《圆锥》教案
作为一位优秀的人民教师,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么教案应该怎么写才合适呢?下面是小编整理的《圆锥》教案,仅供参考,希望能够帮助到大家。
《圆锥》教案1
教学目标
1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。
2、使学生在活动中进一步积累立体图形的学习经验,增强空间观念,发展数学思维。
教学重点
1、在充分感知的基础上,探索圆柱和圆锥的特征。
2、进一步体验立体图形玉生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学难点
圆柱和圆锥的特征。
教学方法
分析中归纳解题方法
教具
多媒体课件
教学过程与内容设计
一、复习导入
二、新授
1、拿出圆柱和圆锥,说说它门的特点。
2、你能找出生活中有哪些物体是圆柱和圆锥形的吗?
3、现在我们首先来研究圆柱。
(1)请以小组为单位,仔细观察桌上的圆柱,看看它有哪些特点。(提示:从面、棱、顶点和高这几方面来研究。)
(2)请一位同学代表你们组来说说你们发现了什么?
(3)老师现在有问题要问大家:圆柱上下两个圆有什么关系,怎样验证?
(4)我们称这两个圆为圆柱的底面,也就是说圆柱有两个底面,一个侧面。
(5)圆柱的高指什么?你有办法测量吗?说明圆柱有多少条高,长度有说明关系?
(6)谁能完整的说一下圆柱的特征。
1、教师提问:现在找找请你们带来的东西中,哪些是圆柱?请把圆柱举起来。
2、举出学生带来的'东西中不是圆柱的例子。
3、揭示实物图,出现圆柱几何图形。
教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。
出示高、低不同的两个圆柱。
用直尺和三角板演示圆柱的高。
使学生明确:圆柱两个底面之间的距离叫做高。
4、下面我们来认识另一个立体图形———圆锥。
三、巩固练习
四、全课总结。
五、作业设计
课本20页练习五4、
欣赏一下生活中的圆柱和圆锥。
六、板书设计
圆柱和圆锥的认识
圆柱的上、下两个面叫做底面、它们是两个完全相同的两个圆。
圆柱的侧面,是一个曲面。
圆锥,有一个顶点,底面是一个圆形,侧面一个曲面。
教学反思
本课时的内容较简单,但作为教师,我们并不能仅仅停留在教给学生有关圆柱和圆锥的特征这一层面上。研读教材,我发现教材力求体现让学生在主动探索的过程中感知圆柱和圆锥的特征,这与教师单纯地教给学生圆柱与圆锥的特征是有本质不同的。如果教师要教给学生这些知识的话,可能5分钟的时间就够了。但同样的,学生也可能很快就遗忘了。让我感到心有余而力不足的是,我很清楚自己在这节课中应该体现怎样的教学理念,应该怎样让学生主动参与新知识的学习,但实际操作时,却由于各种条件的限制没有很好地达成自己课前预设的教学效果。
《圆锥》教案2
一、学习内容
教科书第31~32页圆锥的认识例1及做一做。 二、学习目标
1.认识圆锥,掌握圆锥的特征。
2.认识圆锥的高,能用工具测量圆锥的高。 3.培养学生动手操作、观察分析的能力。 三、学习重点
圆锥的.特征及各部分名称。 四、学习难点 圆锥的高的测量方法。 五、学习准备 ppt课件、圆锥等。 六、学习过程
《圆锥》教案3
教学内容:教材31-32页
教学目标:
1、 认识圆锥,掌握圆锥的特征。
2、认识圆锥的高,会正确测量圆锥的高。
3、培养学生的自主探索意识,激发学生强烈的求知欲望。
重点:掌握圆锥的特征及各部分的名称。
难点:认识圆锥的高,会正确测量圆锥的高。
教学用具:课件圆锥体模型
教学过程
一、情景引入
1、展示教材第31页的主题图,让学生观察。
2、揭示课题:圆锥的认识。
二、探究新知
1、初步感知。
让学生在生活中找圆锥形物体。
2、教学例1,圆锥的认识。
(1)让学生拿着圆锥模型观察后,说一说圆锥有哪些特征?
(2)讨论交流。
(3)认识圆锥的高。
让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。
(4)引导归纳。
圆锥的特征:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
三、课堂练习
1、活动游戏。
将三角形制片绕着一条直角边旋转,会形成什么形状?
2、 完成第32页“做一做”的习题。
3、 练习六的第二题
板 书设 计
圆锥的认识
圆锥的特征:底面是圆,侧面是一个曲面,有一个顶点和一条高.
圆锥的体积
教学内容:教材33-34页
教学目标:
1、通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
重点:理解圆锥体积公式的推导过程。
难点:运用圆锥体积公式解决实际问题。
教学用具:等底等高的圆柱和圆锥容器
教学过程
一、问题引入
1、提出问题。
出示一个铅锤,并提问:你有办法知道这个铅锤的体积吗?
2、揭示课题。
这节课我们一起来探究圆锥体积的计算方法。(板书课题:圆锥的体积)
二、探究新知
1、教学例2。
(1)回忆圆柱体积计算公式的推导过程,
(2)圆锥的体积该怎样求呢?能不能也通过已学过的'图形来求呢?
(3)实验探究
拿出等底等高的圆柱和圆锥各一个,先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(4)讨论探究。
1(5)引导归纳。圆锥的体积是和它等底等高的圆柱的体积的 3
11 得出公式: V圆锥=V圆柱=Sh (板书) 33
2、教学例3.
(1)出示例3
(2)理解题意。
(3)引导分析。
(4)尝试计算,指明板演,讲解订正。
三、巩固练习
1、完成教材第34页“做一做”习题。
2、完成练习六的第4题。(看时间而定)
板 书设 计:
圆锥的体积
圆柱的体积=底面积×高
11圆锥的体积=×圆柱的体积=×底面积×高 33
1字母公式:V=Sh 3
圆锥的体积(练习一)
教学内容:教材35页 练习六第6题 黄冈小状元26页,第3题
教学目标:强化练习求圆锥的体积,会求,已知底面圆的半径、直径或周长,高,求圆锥的体积
重点:会根据告诉我们的条件,求圆锥的体积
难点:运用圆锥体积公式解决实际问题。
教学过程
一:出示例题
数学书上35页 练习六第6题
一个圆锥的底面周长是31.4cm,高是9cm.它的体积是多少?
(1) 分析题意: “告诉了我们那些条件,求什么”
要求圆锥的体积,我们需要知道什么条件。
(2)分析完毕:学生独立完成 学生板书,老师集体订正。
r=31.4÷3.14÷2
=10÷2
=5(cm)
S圆柱=3.14x5x5
= 78.5(平方厘米)
V圆锥= Sh =x78.5x9
=235.5(立方厘米) 答:????..
二:及时练习 1313
《圆锥》教案4
教学内容:
教材第11~17页圆锥的认识和体积计算、例1。
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:
长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的 的教具。
教学重点:
掌握圆锥的特征。
教学难点:
理解和掌握圆锥体积的计算公式。
教学过程:
一、铺垫孕伏:
1. 说出圆柱的体积计算公式。
2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
二、自主探究:
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的.这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。(见课本第17页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)
(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积13=底面积高13
用字母表示:V= 13 Sh
(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 13 ?
8.教学例l
(1)出示例1
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
《圆锥》教案5
教学目标
1、推导出圆锥体积的计算公式。
2、会运用圆锥的体积公式计算圆锥的体积。
重点难点
圆锥体积公式的推导过程。
教学过程
一、板书课题
师:同学们,今天我们来学习“圆锥的体积”(板书课题)。
二、出示目标
理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。
三、自学指导
认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。想:
1、圆锥的体积与圆柱的体积有什么关系?
2、圆锥的体积计算公式是什么?用字母如何表示?
5分钟后,比谁能正确地回答思考题并能做对检测题!
检测题
完成课本第34页“做一做”第1、2题。
小组合作,校正答案
后教
口答
一个体积是1413立方分米的'铁块,可以制造成多少个底面半径是3分米、高是5分米的圆锥形零件?
小组内互相说。
当堂训练
1、必做题:
课本第35页第5、6、7题。(做在作业本上)
2、选做题:
有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)
《圆锥》教案6
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
全单元编排五道例题、四个练习,把内容分成四段教学。依次是圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积。在单元结束时,还安排了整理与练习以及实践活动《测量物体的体积》。
1.通过观察、操作,认识圆柱和圆锥。
学生在第一学段已经直观认识了圆柱,通过滚一滚、堆一堆、摸一摸等活动初步感受了圆柱的形状与长方体、正方体有不同之处。例1先教学认识圆柱,再教学认识圆锥,要让学生从整体上体会它们的特征,了解围成圆柱或圆锥的各个面,认识圆柱和圆锥的高,并会测量高。
教学圆柱从识别圆柱形的物体开始,因为学生已有这样的能力。例1的图片里,有些物体是圆柱形的,有些物体的一部分是圆柱形的,也有些物体不是圆柱形的。而且,在圆柱形的物体中,有的高,有的矮,有的厚,有的薄,这就为认识圆柱提供了丰富的具体对象。
认识圆柱的教学要引导学生进行观察、交流,同时教师要给予必要的讲解。让学生仔细观察圆柱,发现圆柱的上、下两个面是相同的圆形,圆柱的侧面是曲面,而且圆柱上下是一样粗的。前两点学生容易注意到,第三点往往会疏忽,在交流的时候,要引起学生的注意。在“练一练”里,教材安排了上、下两个底面大小不同的杯子和木桶,两个底面虽然相同但两底之间粗细不同的腰鼓,还有底面是正六边形的盒子,让学生指出这些物体都不是圆柱形,从而加强对圆柱特征的体验。在学生交流圆柱特征的过程中,教师可相机指出圆柱上、下两个面叫做底面,围成圆柱的曲面叫做侧面,及时出现圆柱的几何图形,在图形上标出圆柱的底面和侧面,这是建立圆柱概念的重要一步。同时指出圆柱两个底面之间的距离叫做高,并在圆柱的几何图形上标出高,既直观地表达高的意义,又能使学生想到测量圆柱高的方法。
例题引导学生把认识圆柱的学习方法迁移到认识圆锥上来,在观察圆锥形物体的基础上抽象出圆锥的几何图形,在交流圆锥特征的过程中认识圆锥的顶点、底面和侧面。圆锥的高是教学的一个难点,因为圆锥的高是圆锥内部的一条线段的长。教材指出从圆锥的顶点到底面圆心的距离是圆锥的高,并在圆锥的几何图形上用虚线画出顶点到底面圆心的线段,帮助学生理解圆锥高的含义。
练习五的设计重视空间观念的培养,都是动手操作的`习题。第2题从正面、上面、侧面观察圆柱和圆锥,通过立体图形与平面图形、曲面与平面的相应转化,加强对圆柱、圆锥特征的体验,发展空间观念。第3题把长方形绕它的一条边旋转形成圆柱,把直角三角形绕它的一条直角边旋转形成圆锥,把半圆绕它的直径旋转形成球,让学生在动态中感受这些几何体,使已有的圆柱、圆锥概念得到深化。第5题利用教材附页里的图形做圆柱和圆锥,体会圆柱的侧面是长方形卷成的,圆锥的侧面是扇形卷成的,再次经历平面图形变成立体的过程。同时,做成一个圆柱要两个相同的圆,做成一个圆锥只要一个圆,再次体会圆柱与圆锥的特征。测量做成的圆柱、圆锥的底面直径和高,能巩固高的概念,培养测量能力。计算圆柱、圆锥的底面周长和底面积,复习了圆的知识,为继续教学圆柱的表面积,圆柱和圆锥的体积做好准备。
2.在现实的情境中,探索圆柱表面积的计算方法。
圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积是旧知识。为此,教材先在例2里教学圆柱的侧面积,再在例3里教学圆柱的表面积。
例2计算圆柱形罐头盒侧面的商标纸的面积,这个素材容易引发把商标纸剪开后看看、算算等教学活动。教材指导学生“沿着接缝剪开”,经历展开商标纸的活动,体会圆柱的侧面展开图是一个长方形。探索圆柱侧面积的计算方法,要研究展开后长方形的长、宽与圆柱的关系,让学生在侧面展开成长方形和长方形卷成侧面的活动中,发现长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。从长方形的面积计算公式,推导出圆柱侧面积的计算方法。在探索圆柱侧面积算法的过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。
例3教学圆柱的表面积。教材先让学生思考底面直径2厘米、高2厘米的圆柱侧面沿高展开,得到的长方形长和宽各是多少厘米,两个底面是多大的圆,再在方格纸上画出这个圆柱的展开图。思考的过程能帮助正确地画图,画图则有助于体会表面积的含义。“侧面积与两个底面积的和”既是表面积的概念,也是计算表面积的方法。和长方体、正方体的表面积计算一样,圆柱的表面积计算不列出公式,让学生在理解的基础上掌握算法,避免了记忆公式的负担。由于圆柱的侧面积已在例2教学,计算底面积是旧知识,因此例3组织学生讨论算法并独立计算。
练习六应用圆柱侧面积、表面积的知识解决实际问题。第1、2题的练习重点是把实际问题抽象成数学问题,求队鼓的铝皮面积就是计算圆柱的侧面积,求队鼓的羊皮面积是计算圆柱的两个底面积之和,求做一个铁桶用的铁皮是计算圆柱的表面积。第3题有整理知识的作用,通过计算既能区分圆柱的侧面积、底面积、表面积这三个不同的概念以及不同的算法,又能整理三者的关系,进一步理解表面积的意义和计算方法。第4~9题是灵活应用圆柱侧面积、表面积的知识,要联系实际判断所求问题需不需要计算底面积,要算几个底面积。
3.通过猜想—验证探索圆柱、圆锥的体积公式。
例4教学圆柱的体积计算,分两步进行。第一步认识底面积相等、高也相等(以下简称等底等高)的长方体、正方体和圆柱,第二步推导圆柱的体积公式。安排第一步教学要达到三个目的,一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。这些目的要在思考和讨论例题中第(1)、(2)两个问题时实现。第二步的教学主要设计了三个活动。第一,在形成把圆柱转化成长方体的探索思路后,展示转化活动。学生可以看教材里的插图,也可以通过操作学具,明确转化的方法与过程。第二,让学生明白,把圆柱的底面平均分成16份,切开后拼成的是一个近似于长方体的物体。如果圆柱的底面平均分的份数越多,切开后拼成的物体越接近长方体,渗透极限思想,发展想像能力。第三,让学生思考拼成的长方体与原来圆柱的关系,体会圆柱转化成长方体,体积不变,底面积不变、高也没有变。用“底面积乘高”算得的既是转化成的长方体的体积,也是原来圆柱的体积。这是形成圆柱体积公式的推理活动。
例5教学圆锥的体积公式。教材首先出示等底等高的圆柱和圆锥,让学生直观估计圆锥的体积是圆柱的几分之几。进行这个估计是形成一个猜想,如果等底等高的圆柱和圆锥的体积之间存在确定的倍数关系,就可以利用圆柱的体积计算圆锥的体积。然后验证估计,探索等底等高的圆柱和圆锥的体积关系。例题把验证活动分三步进行。第一步指导学生选择实验器具:等底等高的圆柱形容器和圆锥形容器。左图把圆锥形容器放到圆柱形容器的上面,容易比出底面积是否相等。右图把圆柱形容器和圆锥形容器靠近着放在同一桌面上,容易比出高是否相等。第二步指导倒沙活动:在圆锥形容器里装满沙子,倒入圆柱形容器。从“3次正好倒满”证实圆柱形容器的容积是等底等高的圆锥形容器的3倍,也就是圆锥体积是等底等高的圆柱的1/3。第三步进行推理,把实验的结论用数学式子表示,最终得出圆锥的体积公式。
猜想—验证是发现规律、创新知识的常用策略,教材从教学内容的特点和学生的实际能力出发,把圆柱和圆锥体积公式的教学设计成鼓励猜想—引导验证的过程,有利于培养学生的学习能力和科学态度。
练习七和练习八里应用圆柱、圆锥的体积计算知识解决实际问题。计算圆柱的表面积,计算圆柱和圆锥的体积都要进行乘法计算。从过去的教学中我们发现,这一单元的计算学生经常出现错误。对此,教学应采取三点措施:一是营造良好的计算氛围,每次作业的题量不宜过多,给学生的时间要充分,在心理负担较轻的状态下能减少计算错误。保持安静,在无干扰的环境中专心计算也能减少错误。二是较繁的计算使用计算器,通常情况下,三位数乘一位数、三位数乘两位数可以采用笔算,位数更多的数的乘法计算可以用计算器。如果让学生进行过繁的四则计算,不仅容易出错,而且消耗了大量的精力和时间,没有必要。三是指导简便计算,在半径(或直径)的长度数是5、15、25,高的长度数是2、4、8时,经常可以应用乘法运算律使计算简便。
4.测量形状不规则的物体的体积。
长方体、正方体、圆柱和圆锥的体积都有计算公式,生活中还有大量不是这些形状的物体,它们的体积怎样测量呢?实践活动《测量物体的体积》引导学生研究这个问题。
把土豆或铁块放入盛水的圆柱形容器里进行测量是一种方法,这种方法把不规则形体转化成规则形体,利用计算圆柱体积的方法解决了问题。通过质量除以比重(质量和体积的比值)求体积也是一种方法,这种方法不依赖体积计算公式。教材没有把两种方法直接告诉学生,而是安排操作活动,让学生在活动过程中想到和理解这些方法。对于第一种方法,要依次测量圆柱容器的底面积、放入土豆前的水面高度和放入土豆后的水面高度,直观体会容器中水面上升所形成的那段圆柱的体积就是土豆的体积,感悟“等积变形”的转化思想。利用这种方法测量土豆的体积以后,还要再测量两个铁块的体积,为第二种测量方法积累数据资料。对于第二种方法,两个铁块的体积已经测得,再用天平称出它们的质量就能填表。通过计算发现一个铁块的质量与体积的比值和另一个铁块的质量与体积的比值相等。如果测量和计算都正确,这个比值应该约是7.8。要让学生理解这个比值的具体意思是“1立方厘米铁块大约重7.8克”,这样,第三个铁块的体积就可以称出质量后用除法计算了。
《圆锥》教案7
本节课的内容是圆锥的侧面积,首先让学生通过观察圆锥,认识到它的表面是由一个曲面和一个圆面围成的,然后再思考,圆锥的曲面展开图在平面上是什么样的图形,最后经过学生自己动手实践得出结论:圆锥的侧面展开图是一个扇形,把圆锥的母线、底面半径和展开图中的半径之间的关系找出来,根据上节课的扇形面积公式就可求出圆锥的侧面积,进一步运用公式进行有关计算.
让学生先观察圆锥,再想象圆锥的侧面展开图,最后经过自己动手实践得出结论这一系列活动,可以培养学生的空间想象能力、动手操作能力、归纳总结能力,使他们的手、脑、口并用,帮助他们有意识地积累活动经验,使他们获得成功的体验.
对于学生的观察、操作、推理、归纳等活动,教师要进行鼓励性的评价,使他们能提高学习数学的信心和决心.
教学目标
(一)教学知识点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
(二)能力训练要求
1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.
2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.
(三)情感与价值观要求
1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.
2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.
教学重点
1. 经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
教学难点
经历探索圆锥侧面积计算公式.
教学方法
观察想象实践总结法
教具准备
一个圆锥模型(纸做)
投影片两张
第一张:(记作3.8 A)
第二张:(记作3.8 B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]大家见过圆锥吗?你能举出实例吗?
[生]见过,如漏斗、蒙古包.
[师]你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.
[生]圆锥的表面是由一个圆面和一个曲面围成的.
[师]圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.
Ⅱ.新课讲解
一、探索圆锥的侧面展开图的形状
[师](向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.
[生]圆锥的侧面展开图是扇形.
[师]能说说理由吗?
[生甲]因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的.上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形.
[师]这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?[
[生乙]我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型.
[师]很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?
[生]是扇形.
[师]大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象.
二、探索圆锥的侧面积公式
[师]圆锥的侧面展开图是
一个扇形,如图,设圆锥的母
线(generating line)长为l,
底面圆的半径为r,那么这个圆
锥的侧面展开图中扇形的半径即
为母线长l,扇形的弧长即为底
面圆的周长2r,根据扇形面积公式
可知S= rl=rl.因此圆锥的侧面积为S侧=rl.
圆锥的侧面积与底面积之和称为圆锥的'全 面积(surfacearea),全面积为S全=rl.
三、利用圆锥的侧面积公式进行计算.
投影片(3.8 A)
圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58 cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)
分析:根据题意,要求纸帽的面积,
即求圆锥的侧面积.现在已知底面圆的
周长,从中可求出底面圆的半径,从而
可求出扇形的弧长,在高h、底面圆的半
径r、母线l组成的直角三角形中,根据勾
股定理求出母线l,代入S侧=rl中即可.
解:设纸帽的底面半径为r cm,母线长为lcm,则r= ,
l= 22.03cm,
S圆锥侧=rl 5822.03=638.87cm2.
638.8720=12777.4 cm2.
所以,至少需要12777.4 cm2的纸.
投影片(3.8 B)
如图,已知Rt△ABC
的斜边AB=13cm,一条
直角边AC=5 cm,以直线
AB为轴旋转一周得一个几
何体.求这个几何体的表
面积.
分析:首先应了解这个几何体
的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据S侧= R2或S侧=rl可知,用第二个公式比较好求,但是得求出底面圆的半径,因为AB垂直于底面圆,在Rt△ABC中,由OC、AB=BC、AC可求出r,问题就解决了.
解:在Rt△ABC中,AB=13cm,AC=5cm,
BC=12 cm.
∵OCAB=BCAC,
r=OC= .
S表=r(BC+AC)=(12+5)
= cm2.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课学习了如下内容:
探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算.
Ⅴ.课后作业
习题3.11
Ⅵ.活动与探究
探索圆柱的侧面展开图
在生活中,我们常常遇到圆柱形的物体,如油桶、铅笔、圆形柱子等,在小学我们已知圆柱是由两个圆的底面和一个侧面围成的,底面是两个等圆,侧面是一个曲面,两个底面之间的距离是圆柱的高.
圆柱也可以看作是由一个矩形旋转得到的,旋转轴叫做圆柱的轴,圆柱侧面上平行于轴的线段都叫做圆柱的母线.容易看出,圆柱的轴通过上、下底面的圆心,圆柱的母线长都相等,并等于圆柱的高,圆柱的两个底面是平行的.
如图,把圆柱的侧
面沿它的一条母线剪开,
展在一个平面上,侧面
的展开图是矩形,这个
矩形的一边长等于圆柱
的高,即圆柱的母线长,
另一边长是底面圆的周长,
所以圆柱的侧面积等于底
面圆的周长乘以圆柱的高.
[例1]如图(1),把一个圆柱形木块沿它的轴剖开,得矩形ABCD.已知AD=18 cm,AB=30 cm,求这个圆柱形木块的表面积(精确到1 cm2).
解:如图(2),AD是圆柱底面的直径,AB是圆柱的母线,设圆柱的表面积为S,则S=2S圆+S侧.
S=2( )2+2 30=1622204 cm2.
所以这个圆柱形木块的表面积约为2204 cm2
板书设计
3.8圆锥的侧面积
一、1.探索圆锥的侧面展开图的形状,
2.探索圆锥的侧面积公式;
3.利用圆锥的侧面积公式进行计算.
二、课堂练习
三、课时小结
四、课后作业
备课资料
参考练习
1.圆锥母线长5 cm,底面半径为3 cm,那么它的侧面展形图的圆心角是…( )
A.180 B.200 C. 225 D.216
2.若一个圆锥的母线长是它底面圆半径的3倍,则它的侧面展开图的圆心角是( )
A.180 B. 90
C.120 D.135
3.在半径为50 cm的图形铁片上剪去一块扇形铁皮,用剩余部分制做成一个底面直径为80 cm,母线长为50 cm的圆锥形烟囱帽,则剪去的扇形的圆心角的度数为( )
A.288 B.144 C.72 D.36
4.用一个半径长为6cm的半圆围成一个圆锥的侧面,则此圆锥的底面半径为 ( )
A.2 cm B.3 cm C.4 cm D.6 cm
答案:1.D 2.C 3.C 4.B
《圆锥》教案8
教学内容:
P29页第1-3题,完成练习五。
教学过程:
一、复习圆柱
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片。指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。两个底面之间的距离叫做高。侧面是一个曲面。)
(2)做第29页第1题:指出几个图形中哪些是圆柱。
2、圆柱的侧面积和表面积
(1)出示画有圆柱的表面展开图的投影片。先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)
(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
(3)第29页第2题中求圆柱表面积的部分。
3、圆柱的体积
(1)圆柱的体积怎样计算?(底面积高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积高,推出圆柱体的体积=底面积高)圆柱体的体积计算的字母公式是什么?(V=Sh)
(2)做第29页第2题中关于圆柱体积的部分。
4、学生独立完成第29页第3题。(先思考用多少布料求什么?装多少水又是求什么?区分清所求的是圆柱的表面积或体积时再计算)
二、复习圆锥
1.圆锥的特征
(1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)
(2)做第91页第1题的下半题和第2题的第(3)小题。
让学生将圆锥的特征自己用简单的词汇填写在表中。教师提醒学生:举例一栏要填写自己知道的形状是圆锥的实物。
2.圆锥的.体积。
(1)怎样计算圆锥的体积?(用底面积高,再除以3)计算圆锥体积的字母公式是什么?(V= Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
(2)做第29页第2题中有关圆锥体积的部分。
三、课堂练习
1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?
(2)指名板演,其他学生独立完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
四、作业
练习五的第3、4、6题。
《圆锥》教案9
教学内容:
冀教版小学数学六年级下册第40~42页。
教学目标:
1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。
2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程
3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。
教学重难点:
教学重点:了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。
教学难点:理解圆锥的高和圆锥体积公式中“Sh”表示的实际意义。
教具学具:
1、等底等高的圆柱和圆锥型容器,一些沙子。
2、多媒体。
教学流程:
一、炫我两分钟
主持学生指名叫学生回答下列问题:
1.圆柱有几个面?各有什么特点?
2.怎样计算圆柱的体积?
学生回答问题。
【设计意图:通过学生主持炫我两分钟,使学生复习以前学过的相关知识,在轻松愉快的氛围中自然引入本节所学知识。】
二、创设情境
1、教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?
2、出示问题情境:
最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)
【设计意图:在谈话、创设问题情境的过程中,引起学生的认知冲突,从而产生求知欲望。】
三、探究新知
尝试小研究一(课前):了解圆锥的特点
1.观察圆锥形的物体或图片,它们有哪些特点?
我的发现:
2.圆锥由1个( )面和1个( )面2个面组成,圆锥的底面是一个( ) ,圆锥的侧面是一个( ) 。
3.从圆锥顶点到底面圆心的距离是圆锥的( ),用字母( )表示。
4.怎样计算圆锥的`体积?
我的猜想:( )
尝试小研究二(课上):推导圆锥体积的计算公式
1、引导学生借助圆柱,探讨圆锥的体积公式。
①、猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?
②、是怎样推导的呢?你有什么想法?
下面我们就用实验的方法来推导圆椎的体积公式。
老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)都有吗?
2、用实验的方法,推导圆锥的体积公式。
①、引导学生观察用来实验的圆锥、圆柱的特点。
其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?(学生发现等底等高)(师板书等底等高)
②、学生实验:
你想怎么实验?(小组可以议一议)(老师指导:倒一下)
请大家以小组为单位进行实验,在实验中,注意作好记录,思考三个问题:(大屏幕出示这三个问题)(学生读一读思考题)
A:你们小组是怎样进行实验的?
B:通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?
C:根据这个关系怎样求出圆锥的体积?
(教师指导:为了让实验更准确些,可以用尺子将沙子刮平再倒入)
③、学生交流汇报,完成计算公式的推导:
小组汇报,师板书。
圆锥的体积等于和它等底等高的圆柱体积的三分之一。
V=1/3Sh
【设计意图:通过小组合作,观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程,知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。】
四、解决问题,巩固练习
(一)运用这个公式解决老师提出的问题,帮助老师解决问题。
1、 学生试做。
2、对子同学交流。
3、小组交流。
4、展示汇报。
(二)判断: 用手势来回答
1、圆柱的体积是圆锥体积的3倍。( )
2、一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米( )
3、把一个圆柱木块削成一个最大的圆锥,削去的体积是圆柱体积的三分之二。( )
(三)完成教材第42页“试一试”。
【设计意图:通过练习,加深对本节课知识的了解,使学生更好的掌握本节课所学知识,并提高学生应用所学知识解决实际问题的能力。】
五、盘点收获
通过这节课的学习,你有什么收获?你还想了解哪些知识
【设计意图:引导学生进行小结,培养学生的探究欲望,有利于知识的积累和自主学习能力的提高。】
六、拓展延伸
教材第42页“练一练”第4题。
【设计意图: 把课上的知识延伸到课外,使学生进一步感受数学于生活并应用于生活。】
板书设计: 圆锥和圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的三分之一。
圆锥的体积=底面积×高×1/3
V=1/3Sh
5 O
《圆锥》教案10
教学目标
1.联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。
2.通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。
教学重、难点
理解并掌握圆柱、圆锥的基本特征。
教学过程
一、情境导入
1.教师拿一根一头拴着一个小球的绳子甩动,问:你们看到了什么? 再让学生结合书第2页2、3题,想一想你发现了什么?
最后总结出点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体的'结论。
2.教师出示一个袋子,里面装着各种物体(长方体、正方体、球、圆柱、圆锥、圆台)
游戏规则:一人上台摸,并描述你摸到的这个物体的最典型的特征,使下面同学能在最短的时间内猜出你摸的这个物体的名称。
师生共同活动。在摸出物体后,教师让学生回忆一下以前学过的长方体、正方体的特征。
引出这节课要探究圆柱和圆锥。板书课题:圆柱和圆锥
二、 探究圆柱和圆锥的特征
1.从生活的实景图中发现圆柱和圆锥。
从书第2页找一找的实景图,找出我们学过的立体图形,与同伴互相指一指,哪些是圆柱和圆锥,并指名回答。
2.小组合作学习,探究圆柱、圆锥的特征。
用各种方法,如摸、量、画等,观察带来的圆柱、圆锥形实物,你们有哪些发现?用手中的工具验证你们的猜想。并填写小组合作学习的报告。
小组合作学习表格:
研究对象
你们猜想它有哪些特征?
你们是用怎样的方法验证你们的猜想的?把验证方法记录下来,与同学交流。
3.小组汇报反馈。
教师抓住几个关键点进行引导:
圆柱的特征:
⑴两个底面、一个侧面。底面是由两个大小完全相等的圆组成。侧面是一个弯曲的面。
⑵认识圆柱的高,并会测量圆柱的高。如果没有学生探究这个问题,教师要示范两个底面大小差不多的圆柱,让学生观察它们的高不同,从而引导学生关注圆柱的高(圆柱两个底面的距离叫做高)。圆柱有无数条高,每条高的长度相等。
圆锥的特征:
⑴由一个底面(圆)、一个侧面(曲面)组成。
⑵从圆锥的顶点到底面圆心的距离是圆锥的高。引导学生掌握测量圆锥的高的方法。
小结:通过刚才的合作学习和交流,我们更进一步认识了圆柱和圆锥的特征。你能说一说你现在知道了圆柱和圆锥有哪些特征吗?
4.说一说
课本3页,让学生再次系统地看一看圆柱和圆锥各部分的名称。拿一个你准备好的圆柱和圆锥,同桌互相说一说它们各部分的名称。
说一说,在生活中见到的哪些物体的形状像圆柱、圆锥?指名回答。
《圆锥》教案11
圆锥的体积教学目的:使同学初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展同学的空间观念。
学具准备:等底等高的圆柱和圆锥8组,比圆柱体积多的沙土
教学过程:
一、复习
1、圆锥有什么特征?
使同学进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名同学回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
我们已经学过圆柱体积的计算公式,那么圆锥的体积是不是和圆柱体积有关呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名同学叙述圆柱体积计算公式的推导过程,使同学明确求圆柱的体积是通过切拼生长方体来求得的。
师:那么圆锥的.体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让同学讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么一起的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
同学分组实验。
汇报实验结果。先在圆锥里装满沙土,然后倒入圆柱。正好3次可以倒满。
多指名说
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 × 圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导同学想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高
师:用字母应该怎样表示?
然后板书字母公式:V=1/3 SH
师:在这个公式里你觉得哪里最应该注意?
2、巩固练习
(1)已知圆柱和圆锥等底等高。圆柱的体积是45立方厘米,圆锥的体积是( )立方厘米。已知圆柱和圆锥等底等高。圆锥的体积是20立方厘米,圆柱的体积是( )立方厘米。
(2)求下面圆锥的体积。
已知底面面积是9.6平方米,高是2米。
底面半径是4厘米,高是3.5厘米。
底面直径是4厘米,高是6厘米。
在列式时注意什么?( ) 在计算时,我们怎样计算比较简便?(能约分的要先约分)
(3)判断:
(l)圆锥体积是圆柱体积的1/3( )
(2)圆柱体的体积大于与它等底等高的圆锥体的体积。( )
(3)假如圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。( )
(4)圆锥的底面积是3平方厘米,体积是6立方厘米。( )
《圆锥》教案12
教学目标:
知识技能:1、使学生理解和掌握圆锥的特征及各部分名称。
2、使学生掌握测量圆锥的高的方法。
3、培养学生的观察能力、操作能力和思维能力,发展学生的空间观念。
过程方法:创设情景,由学生自己提出问题,通过自主探索,合作交流,学生动口、动手又动脑,主动参与知识的形成过程
情感态度:培养学生积极参与、勇于探索、敢于创新的自主学习精神,发展学生的思维能力,培养学生学习数学的兴趣
教学过程:
一、回顾强化
课件演示:出示一支圆柱形铅笔。
教师问:同学们这支铅笔是什么形状的?你能说说它具有什么特征吗?
生:是圆柱体。它的特征是:圆柱有三个面,有上下两个底面,是完全相同的两个圆,有一个侧面是曲面,两个底面之间的距离叫做圆柱的高,有无数条高。圆柱侧面展开是长方形。
二、创设情境,激情导入
师:圆柱的特征同学们掌握得非常好,今天我们学习一种新的几何形体,请同学们仔细观察屏幕
课件:用转笔刀削铅笔,把削成的笔尖部分(圆锥体)垂直切下来。
问:这还是圆柱体吗?被切下来的是什么几何形体呢?
生:不是。是圆锥体。
师揭示课题:我们把象这样的几何形体叫做圆锥体,简称圆锥,我们所学的圆锥都是直圆锥。今天我们就来学习《圆锥的认识》。板书课题
三、探究体验。
1、列举,提出问题。
同学们想一想,在日常生活和生产劳动中,你都看到过哪些物体的形状是圆锥体的?你也可以把课下收集的圆锥形物体拿出来给大家看。
生1:冰激凌外壳的形状是圆锥体的。
生2:有的帽子的形状是圆锥体的。
生3:漏斗的形状是圆锥体的。
生4:盖房子用的铅锤的形状是圆锥体的。
……
同学们很善于观察,请同学们拿出圆锥体模型,看一看、想一想,你都想知道有关圆锥的哪些知识?
生可能提出:
1、我想知道圆锥的特征。
2、我想知道圆锥有几条高?它的高指的是什么?
3、我想知道圆锥的侧面展开是什么形状的.?
4、我想知道圆锥的体积应怎样计算?
5、我想知道圆锥的表面积该怎样计算?
2、自主探究、解决问题。
师:请同学们拿出圆锥体模型,看一看、摸一摸、玩一玩、也可以猜一猜你能发现什么?
生:手拿圆锥体模型观察、想。
师:把你观察到的,感觉到的告诉给你小组的同学,小组同学共同探讨刚才大家提出的问题
小组交流、讨论。教师深入小组和学生一起进行探讨。
师:哪组愿把你们的研究成果展示给大家。
生汇报:(预设展示过程)
A、圆锥的特征。
①我们发现圆锥上面细,下面粗。
②圆锥有一个尖尖的部分,摸起来很扎手。我们把它叫做顶点。
③圆锥有一个弯曲光滑的面,我们可以把它叫做侧面。这个面是曲面。
④圆锥有一个圆形的面,我们可以把他叫做底面。
⑤我们还发现圆锥的底面朝下立者,尖朝下不立者。
⑥圆锥在桌子上滚动时,既不朝前走,也不朝后走,它总是绕着一点画圆。
B、圆锥的高
①我们发现圆锥的高是从圆锥的顶点到底面之间的距离。
②圆锥的高是从圆锥的顶点到底面圆心的距离,我们认为圆锥只有一条高。
③圆锥的高是圆锥的底面到顶点的线段的长。
④我们认为他们说的不准确,圆锥的高是从圆锥的顶点到底面的距离。它应该有无数条高。因为从圆锥的顶点引一条与底面平行的线,这样就可以作出无数条高。
师:同学们对于圆锥的高有几种不同的看法,谁的说法是正确呢?请同学们小组进行讨论。
生:小组进行讨论。
师:哪些同学同意某某的说法。老师也同意这位同学的说法。请同学们仔细看屏幕。(课件演示圆锥的高)
师:这条黑色的虚线就是圆锥的高。谁愿意说说圆锥的高指的是什么?
生试说圆锥的高:
圆锥的高是从圆锥的顶点到底面圆心的距离。圆锥只有一条高。因为圆锥只有一个顶点和一个底面圆心。
师:请同学们打开书42页看第三自然段最后一句话,谁来读。
(指名读、齐读高的定义)
师:哪一组还有发现。
C、圆锥的侧面展开。
我们发现圆锥的侧面展开是扇形。(举起给同学们看,一名同学把展开的图形贴在黑板上)
教师用课件演示侧面展开的过程。
师:通过刚才的学习,我们掌握了圆锥各部分的名称。请同学们拿起圆锥体模型,小组同学互相说说圆锥各部分的名称。
小组互相说圆锥各部分的名称。
师:谁愿意到前面说说圆锥各部分的名称。
两名学生到前面来说
3、由实物抽象出几何图
师:同学们说得可真好!老师这有三幅圆锥体实物图,请同学们看。(课件展示)圆锥的几何图是什么样的呢?请同学们仔细看(课件展示)画图时看不见的部分应怎样画?(课件演示)
这就是圆锥的几何图
生:用虚线画。
师:同学们看黑板这是圆锥的几何图。(教师边说边揭开贴纸)谁能到前面对照圆锥的几何图说说你都学会了有关圆锥的哪些知识?
学生到前面说
师:请同学们闭上眼睛想一想圆锥是什么样子的?
4、探究测量圆锥高的方法。
师:通过刚才的学习我们掌握了圆锥的特征及圆锥各部分的名称,我们知道圆锥的高是从圆锥的顶点到底面圆心的距离,那怎样来测量圆锥的高呢?先想一想,然后利用课下大家准备的材料,小组同学共同探究圆锥的高的测量方法。
学生汇报:
生1:我们小组是这样测量的,先把圆锥底面放平,用直尺水平地放在圆锥的顶点上,用三角板竖直地量出圆锥的高
生2:我们小组的方法和他们的差不多,只是用小尺竖立在桌面上,然后用三角板通过顶点与直尺垂直。
生3:我认为这种方法比第一种测量准确。因为三角板这样放在圆锥的顶点上可以与直尺保持垂直,准确地测量出高
生4:我们是这样测量的,把圆锥的底面朝下倒立在桌面上,把小尺放在圆锥的底面上,然后用三角板垂直地测量出顶点到底面之间的距离。
生5:我认为这种方法不太好,因为这种方法不能使用于所有的圆锥,比如,一个大的小麦堆,能把它倒过来测量它的高吗?
生6:我们认为不管用什么方法,都应该注意小尺测量时要从“0”刻度开始。
四、看书质疑。
五、课堂练习
1、在下面的图形中找出哪些是圆锥。
课本练习十二1题
2、判断。(打手势)
(1)圆锥的侧面是曲面。( )
(2)圆柱侧面展开是长方形,圆锥侧面展开也是长方形。( )
(3)从圆锥的顶点到底面任意一点的线段叫做圆锥的高。( )
(4)圆锥的底面是圆形。( )
3、练习十二2题
六、课堂小结。
这节课我们学习了什么?通过这节课的学习你都学会了什么?
七、作业。
到室外找一些沙子或土堆成一个圆锥形,想办法测量出它的高,可以两个人进行合作。
《圆锥》教案13
一、教材分析
本课内容是九年级义务教育课程标准实验教材(人教版)六年级下册第二章第二小节第一部分《圆锥的认识》。这一部分是在学生掌握了圆和圆柱的相关知识的基础之上而安排的内容。我们要想认识圆锥,进一步学习有关它的知识,首先要了解它的特征。因此教材把它安排在这一部分内容的第一节,为下面学习起到一个良好的铺垫作用。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。
二、学生情况分析:
由于已经是六年级的学生了,他们的主动性和能动性已经有较大的提高,能够有意识的去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。所以在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具体情境中亲自体验感知圆锥的特征。另外,要鼓励学生主动参与、动手操作、发挥自己的聪明才智,能根据具体情况想出测量高的方法。
三、教学方法:
根据学生的年龄特点,这部分教材的内容特点,经过我对学生和教材的分析,本节课主要用动手实践、主动探究的教学方法。
四、教学准备:
教具准备:圆锥形物体多个、圆锥的模型一个、多媒体
学具准备:圆锥形实物,模型一个、一块平板(或玻璃),一把直尺
五、教学目标:
根据新课程标准的要求,教材的特点,以及考虑学生的认知规律,我确定本节课的学习目标及教学重、难点。
学习目标:
1、认知目标:使学生在具体的情境中认识圆锥,知道圆锥各部分的名称,掌握圆锥的特征,会看圆锥的平面图,了解圆锥的高的测量方法。。
2、能力目标:培养学生的操作能力,观察能力,思维能力和灵活运用知识的能力。
3、情感目标:用生活中的圆锥让学生体会所学知识的生活价值,培养学生热爱数学学习的情感、态度。
教学重点:掌握圆锥的特征
教学难点:圆锥的高的测量方法
六、教学流程
1、复习提问
师:我们已经学习了圆柱的有关知识,谁能告诉老师圆柱有什么特征?(指名答)
2、导入新课
现在,请同学们拿出自己准备好的物体,观察一下,触摸感觉一下,它与圆柱有什么不一样?
生观察感知后,说出自己的结果,师肯定:这个物体有一个曲面,一个顶点和一个面是圆。
教师指出:像这样的物体就叫做圆锥体,简称圆锥。也就是这节课我们要学习新的`立体图形。(板书课题:圆锥的认识)
3、讲授新课
(1)、教学圆锥的认识
展示,如果我们沿着些圆锥的轮廓画线,可得到圆锥的几何图形。
教师根据几何图形指出:圆锥的一个顶点,底面是一个圆。
再触摸,得出圆锥的周围是一个曲面,叫做圆锥的侧面。
再观察物体,教师指出:从圆锥顶点到底面圆心的距离叫做高。
你能从物体上找到圆锥的高吗?(教师指出母线不是高)
你能从图形上找到圆锥的高吗?(学生回答)
你能确定圆锥高的条数吗?(学生回答并根据定义总结:只有一条)
(2)、小结
第一步,学生拿出学具,同桌互指圆锥的底面、侧面、顶点、高。(师生总结:高是不能摸到的)
第二步,请学生归纳一下圆锥有什么特征。(指名试答)
师板书:底面是圆,侧面是一个曲面,有一个顶点和一条高。
(3)、教学测量圆锥的高。
提问:圆锥的高能直接测量吗?为什么?
(圆锥的高在它的内部,不能直接量出它的长度)
你能根据测量圆柱高的启示,来测量圆锥的高吗?(小组尝试)
请同学展示,测量圆锥的高的过程。
师生总结:
<1>先把圆锥的底面放平;
<3>竖直地量出平板和底面之间的距离,读出数值。
<2>阅读时一定要读平板下沿与直尺交会处的数值。
<2>转动含30度的三角板,你有什么新的发现?
4、课堂练习
利用,展示习题,指名口答。
5、小结
这节课我们学习了圆锥,想一想:圆锥有什么特征?侧面展开后是一个什么图形?
七、教学反思:
本节课为了实现教学方式的多样化:学生自主探索、合作交流;教师引导为主,帮助为辅,我进行了尝试。从教学内容方面,本部分知识适合采取这种方式:有操作的情境,有活动的空间。从学生方面,学生的求知欲较强,活动能力与小学相比有大的提高,他们能对同一个情境提出不同的解决问题的方法。从学生情感方面来看,他们喜欢合作交流的方式。
《圆锥》教案14
教学内容:
第24页回顾与整理、练习与应用第1~6题。
教学目标:
1.使学生进一步认识圆柱、圆锥的特点。能判断一个物体或立体图形是不是圆柱或圆锥。
2.使学生进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法,并提高灵活应用计算方法解决一些实际问题的能力。
教学重点:
进一步认识圆柱、圆锥的特点。
教学难点:
进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法。
教学过程:
一、揭示课题
我们已经学完了圆柱和圆锥这一单元,今天开始复习圆柱和圆锥。(板书课题)通过复习,一方面,要进一步认识圆柱和圆锥的特征,熟悉圆柱和圆锥各部分的名称;另一方面,要进一步掌握圆柱表面积、圆柱和圆锥体积(包括容积)的汁算方法,提高解决实际问题的能力。
二、复习特征
1.说出物体名称。
出示一些圆柱和圆锥的物体和模型,让学生说一说各是什么形体。
2.复习特征。
(1)同时出示圆柱和圆锥的图形。
指名学生说出各图的名称。(板书:圆柱、圆锥)
(2)提问:谁能拿出圆柱和圆锥,说出各部分的名称?(在图中板书)圆锥的高怎样测量,试着量一量你手里圆锥的高。
(3)提问:哪位同学来说说圆柱有什么特征?哪位同学来说说圆锥有什么特征?
三、复习计算
1.练习与应用第1题。
出示表格,说明要求,让学生计算,填在表格里。学生口答结果,老师板书填表。
提问:圆柱的表面积怎样计算的?(板书:圆柱表面积=侧面积+两个底面积)圆柱的侧面积怎样计算?为什么用底面周长乘以高? 这两题计算时有什么不同的'地方?圆柱的体积怎样计算的,圆柱的体积计算公式是怎样得到的?(强调把个新知识转化成旧知识,得出新的结论)圆锥的体积怎样计算的?圆锥的体积计算公式又是怎样得到的?这两题计算过程完全一样吗?为什么不一样?
2.练习与应用第2题。
提问:压路机前轮是什么形状的?前轮滚动一周所形成的面的大小相当于前轮的哪一部分面积?接下来学生独立完成。
3.练习与应用第3题。
引导思考:水桶底部的铁箍大约长15.7分米就是圆柱的底面周长。求做这个水桶至少要用木板多少平方分米就是圆柱水桶的哪些面的面积之和。这个水桶能盛120升水吗?要拿什么和120升比较?学生自主完成。
4.练习与应用第4题。
联系实际解决问题,要求得数保留整数。
四、课堂小结
通过这节课的复习,你有哪些收获?
五、课堂作业
练习与应用第5~6题。
《圆锥》教案15
教学内容:
第25~26页,例2、例3及练习四的第3~8题。
教学目的:
1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
教学重点:
掌握圆锥体积的计算公式。
教学难点:
正确探索出圆锥体积和圆柱体积之间的关系
教具准备:
每生准备一组等底等高的'圆柱和圆锥模具,大米,水,沙子等
教学过程:
一、复习
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:圆柱的体积=底面积高。
二、新课
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.
(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?组织学生实验分组合作学习
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )
学生叙述实验过程并总结结论,得出计算公式
板书:圆锥的体积= 1/3圆柱的体积=1/3 底面积高,
字母公式:V= 1/3Sh
2、教学练习四第3题
这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
【《圆锥》教案】相关文章:
圆锥的体积教案02-13
圆柱和圆锥教案02-28
圆柱和圆锥教案03-08
圆锥的体积微课教案12-15
圆锥体的认识教案08-26
《圆锥的体积》教学反思04-27
《圆柱与圆锥》教学反思04-13
圆锥的体积教学反思04-13
圆锥的认识教学反思11-02