

  讨论:质数、合数、奇数、偶数之间是这样的关系呢?

  五、布置作业(略)。

质数与合数的教案15

  教学内容:人教版九年义务教育六年制小学数学第十册 P58~59页

  教学目标:

  1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。

  2、培养学生观察、比较、概括和判断的能力。

  3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。

  教学重点:理解质数和合数的意义。

  教学难点:判断一个数是质数还是合数的方法。

  教具:多媒体课件。

  教学过程:

  一、准备复习,创设情境。

  1、求7和10的约数。

  2、25有几个约数?

  二、探究发现,理解新知。

  (一)教学例1

  1、出示例1,写出下面每个数所有的约数(1~12)。

  (1)先小组合作完成例一,分别填出每个数的所有的约数,并指出各有几个约数。

  (2)例1反馈。

  (3)同学们观察一下这些数约数的特点:

  思考:在自然数范围内,按照每个数的约数个数的特点进行分类,可以分为哪几类?

  先独立分类,再小组交流。

  (4)学生汇报分类情况。

  2、比较每类数约数的特点,教学质数与合数的定义。

  (1)先观察有2个约数的数。

  谁能发现,它们的约数有什么特点呢?

  归纳特点,给出质数的定义。

  (2)第三种类型的数与质数的`约数比较,又有什么不同?

  概括合数的定义。

  (3)1既不是质数,也不是合数。

  (4)举出质数的例子?

  (5)举出合数的例子。

  3、自然数按照每个数的约数的多少,又可以怎样分类?

  (二)教学例2

  1、出示例2。判断下面各数,哪些是质数,哪些是合数?

  17、22、29、35、37、87。

  (1)同桌先交流一下,再汇报。

  (2)37为什么是质数?87为什么是合数?

  (3)小结。

  (三)看书质疑

  (四)游戏。

  (五)出示100以内质数表。学生练习记质数。

  三、巩固练习,发展提高。

  1、在自然数1~20中:

  (1)奇数有————,偶数有————;

  (2)质数有————,合数有————。

  2、下面的判断对吗?

  (1)所有的奇数都是质数。( )

  (2)所有的偶数都是合数。( )

  (3)在自然数中,除了质数都是合数。( )

  (4)一个合数,至少有3个约数。( )

  3、猜一猜,老师的电话号码是多少。

  四、总结。(略)

  五、作业:62页1~2。1

【质数与合数的教案】相关文章:

质数与合数的教案15篇01-21

质数与合数的教案(15篇)01-21

质数和合数教学设计07-23

《质数和合数》教学设计与反思04-13

质数和合数教学设计范文04-26

《质数和合数》教学设计范文04-18

质数和合数教学反思(精选21篇)03-09

小学数学《合数与质数》教后反思范文04-08

五年级《质数和合数》教学设计04-18