《组合图形的面积》教案

时间:2023-01-26 18:45:28 教案 投诉 投稿

《组合图形的面积》教案

  作为一位杰出的教职工,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!以下是小编精心整理的《组合图形的面积》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《组合图形的面积》教案

《组合图形的面积》教案1

  一、知识要点

  在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

  二、精讲精练

  【例题1】求图中阴影部分的面积(单位:厘米)。

  【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。

  62×3.14× =28.26(平方厘米)

  答:阴影部分的面积是28.26平方厘米。

  练习1:

  1.求下面各个图形中阴影部分的面积(单位:厘米)。

  2.求下面各个图形中阴影部分的面积(单位:厘米)。

  3.求下面各个图形中阴影部分的面积(单位:厘米)。

  【例题2】求图中阴影部分的面积(单位:厘米)。

  【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

  从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

  3.14× -4×4÷2÷2=8.56(平方厘米)

  答:阴影部分的面积是8.56平方厘米。

  练习2:

  1.计算下面图形中阴影部分的面积(单位:厘米)。

  2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

  3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

  【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。

  【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)

  答:长方形长方形ABO1O的面积是1.57平方厘米。

  练习3:

  1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

  2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

  3.如图所示,AB=BC=8厘米,求阴影部分的面积。

  【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。

  【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。

  I和II的面积相等。

  因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以

  6×4=24(平方厘米)

  答:阴影部分的面积是24平方厘米。

  练习4:

  1.如图所示,求四边形ABCD的面积。

  2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。

  3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。

  【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。

  【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。

  半径:4÷2=2(厘米)

  扇形的圆心角:180-(180-30×2)=60(度)

  扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)

  三角形BOC的面积:7÷2÷2=1.75(平方厘米)

  7-(2.09+1.75)=3.16(平方厘米)

  答:阴影部分的面积是3.16平方厘米。

  练习5:

  1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。

  2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。

  3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

  4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

  组合图形面积计算(二)

  一、知识要点

  对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

  二、精讲精练

  【例题1】如图所示,求图中阴影部分的面积。

  【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米

  [3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)

  答:阴影部分的面积是107平方厘米。

  解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

  (20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)

  答:阴影部分的面积是107平方厘米。

  练习1:

  1.如图所示,求阴影部分的面积(单位:厘米)

  2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?

  【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。

  【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。

  3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)

  解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

  3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)

  答:阴影部分的面积是16.82平方厘米。

  练习2:

  1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。

  2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。

  3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。

  【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。

  【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。

  空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)

  阴影部分的面积:10×10-21.5×2=57(平方厘米)

  解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。

  (10÷2)2×3.14×2-10×10=57(平方厘米)

  答:阴影部分的面积是57平方厘米。

  练习3:

  1.求下面各图形中阴影部分的面积(单位:厘米)。

  2.求下面各图形中阴影部分的面积(单位:厘米)。

  3.求下面各图形中阴影部分的面积(单位:厘米)。

  【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。

  【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。

  既是正方形的'面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)

  阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)

  答:阴影部分的面积是3.87平方厘米。

  练习4:

  1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

  2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

  3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。

  【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。

  【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。

  3.14×(30×2)×1/4-30=17.1(平方厘米)

  答:阴影部分的面积是17.1平方厘米。

  练习5:

  1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。

  2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。

  3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。

《组合图形的面积》教案2

  教学内容:教材第68—69页含有圆的组合图形的面积。

  教学目标:

  1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

  2、通过自主合作,培养学生独立思考、合作探究的意识。

  3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

  教学重难点:组合图形的认识及面积计算、图形分析。

  教具学具准备:多媒体课件、各种基本图形纸片。

  教学设计:

  ⊙创设情境,认识圆环

  1.师:我们来欣赏一组美丽的图片。

  课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……

  2.同学们,你们从图中发现了什么?(它们都是环形的)

  3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

  你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?

  (学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

  4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)

  设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。

  ⊙探索交流,解决问题

  1.画一画,剪一剪,发现环形特点。

  (1)画一画。

  让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

  (学生按照要求画圆)

  (2)剪一剪。

  指导学生先剪下所画的.大圆,再剪下所画的小圆。

  问:剩下的部分是什么图形?(环形)

  师:我们也称它为圆环。

  (3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?

  生明确:圆环是从外圆中去掉一个内圆得到的。

  (4)借助图示认识圆环的各部分名称。

  你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)

  ①外圆:又名大圆,它的半径用R表示。

  ②内圆:又名小圆,它的半径用r表示。

  ③环宽:指外圆半径和内圆半径相差的宽度。

  2.探究圆环面积的计算方法。

  (1)小组讨论,怎样求圆环的面积?

  (2)汇报讨论结果。

  (3)小结:环形的面积=外圆面积-内圆面积。

  设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。

  3.课件出示例2。

  光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

  (1)学生读题。

  观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

  (2)学生试做,指生板演。

  (3)交流算法,学生将列式板书:

  解法一

  外圆的面积:πR2=3。14×62

  =3。14×36

  =113。04(cm2)

  内圆的面积:πr2=3。14×22

  =3。14×4

  =12。56(cm2)

  圆环的面积:πR2-πr2=113。04-12。56

  =100。48(cm2)

  解法二

  π×(R2-r2)=3。14×(62-22)=100。48(cm2)

  答:圆环的面积是100。48cm2。

  (4)比较两种算法的不同。

  (5)小结:圆环的面积计算公式:S=πR2-πr2或

  S=π×(R2-r2)(板书公式)

  (6)讨论。

  知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)

  ①知道内、外圆的面积,可以计算圆环的面积。

  S环=S外圆-S内圆

  ②知道内、外圆的半径,可以计算圆环的面积。

  S环=πR2-πr2或S环=π×(R2-r2)

  ③知道内、外圆的直径,可以计算圆环的面积。

  ④知道内、外圆的周长,也可以计算圆环的面积。

  S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2

  或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]

  ⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。

  S环=π×[(r+环宽)2-r2]

  或S环=π×[R2-(R-环宽)2]

  ……

  设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。

  ⊙巩固练习,拓展提高

  1.完成教材68页1题。

  学生独立完成,然后在班内说一说解题思路。

  2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?

  3.已知阴影部分的面积是75cm2,求圆环的面积。

  [引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]

  设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。

  ⊙反思体验,总结提高

  这节课我们学习了什么?你有哪些收获?还有什么问题?

  ⊙布置作业,巩固应用

  1.完成教材72页8题。

  2.找一些关于环形的资料读一读。

  板书设计

  圆环的面积

  圆环面积=外圆面积-内圆面积

  S环=πR2-πr2或S环=π×(R2-r2)

《组合图形的面积》教案3

  “创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力。”培养学生的创新能力是素质教育的重要目标,也是新课程改革的核心问题之一。我们在教学中,要为学生提供充分的时间和空间,鼓励学生用多种方法、多种思路解决数学问题,促进学生创新能力的提高。

  案例:求组合图形的面积

  导入新课后,老师出示例题:

  求下面组合图形的面积?(单位:厘米)

  师:分四人小组互相讨论,再派代表发言。(学生大约讨论六分钟左右进行反馈)

  师:大家来汇报一下,你是怎样算的?

  生1:我是把它分成一个长方形和一个梯形来算的。先算出长方形的面积是48平方厘米,梯形的面积是40平方厘米,再把它们加起来,结果是88平方厘米。

  评:这位同学的回答思路清楚、语言精炼,同时也很清楚地把他的分析过程“怎样分”展示出来,使学生一看便一目了然。

  生2:我是把它分成一个梯形和一个三角形来算的`。梯形的面积是(6+10)×8÷2=64(平方厘米),三角形的面积是12×(10-6)÷2=24(平方厘米),再把两个面积加起来也是88平方厘米。

  评:这位同学的回答相当不错,思路也很清楚,经他这样把原来的一个图形分成两个我们熟悉的图形的这种计算方法,使学生看了后也能掌握。

  生3:我 先算长方形的面积是80平方厘米,三角形的面积是8平方厘米,再把两个面积加起来也是88平方厘米。

  评:这位同学又有了新的计算方法,思路也很清楚,也是一种最佳的计算方法,分成的方法一看就能掌握。

  生4:可以补上一个梯形,使它成为一个长方形,再用长方形的面积减去梯形的面积就可以了。如图:

  生5:还可以把它分成一个长方形和两个三角形来计算。先算出长方形的面积是48平方厘米,再算出两个三角形的面积分别是16平方厘米和24平方厘米,最后把这三个面积加起来是88平方厘米。

  这一例题的教学就这样在“创新”中开始,又在“创新”中结束了,从整个过程来看,一开始课堂上可以明显地观察到不少学生一脸疑惑,渐渐地注意力出现涣散,到最后一种方法也不会的学生估计不存在,如有也是个别的。课堂教学面对的是一个班级的学生,他们的知识、智力水平存在差异。在初次接触组合图形,没有进行引导的情况下,让学生自行探究,获得成功的只是部分同学。在汇报解法时,要让学生充分展示解题思路、探究历程,引导全班同学进行分析、认同,进一步明确思路。有了多种方法,还应通过比较,懂得各种方法的繁简优劣。

  随着新课程改革的不断推向高潮,对如何实施新理念,弥补传统数学的缺陷,解决传统数学教学问题,发扬传统数学教学的优点需要我们不断地去探索、去实践。“陷于生活、方向不明、放任自流”绝不应该成为新课程理念的本意,“联系实际、明确目标、自主探究、体验成功”菜是我们要追求的目标。

《组合图形的面积》教案4

  教学目标:

  知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

  过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

  情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。

  教学重点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。

  教学难点:根据组合图形的条件,有效地选择汁算组合图形面积的方法。

  教学方法:动手实践、自主探索、合作交流。

  教学准备:师:多媒体、各种平面图形。

  生:七巧板、简单图形学具、少先队中队旗实物。

  教学过程

  一、情境导入

  1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)

  2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。

  通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的`大的不规则图形叫组合图形。

  3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)

  二、互动新授

  l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。

  这些组合图形里有哪些是学过的图形?同学们试着找一找。

  小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。

  2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。

  学生可能会想到:厨房里的三角架、房子的分布图、桌子等。

  3.引导思考:关于组合图形,你还想研究它的什么知识?

  4.出示教材第99页例4:一间房子侧面墙的形状图。

  引导学生观察图并思考:怎样计算出这个组合图形的面积?

  组织学生小组合作学习,说一说是怎样分的,然后再算一算。集体汇报。

 三、巩固拓展

  1.完成教材第101页“练习二十二”第1题。

  2.完成教材第101页“练习二十二”第2题。

  3.完成教材第101页“练习二十二”第3题。

  四、课堂小结

  师:这节课你学会了什么?有哪些收获?

  板书设计:

  组合图形的面积

  由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

  5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2

  =25+5 =12×2.5÷2×2

  =30(2) =30 (2)

  教学反思:

《组合图形的面积》教案5

  教学内容:

  课本第21页。

  教学目标:

  1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

  2、能运用所学知识解决生活中组合图形的实际问题。

  3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

  4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  理解并掌握组合图形的组合及分解方法。

  教学准备:

  课件

  教学过程:

  一、创设情境,激趣导入。

  1、同学们,我们已经学习了哪些多平面图形?

  导学要点:

  请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

  2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。

  板书:组合图形的面积

  二、小组合作探究

  1、出示前置性作业小组交流

  复习

  (1)说说你学过哪些平面图形?

  (2)说说这些图形的面积计算公式?

  2、自学21页的例10

  (1)导学单

  1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?

  2)尝试计算每个图形的面积。

  3)思考:组合图形的面积是怎样计算出来的?

  导学要点:

  (1)分割法:将整体分成几个基本图形,求出它们的面积和。

  (2)添补法:用一个大图形减去一个小图形求出组合图形的面积。

  师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  (2)小组交流

  1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?

  2)由于方法不同,我们计算组合图形的方法有什么不同?

  3)求组合图形面积时关键是做什么?

  导学要点:

  (1)要根据原来图形的特点进行思考。

  (2)要便于利用已知条件计算简单图形的面积。

  (3)可以用不同的方法进行割补。

  (3)全班交流

  1)学生举例并解答(前置作业我的例子)

  2)结合学生自己举的例子解答讲解。

  三、应用新知,解决问题

  1、课本第21页练一练

  (1)生独立计算。

  (2)生展示思路。

  点拨:

  计算组合图形的'面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。

  2、课本第23页练习四第1题前两题。

  点拨:

  (1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?

  (2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?

  3、课本第23页练习四第二题

  点拨:

  引导说说组合图形面积的计算方法。

  四、课堂总结

  通过这节课的学习,你学到了什么知识呢?

  教学反思:

《组合图形的面积》教案6

  教材分析

  《组合图形的面积》是第五单元的第一课。学生在三年级已学习了长方形和正方形的面积计算,在教材第二单元又学习了平行四边形、三角形和梯形的面积计算,本课组合图形面积的计算是这些知识的延展,也是实际生活中需要解决的问题。在已有知识基础上学习组合图形,一方面可以巩固基本图形的'面积计算,另一方面还能将所学知识加以综合运用,提高学生解决实际问题的综合能力。

  学情分析

  作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。

  教学目标

  教学目的:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  情感、态度和价值观:

  1、通过联系生活实际,使学生感受到计算组合图形面积的必要性。

  2、学生通过参与探索活动,思维得到拓展,能力得到了提升,同时也掌握了多种解题策略。

  3、通过小组探索研究,使学生认识到与人合作的重要性,从而加强合作意识。

  过程和方法:

  1、在解决组合图形面积时,通过认真观察,独立思考、自主探索寻找解决问题的策略。

  2、通过小组讨论交流,理解解决问题的多种策略,从而经过比较选择最好的解题方法。

  教学重点和难点

  重点:能正确计算组合图形的面积。

  难点:能根据各种组合图形的条件,正确选择计算方法并解答。

《组合图形的面积》教案7

  教学内容:

  北师大版教科书第九册第75~76页的内容

  教学目标:

  1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

  重点、难点

  重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

  难点:如何选择有效的计算方法解决问题。

  教具准备:

  多媒体课件和组合图形图片。

  教学过程:

  一.引出概念,揭示主题。

  1.你能看出以下图形是由那些基本图形组成的吗?

  2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。

  二.新授。

  这是我家的客厅平面图!(课件出示客厅的'平面图。)

  1、估计地板的面积

  师:请同学们先估一估这个地板的面积有多大呢?

  2、探索不同方法。

  师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。

  生动手画图。

  教师有选择的展示方法。

  3.师总结分割法和添补法。

  其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。

  4.计算:

  现在你会计算这个组合图形的面积吗?

  要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。

  生独立计算。

  5.汇报计算方法及结果。

  6.辨析及总结。

  (1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?

  分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。

  (2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三.巩固练习。

  1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。

  四.小结:谈谈你的收获!

  五.板书:

  组合图形面积

  图11.转化

  图22.找条件

  图33.计算图

《组合图形的面积》教案8

  教学内容:

  课本第92页到第93页的教学内容

  教学目标:

  1、认识组合图形、会把组合图形分解成已学过的平面图形。

  2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

  4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。

  重、难点与关键

  1.探索并掌握组合图形的面积计算方法。

  2.理解并掌握组合图形的组合及分解方法。

  教具准备

  教学用三角尺或教学挂图、PPT课件。

  教学过程

  一、复习导入

  1.复习。

  你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?

  长方形的面积=长×宽;正方形的面积=边长×边长

  平行四边形的面积=底×高;三角形的面积=底×高÷2

  梯形的面积=(上底+下底)×高÷2

  2.导入。

  3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?

  二、新授课

  1.认识组合图形。

  出示课本第92页的四幅图。

  认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

  (1)四人小组讨论。

  (2)小组各自展示各种分法。

  (3)让学生举例说说生活中的组合图形。

  同学们,开动脑筋想象:生活中哪些地方还有组合图形

  2.探索组合图形面积的计算方法。

  教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。

  板书课题:组合图形的面积

  (1)出示例题4(电子教材)

  (2)学生独立解答。

  学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。

  (3)学生汇报。

  解法一:5×5+5×2÷2

  解法二:(5+7)×2.5÷2×2

  =25+5 =12×2.5÷2×2

  =30(m2) = 30(m2)

  学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)

  三、巩固练习

  完成课本第93页的“做一做”。

  问:这块地是由哪些简单的`图形组成的?

  1.学生独立计算。

  2.学生汇报,展示思路。

  四、课堂小结

  通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?

  在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。

  五、布置作业

  这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?

《组合图形的面积》教案9

  教学目标:

  1,认识组合图形,会把组合图形分解成已经学过的平面图形。

  2,通过找一找,分一分,拼一拼,培养学生识图能力和综合运用知识的能力,能合理运用“割”“补”方法来计算组合图形的面积。

  3,培养学生的观察能力和动手操作能力。

  教学重点:探索并掌握组合图形的面积计算方法。

  教学难点:理解并掌握组合图形的面积计算方法。

  一,复习引入

  1,师:大家知道哪些简单的平面图形?

  生:长方形,正方形,平行四边形,三角形-------

  师:今天老师是也带来了一些简单的平面图形,请看.

  (课间出示长,正,平,三,梯)

  师:大家知道他们的面积计算公式马吗?

  生说公式,同时师课间出示.

  师:老师把这些简单的平面图形组合在一起,拼成了生活中的美丽图形,请看!

  (课间出示;风筝房屋的侧面七巧板中队旗)

  师:你能看到那些简单的平面图形?同桌之间说说看。

  汇报:重点说中队旗分成两个梯形。

  引出“组合图形”的定义,课件出示定义。

  板书:组合图形

  2,寻找身边的组合图形

  师:其实我们身边还有很多这样的组合图形,大家找找看。

  (教师窗户,防盗窗)

  师:今天我们就来学习怎么计算组合图形的面积?

  板书:的面积

  二,探究新知

  教学例4:房屋侧面

  1,先出示没有数字的图形

  师:可以直接利用我们学过的面积公式来计算吗?

  生:不能

  师:那可以怎样计算呢?同桌之间说说看?

  汇报:可以分成两个梯形,可以分成一个三角形和一个长方形

  师:同学们有这么多想法啊?作业纸上又提供的数据,大家在作业纸上分一分,画一画,算一算。

  学生做,师巡视指导,搜集作品。,

  2,投影展示学生作品:

  方法一:转化成三角形+长方形

  让学生说一说他的.做法,重点问转化成了什么图形?

  问:大家看懂了吗?每一步表示什么意思呢?

  掌声送回学生一

  方法二:转化成两个相同的梯形

  (多让其他学生说一说分发)

  3,比较两种方法

  课件同时出示两种做法

  师:刚才这一种是把组合图形转化成(三角形和长方形)这种是把组合图形转化成了(两个梯形),虽然方法不一样,但他们有什么共同点吗?

  生:都是把组合图形分成成了已经学过的简单的平面图形。

  师:像这种分发在数学上叫分割法。板书:分割法

  分割

  板书:组合图形简单的平面图形

  求和

  小结:在求组合图形的面积时,我们可以把它利用分割法转化成已学过的简单平面图形的面积,再求和。

  师:大家会求组合图形的面积了吗?那我们就去做一些练习吧。

  三:练习

  1,“做一做”

  让学生独立完成,找一学生上黑板板演,找另一学生评价。

  在图上加一条变成一个梯形和一个三角形能求出组合图形的面积吗?(发现条件不够)

  教授:分割时不能随便分,要根据已知条件来分,这样才能求出组合图形的面积。

  2,中队旗

  先让同桌讨论方法,比一比谁找到的方法多,然后再作业纸上做一做。

  先讲两种分割法,重点讲解“填补法”

  师:刚才我们都是用的分割法来求得组合图形的面积,但这位同学的方法有的不一样了,你能说说你是怎么想的吗?

  生:长方形的面积-三角形的面积=组合图形的面积

  师:这位同学的想法真独特,想这种方法叫填补法。

  板书:填补法

  师:我们把组合图形通过填补法转化成简单的平面图形,然后再(求差),就求出了组合图形的面积。

  板书:求和

  小结:我们在怎么求出组合图形的面积的?

  强调:转化优化

  四:小结:这节课你有什么收获?

《组合图形的面积》教案10

  学习目标:

  1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。

  2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。

  3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。

  教学重点:能根据条件求组合图形的面积。

  教学难点:理解分解图形时简单图形的差。

  教具准备:图形卡片

  教学过程:

  一、联系学生生活,引入新课。

  数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:

  1.实物投影:同学们,你们说说这些图形像什么?

  师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?

  师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。

  2.出示基本图形,从而复习已学过的基本知识。

  师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)

  二、教学新课。

  学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。

  教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?

  1.在拼图活动中认识组合图形。

  师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)

  师:同学们刚才拼出了各式各样的图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?

  生:利用实物投影展示自己的作品。

  师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言)

  师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)

  师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。

  师:说说这里面有你认识的'图形吗?你是怎样看出来的?

  师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)

  师:学生展示交流结果。

  (选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)

  师:刚才大家的学习都很积极努力,接下来要继续加油呀!

  2.生:找到了组合图形和基本图形之间的关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。

  我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。

  3.在探索活动中寻找计算方法。出示例题:

  师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。

  师:现在请你估计一下,客厅的面积有多大?

  师:这个图形实际上就是一个什么图形?

  师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)

  师:那么你想怎样求这个图形的面积呢?

  学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。

  小组活动:请同学们利用自己手上的题纸,分一分,算一算。

  师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)

  学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。

  师:根据不同的方法,请学生给这些方法分一分类。

  师:板书:分割法和添补法。

  师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)

  师:说说你喜欢那种方法?为什么?

  师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。

  利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。

  让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。

  三、习题设计:

  1.出示图形进行练习

  试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。

  (1)这张硬纸板还剩下多大的面积?

  (2)有一面墙,粉刷这面墙每平方米需用0.15千克涂料,一共要用多少千克涂料?

  (3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。

  四、小结。

  师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?

  把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。

《组合图形的面积》教案11

  教材分析:

  《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

  教学目标:

  知识目标

  1、在自主探索的活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中有关组合图形的实际问题。

  过程和方法

  让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  情感、态度与价值观

  1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

  2、渗透转化的数学思想和方法。

  教学重点:

  学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

  教学难点:

  理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

  教学准备:

  多媒体课件和组合图形图片。

  教学过程:

  一、激趣导入、复习铺垫、认识组合图形

  1、介绍笑笑和她家的新房子

  师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)

  2、引导学生观察,复习有关平面图形面积的计算公式

  师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?

  3、欣赏图片(课件出示一组图片)

  师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)

  4、教师总结,揭示课题并板书

  师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)

  二、创设情境、探究新知

  笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)

  1、估计地板的面积

  请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)

  2、采用不同的方法求客厅的面积。

  同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。

  (1)生动手画图

  (2)汇报交流:同学们做好了吗?现在谁来说说你的想法?

  3、师生归纳方法并比较

  (1)观察找特点

  根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)

  (2)引导比较,对方法进行分类,找出最简单的方法

  师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)

  (3)现在,你能计算这个客厅地板的面积了吧!请根据下面的'提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)

  (4)学生独立计算,四人板演。

  (5)汇报交流,集体订正。

  (6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)

  4、归纳算法

  刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。

  师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三、实际应用、解决问题

  1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)

  (1)学生拿出先准备好的图形,动手画

  (2)展示交流

  2、计算墙壁的面积

  观察图形选择方法独立计算汇报交流

  同学们帮笑笑解决了难题,相信她会很感激大家的,咱们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙(如下图)粉刷一遍,你们愿意帮我算算吗?](1)需要粉刷的面积一共是多少平方米?(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?

  观察图形选择方法独立计算汇报交流

  3、求门油漆的面积。

  师:同学们以自己的聪明才智帮笑笑又解决了一个难题,咱们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)

  (1)需要油漆的面积一共是多少?

  (2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?

  四、归纳小结、提升知识

  这节课你学会了什么?

  (师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)

  五、拓展延伸

  师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。

  1.6m 4 m 10

  板书设计:

  组合图形面积

  S=ab 分割

  S=aa S=ah 转化

  基本图形

  S=ah2 S=(a+b)2 添补

《组合图形的面积》教案12

  教学目标:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  教学重点:能正确计算组合图形的面积。

  教学难点:能根据各种组合图形的条件,正确选择计算方法并解答。

  教学准备: A4纸 基本图形 作业练习

  教学过程:

  一、 谈话激趣,揭示课题

  师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:

  1、 给学生发礼物

  2、 复习各个平面图形的面积公式

  (这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)

  3、 拼成自已喜欢的组合图形

  请选择两个或两个以上的图形拼成你喜欢的图形。

  4、 学生展示并说一说由哪些基本图形组成的。

  (师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)

  5、 教师总结:像这样由我们学过的一些基本图形组合而成的图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。

  二、 探索交流,解决问题

  1、 出示教材第88页的情境图

  师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。

  2、 想一想,估一估

  先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)

  (若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的'正方形的面积去做计客厅的面积,那么客厅的面积大约为36平方米。

  师:刚才我们在估算客厅面积时是把它看成我们学过的长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?

  3、 自主探索,计算面积

  师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。

  (师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的图形的面积的计算。

  (1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)

  4、展示学生的作品,并由学生说说理由。(怎样计算的?)

  5、(展示四种已计算的分法)再对前四种进行分类

  (师:

  分割法:

  添补法:

  割补法:

  (师:图形分割后我们要看一看分割后计算每个图形面积所要的数据有没有?)

  板书:

  1、先转化成已学过的基本图形。

  2、分割后的图形是否可以计算。

  3、分割后的图形是否比较简单易算。

  师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。

  三、 理解运用,巩固练习

  师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。

  老师出两题考考大家,敢接受挑战吗?

  1、 出示练习,学生做在练习纸上。

  2、 讲评完第一题后,操作第二题。

  四、 学生畅谈收获

  通过这节课的学习,你在什么收获?

《组合图形的面积》教案13

  教学内容:

  《义务教育课程标准实验教科书数学》(人教版)五年级上册 “组合图形的面积”

  教学目标:

  1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  教学重点:

  在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点:

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学准备:

  课件、图片等。

  教学过程:

  一、 创设情境,引导探索

  师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)

  生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

  生2:这条小鱼的面是由两个三角形组成的。……

  师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

  【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】

  二、探索活动,寻求新知

  师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

  图一 图二 图三 课件逐一出示图一、图二、图三,让学生发表意见。

  生1:小房子的表面是由一个三角形和一个正方形组成的。

  生2:风筝的面是由四个小三角形组成的。

  生3:队旗的面是由一个梯形和一个三角形组成的。……

  师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。

  生2:有几个平面图形组成的图形是组合图形。……

  师小结:组合图形是由几个简单的图形组合而成的。

  图一:是由三角形、长方形、加上长方形中间的正方形组成的,

  面积 = 三角形面积+长方形面积-正方形面积

  图二:是由两个三角形组成的。

  面积 = 三角形面积+ 三角形面积

  图三:作辅助线使它分成一个大梯形和一个三角形。

  方法一:是由两个梯形组成的。

  师:为什么要分成两个梯形?怎样分成两个梯形?

  引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

  师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计

  (板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?

  方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。

  方法三:作辅助线使它分成一个大梯形和一个三角形。

  (课件分别演示这三种方法)

  分割法 添补法

  师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转

  变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。

  板书:分割法或添补法(转化):分解成简单图形。

  师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)

  师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识? 生1:我想了解组合图形的周长。

  生2:我想知道组合图形的面积怎样计算。……

  这节课我们重点学习组合图形的面积。

  【设计意图:“方法是数学的行为、思想是数学的灵魂”, 既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。 体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】

  三、探讨例题,学习新知

  师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)

  例4:右图表示的是一间房子侧面墙的.形状。它的面积是多少平方米?

  师:怎样才能计算出这个组合图形的面积呢?

  先让学生思考,再动手计算。

  交流汇报

  方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。

  师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。

  指名学生找相应的条件。

  在实物投影仪上展出示学生的答案

  ①5×5=25 (平方米)

  ②5×2÷2=5(平方米)

  ③25+5=30 (平方米)

  答:房子侧面墙的面积是30平方米。

  (注意检查做错的同学,找出错的原因。)

  师:除了这种方法,还有同学用别的方法吗?

  方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。

  师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案

  长方形:长:5+2=7米、宽:5米; 三角形:底是2米,高是2.5米。 5×(5+2)-2.5×2÷2×2

  =35-5 =30(平方米)

  答:房子侧面墙的面积是30平方米。

  方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。

  展示学生的答案

  (5+7)×2.5÷2×2=30(平方米) 答:房子侧面墙的面积是30平方米。

  让学生发表意见。

  小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)

  师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。

  【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生

  对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】

  四、利用新知,解决生活中的问题。

  做一做

  刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。

  方法一:把组合图形分割成两个 长方形。 4×3+3×7 =12+21 =33(cm2)

  方法二:分割成一个长方形和一个正方形。 4×6+3×3 =24+9 =33(cm2)

  第三种方法:分割成两个梯形。 (3+7)×3÷2+(3+6)×4

  7×6-3×3 =42-9 =33(cm2)

  让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。

  练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。 2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?

  现在你能帮工人叔叔算算这

  个指示路牌的面积吗?

  【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】

  五、课堂评价

  师:这节课你学到了什么?

  结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。

  【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】

  课堂检测A

  1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?

  现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要

  2500元。如果让你决定,你会选择哪家公司?

  2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!

  课堂检测B

  1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

  想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?

  答案:课堂检测A

  1、50×33+35×12÷2

  =1650+210

  =1860(厘米)

  2、33×26-26×13÷2

  =758+169

  =927(厘米)

  课堂检测B

  1、(40+70)×30÷2-30×15

  =1650-450

  =1200(厘米)

  2、长方形地的面积:18×12=216(平方米) 绿草面积(一半):216÷2=158(平方米) 黄花面积:216÷4=58(平方米) 红花面积:216÷4=58(平方米)

《组合图形的面积》教案14

  ◆教材分析

  《组合图形的面积》是义务教育标准实验教材小学数学五年级上册第六单元的内容。这部分内容是在学生已经掌握了各种图形的面积计算的基础上进行教学的。

  ◆教学目标

  1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积;

  2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积;

  3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。

  ◆教学重难点

  【教学重点】应用知识解决生活中有关组合图形面积的问题。

  【教学难点】怎样分割或者补足图形。

  ◆课前准备

  xxx课件。

  一、情景引入

  1、复习

  第一个图形是什么形?它的面积怎样计算?学生口答。

  教师在长方形图的下面板书:S=ab。

  第二个图形呢?

  学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。

  可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

  2、认识组合图形

  让学生指出有哪些图形?

  师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片(99页的四幅图),认一认,它们是什么?

  这些图片分别是由哪几个平面图形组成的?

  这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?

  师:组合图形是由几个简单的图形组合而成的`。

  问:说一说,生活中哪些物体的表面可以看到组合图形?

  同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。

  二、探索新知

  1、在实际生活中,有些图形也是由几个简单的图形组合而成的(出示题目及图)。

  图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  ◆教学过程

  2、如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?

  3、暴露资源,组织研讨:

  方法一:三角形+正方形三角形面积=5×2÷2=5(m2)

  正方形面积=5×5=25(cm2)房子侧面面积=25+5=30(cm2)

  方法二:两个梯形

  梯形面积=(5+2+5)×(5÷2)÷2=12×2。5÷2=30÷2=15(m2)房子侧面面积=15×2=30(cm2)

  方法三:拼成一个长方形

  长方形面积=(5+2+5)×(5÷2)=12×2。5=30(m2)房子侧面面积=长方形面积

  方法四:从长方形中挖走两个小三角形

《组合图形的面积》教案15

  教学内容:92和93页练习十八

  教学目标:明确组合图形的意义;

  知道求组合图形的面积就是求几个图形面积的和(或差);

  能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

  教学过程:

  一、复习。

  “第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab

  “第二个图形呢?”

  ......

  学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.

  教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

  二、认识组合图形

  1、让学生指出92页页的四幅图有哪些图形?

  2、引导学生把下面的图形,组合成多边形(展示台上拼)

  对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

  分别说出这些图形是由哪几个简单的图形组合而成。

  师:怎样计算这些组合图形的面积呢?(板题)

  二、组合图形面积的计算。

  1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

  订正,讨论第一图的两种方法。

  5×5+5×6÷2[5+(5+6)]×5÷2

  =25+15=16×5÷2

  =40(平方厘米)=40(平方厘米)

  2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

  图表示的是一间房子侧面墙的形状。

  它的面积是多少平方米?

  如果不分割能直接算出这个图形的面积吗?(引讨横虚线的`作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

  5×5+5×2÷2

  还能用其他的划分方法求出它的面积吗?(分组讨论)

  汇报讨论结果。可能有下面情况。

  [5+(2+5)]×(5÷2)÷2×2

  小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

  三、巩固初步

  1.做一做/书93页

  2.练习十八/第1题

  3.练习十八/第2题

  (1)由中队旗引入

  (2)算出它的面积。(单位:厘米)--可能有下面几种情况

  S总=S梯×2S总=S长-S三

  5.练习十八/第3、4题

  四、拓展练习

  练习十八8*

  课后记:

【《组合图形的面积》教案】相关文章:

组合图形的面积教案08-25

《组合图形的面积》教案15篇02-11

组合图形的面积教案15篇08-25

组合图形面积的教学设计02-09

组合图形的面积教学设计03-05

组合图形的面积教学反思03-27

组合图形的面积教学设计15篇03-12

《组合图形面积的计算》教学反思范文03-19

组合图形的面积教学设计(15篇)04-27