可能性教案

时间:2023-01-31 15:22:23 教案 投诉 投稿
  • 相关推荐

可能性教案15篇

  作为一位杰出的老师,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。那要怎么写好教案呢?下面是小编为大家收集的可能性教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

可能性教案15篇

可能性教案1

  教学目标:

  1、经历猜测、实验、数据整理和描述的过程,体验事件发生的可能性。

  2、知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性做出预测,并阐述自己的理由。

  3、积极参加摸棋子活动,在用可能性描述事件的过程中,发展合情推理能力。

  教学过程:

  一、创设情境

  师生谈话,由围棋子是什么颜色的引出把6个黑棋子,4个白棋子放在盒子中和“说一说”的问题,让学生发表自己的意见。

  (设计意图:由围棋子是什么颜色的问题引入学习活动,既调动学生学习的兴趣,又是摸棋子活动的准备。)

  二、摸棋子实验A

  1、教师提出摸棋子的活动和用“正”字记录黑白棋子的出现次数的要求,全班同学轮流摸棋子。

  (设计意图:学生猜并摸出棋子,亲身感受事件发生的不确定性。)

  2、交流学生统计的情况,把结果记录在表(一)合计栏。

  (设计意图:使学生经历收集整理的过程,为下面的交流作铺垫。)

  3、提出:观察全班摸棋子的结果,你发现了什么?让学生充分发表自己的意见。

  (设计意图:从全班统计结果的描述中,感受统计的意义,为体验可能性的大小积累直观经验和素材。)

  三、摸棋子实验B

  1、提出:如果把盒子中的棋子换成9个黑的,1个白的',会出现什么结果?学生发表意见后,全班进行摸棋子实验。然后整理统计记录。(设计意图:改变事物的条件,让学生猜测,再摸,发展学生的数学思维和合理推理能力,获得愉快的学习体验。)

  2、让学生观察描述统计结果。

  然后提出:谁能解释一下,为什么这次摸出黑色棋子多呢?鼓励学生大胆发表自己的意见。

  (设计意图:在观察描述摸棋子结果的过程中,感受摸棋子实验的意义,初步体验摸出什么颜色的棋子的次数和盒子中放的这种颜色的棋子个数有关系。)

  四、摸棋子实验C

  1、提出:如果把盒子中的棋子换成1个黑的,9个白的,让学生猜一猜摸中哪种颜色棋子的次数多,再摸。然后整理统计结果,填在表(三)合计栏中,并和大家猜的结果进行比较。

  (设计意图:在学生已有活动经验的背景下,进行猜测、实验,发展学生的合理推理能力,激发参与活动的兴趣。)

  2、提出:谁能解释一下,为什么这次摸出白色棋子多呢?鼓励学生大胆发表自己的意见。

  (设计意图:在两次实验结果的分析比较中,再次体验到,摸中哪种颜色的棋子的可能性和放入盒子里这种颜色棋子的个数有关系。)

  五、可能性大小

  1、提出“议一议”的问题,让学生讨论:摸中哪种颜色的棋子的次数跟盒子中棋子个数有关系吗?得出盒子中哪种颜色的棋子多,摸中的次数就多,反之就少。

  (设计意图:在亲身实验的基础上,认识盒子中放棋子的情况和摸棋子结果的关系。)

  2、教师介绍可能性大小的含义。鼓励学生用可能性大小描述实验的结果。

  (设计意图:理解可能性大小的部分意义,学会用可能性大小描述实验结果。)

  六、课堂练习与问题讨论

  学生独立完成练习。

  教学反思:

可能性教案2

  3.1 认识事件的可能性(教参)

  【教材分析】

  (一)教学内容分析:本节课内容属于概率范畴,意在帮助学生分清不确定的现象和确定的现象,使学生能定性地认识事件“可能、不可能、必然”发生的含义.让学生学会怎样用观察的方法去认识身边的不确定现象的数学规律.

  (二)学情分析:学生在日常生活中接触过一些不确定的现象,但他们对这些不确定现

  象的观察往往是零星的,短暂的.同时,学生对未知的事物又充满好奇且敢于质疑,很愿意投人到合作探究的实践活动中去.在学生小学阶段已学的有关事件可能性的认识的基础上,进一步使学生通过实例体会到可以用列举法来获得各种可能的结果数,从而使学生的认识达到升华.

  【教学目标】

  1.通过实例进一步体验事件发生的可能性的意义.

  2.了解必然事件、不确定事件、不可能事件的概念.

  3.会根据经验判断一个事件是属于必然事件、不可能事件,还是不确定事件.

  4.会用列举法(枚举、列表、画树状图)统计简单事件发生的各种可能的结果数.

  【教学重点、难点】

  1.事件发生的可能性的意义,包括按事件发生的可能性对事件分类.

  2.用列举法(列表、画树状图)统计简单事件发生的各种可能的结果数,需要较强的分析能力,是本节教学的难点.

  (基于对教材、教学大纲和学生学情的分析,制订相应的教学目标.同时,在新课程理念的指导下,注重对学生的动手能力、合作交流能力和对学生探究问题的习惯和意识的培养.这里没有用“使学生掌握…”,“使学生学会…”等字眼,保障了学生的主体地位,反映了教法与学法的.结合,体现了新教材,新理念.)

  【教学过程】

  一、激趣、设疑、引题

  同学们做过抛掷硬币的游戏吗?请你试一试抛一枚硬币10次,把结果记录下来,看看有几次正面朝上,有几次反面朝上?

  做完游戏后,提出问题:

  (1)抛掷硬币10次,每次都正面朝上或反面朝上,可能吗?可能性大吗?

  (2)在刚才的游戏中,可能正反面同时朝上吗?

  (3)在刚才的游戏中,还有哪些事件一定会发生?你能得到哪些结论?

  事实上在我们的周围有很多事件一定不会发生,有些事件可能会发生,也可能不会发生,有些事件必然会发生.

  引出课题:认识事件的可能性.

  (利用学生都感兴趣的小游戏引入,可以激发学生的学习欲望,让他们迅速投入到数学知识的学习中,同时加强了人文数学的教育)

  二、观察、思考、巩固

  (一)观察和思考:你能举出几个生活中必然发生,不可能发生,

  可能发生的例子吗?(请大家发言)

  不仅在现实生活中有很多例子,而且在我们所学的各学

  科中也有很多例子.(利用多媒体展示“铁杵磨成针”“守株待兔”

  “愚公移山”这三个成语故事和天气预报的动画)

  同时给出必然事件、不可能事件和不确定事件的概念:

  在数学中,我们把在一定条件下必然会发生的事件叫做必然事件(certainevent);

  在一定条件下必然不会发生的事件叫做不可能事件(impossibleevent);

  在一定条件下可能发生,也可能不发生的事件叫做不确定事件(uncertainevent)或随机事件.

  (这里用贴近学生生活的事例和动感十足的多媒体展示,不但能激起学生的学习兴趣和热情,而且能让学生感受到数学与现实生活以及其他学科之间的联系,增强学生应用数学的意识.)

  (二)巩固、检测、反馈(利用题组区分概念):

  在课件巾设置能力区分度不同的三组题,以利于同学们正确理解概念.

  1.头脑运动会(设置一组容易题,以快速抢答的方式请同学在规定的时间内给出正确答案,对于没有把握的问题也可以向其他人求助.)

  问题:下面哪些事件是必然事件?哪些事件是不可能事件?哪些事件是不确定事件?

  (1)打开电视机,它正在播广告;

  (2)抛掷10次硬币,结果有3次正面朝上,8次反面朝上;

  (3)将一粒种子埋进土里,给它阳光和水分,它会长出小苗;

  (4)黑暗中我从我的一大串钥匙中随便选中一把,用它打开了门;

  (5)抛掷一枚均匀的骰子.掷得的数不是奇数就是偶数;

  (6)从一副洗好的只有数字1到l0的40张卡片中任意抽出一张,卡片上的数比6小;

  (7)一个普通的玻璃杯从10层楼落下,落到水泥地上会摔破.

  2.头脑风暴.

  例在一个箱子里放有1个白球和1个红球,它们除颜色外都相同。

  (1)从箱子里摸出一个球,是黑球.这属于那一类事件?摸出一个球,是白球或者是红球.这属于哪一类事件?

  (2)从箱子里摸出一个球,有几种可能?它们属于哪一类事件?

  (3)从箱子里摸出一个球,放回,摇均匀后再摸出一个球,这样先后摸得的两球有几种不同的可能?

  (列表或画树状图是人们用来列出事件发生的所有不同可能结果的常用方法,它可以帮助我们分析问题,而且可以避免重复和遗漏,即直观又条理分明.)

  不可能事件 可能事件 必然事件

  |a|的值

  a的倒数

  若a+b=0(a,b的之间关系)

  3.个性空间(设置一组稍难题,对所学知识进一步巩固).

  问题1:列表造句:

  问题2:(1)有2种不同款式的衬衣和2种不同款式的裙子,各取一件衬衣和一条裙子搭配,问有多少种搭配的可能?

  (2)笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子的门都打开.松鼠要先经过第一道门(A,B或c),再经过第二道门(D,或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有多少种不同的可能?

  (在完成了两组区分度不同的练习之后,对于培养学生合作学习,激发学习兴趣都有帮助,至此本节课的教学目标已达成)

  (三)完成课本课内练习.

  三、概括、梳理、升华

  1.采用谈话式小结.教师提问:

  (1)你在这节课的学习中,最大收获是什么?

  (2)你对哪一点最感兴趣?

  (3)你受到哪些启迪?

  (4)你还有什么新的发现?

  (这种小结方式很容易沟通师生之间的感情,学生容易投入和参与,让学生自由说出自己的想法,把总结评价的主动权充分地交给学生,同时给学生一个开放的思维空间,培养学生的知识整理与语言表达能力,情绪会被再度调动起来,从而起到认知升华的作用)

  2.判断一个事件是属于必然事件,不可能事件,还是不确定事件.用列举法统计简单事件发生的各种可能的结果数.

  四、布置作业

  1、课本作业题

  2、1999年,全国少工委与中国青少年研究中心调查显示,46.9%的中小学生没有达到8时的睡眠时间标准,请你在班级里也做一次调查,你的结论是什么?

可能性教案3

  教学目标:

  1、让学生能过摸球、装球、转盘等活动,初步体验有些事件发生是确定的,有些事件的发生是不确定的,并能用“一定”、“可能”和“不可能”等词语描述事件发生的可能性,获得初步的概率思想;

  2、培养学生初步的判断和推理能力;

  3、培养学生学习数学的兴趣,让学生建立良好的合作学习的态度;

  教学重点:

  让学生初步体验事件发生的可能性;

  教学难点:

  有“一定”、“可能”和“不可能”等词语来描述生活里的事情;

  教具学具:

  布袋子两个,透明袋子10个,红球、白球若干个,篮子6个,大转盘

  教学过程:

  一、新课导入

  师:小朋友,我们先做一个游戏,什么(球)?猜球在哪只手里?

  师:(左手)有不同意见吗?(右手)你认为呢?

  师:你看看,一会儿猜左手,一会猜右手,你们自己都不能确定,那说明,小球有(可能)在xx,也有可能xxx

  二、新授教学

  活动一:摸球比赛

  师:老师这儿有两袋球,(1号袋,2号袋)下面进行男女生摸球比赛,摸到黄球多的取胜。各三次机会。第一次,男生,谁来?

  师:希望他摸到什么球?我们一起来“黄球、黄球??”

  师:哎呀!可惜!

  师:女生,XXX做得真端正,你来!“黄球、黄球??”

  师:我宣布第一次女生赢了。

  师:第二次,想来吗?男生,加油哟!哎!

  师:女生,“黄球、黄球??”女生又赢了。

  师:还想比吗?

  师:啊!男生的运气太不好了!

  师:女,想再赢吗?

  师:还是女生赢!

  师:我宣布(女生获胜)

  师:男生,有什么想要说的'?你认为呢?女生,有什么要说的?

  师:你们都对袋子里的球都产生了质疑,想看看吗?(慢慢抽出袋子)

  师:这个袋子里的球怎样?(全这个字用得好,都是用得不错,全部也不错哟)

  师:当袋子里全是黄球时,我们任意摸一个,会怎样?你说?你来?

  你?

  师:当袋子里全是黄球时,我们任意摸一个,一定是黄球。(板书:黄球)

  师:刚才男生从这个袋子,摸到黄球了吗?一次也没有,要看吗?(慢慢抽出袋子)

  师:他们怎么没有摸到黄球呢?和同桌交流一下。谁来说说?(说得不错)你来?(老师就喜欢你这样发言,完整)

  师:因为袋子里没有黄球,我们任意摸一个,不可能摸到黄球。(板书:不可能)所能男生输了,公平吗?

  师:那么从这个袋子里摸一个球,一定摸到黄球吗?会怎样?想一想,和同桌商量一下。

  师:谁会说?你来?你认为呢?

  师:为什么是可能?这个袋子里有?也有?所以摸到的可能是?也可能是?

  师:我们来试一试。(师摸三次)现在谁还能再说一说从这个袋子里摸一个球,是什么情况?因为?(板书:可能)

  活动二:选择

  师:摸玩了黄球,我们来摸红球,有三个袋子,哪个袋子摸到的一定是红球呢?准备随堂练习本,写下袋子的序号。有信心吗?

  师:请选择。几号?为什么?同桌之间相互看一眼,选对的举手,有错的起立。

  师:接着,哪个袋子摸到的不可能是红球?请选择。几号?原因?选对的坐正,有错的起立。

  师:最后,哪个摸到的可能是红球?写序号,同桌交流一下原因。几号?理由?对吗?同桌检查,有错的起立。

  活动三:装球比赛

  师:真棒!迅速收拾好本子,下面我们八小组进行比赛,想夺冠吗?那就仔细听老师的要求。游戏的名子叫“装球比赛”,小组根据题目先讨论,然后把球装好,装好后坐正向老师举手示意。比一比哪组又轻又快!先请组长拿出球和袋子放在中间。

  师:第一个要求:装一袋球,任意摸一个,一定是白球?先讨论,再装!开始!第一名!第二名!第三名!

  师:组长起立,把袋子高高举起来,其他人抬头看一下,有不同意见吗?为什么只装白球?组长请坐,把球放好。第一次比赛这三个小组表现得特别棒,其它小组要努力。

  师:第二个要求,一起读一下。看明白了吗?开始!组长起立,举起来?为什么这样装?

  师:第三个要求,开始!组长!怎么都是黄球?

  活动四:说话小结

  师:在这个游戏里,每个小组表现得都很出色!其实生活中很多时候我们也经常用到一定、可能、不可能。看!

  电脑出示:1、太阳( )从东方升起。

  师:这件事是一定。太阳每天都从东方升起。

  2、下个星期一( )会下雨。

  师:想一想,小组讨论一下!对吗?能填一定吗?

  师:有些事情还没有发生,我们谁也不知道会怎么样?

  3、在扬州春天过后( )是冬天。

  师:想一想,会填得举手?

  师:为什么?能把它改成“在扬州春于过后一定是??”一起说。

  4、将来,人类( )会登上火星。

  师:你也能用一定、可能和不可能说一说你身边的事情吗?先和同桌谈一谈。

  三、巩固练习

  大转盘

  师:下面我们接着玩一个游戏“大转盘”,(出示:转盘)。转盘上有什么?转盘转动时,猜一猜指针会指向哪?可惜,猜错了!(转动)

  师:谁还想试一试。谁坐得最正呢?恭喜你,猜对了!

  师:转动转盘,指针会指向哪?谁能准确得说一说。(说得真好)为什么?还有谁更加肯定的说一说。(语气更肯定了)

  师:我们换一个转盘来转一转。指针会指向哪?猜一猜?肯定吗?

  师:猜一猜?

  师:咦!三次全停在红色,怎么会这样?

  师:红色区域大,蓝色和黄色区域小,停在红色区域的可能性大。小朋友真是太聪明了,这可是我们以后要学习的知识。

  四、总结:

可能性教案4

  活动一:完成调查表

  活动二:接力长跑

  活动三:有奖游戏

  教学内容:

  教材P93《铺地砖》

  教学目标:

  l.通过活动,使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。

  2、进一步增强估算意识,提高学生运用数学解决生活中问题的能力。

  3.培养学生用数学的意识和创新精神,并在实践中对学生进行美育渗透,培养学生的审美意识。

  4. 体会数学与生活的`联系,感受数学的作用和价值。

  教学重点:

  运用多种知识解决问题。 合理地选择所需的地砖,根据不同要求灵活解决问题。

  教学难点 :

  灵活运用面积计算的知识解决实际问题。

  教学流程与设计

  一、汇报课前调查情况,做好设计准备

  师:要铺地砖,我们必须先选地砖,那选地砖时必须要考虑哪些条件才能选好呢?

  师根据学生的回答,出示各种地板模型及规格。(40×40,50×50)

  二、联系实际,小组讨论计算。

  1、出示卧室地面的平面图,并介绍地面的长和宽,分别是长5米,宽4米。

  2、师指定50×50这种规格,让学生计算需要此种规格的地砖多少块。

  (估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

  三、活动小结,发散联想

  师:通过本节活动课你受到什么启发?在日常生活中(或在布置装饰家居时)还有哪些方面的计算要根据实际情况灵活运用所学知识进行计算?

  板书设计:

  估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

可能性教案5

  教材说明

  本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。

  1.事件发生的可能性以及游戏规则的公平性。

  关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

  根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。

  等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。

  2.中位数的统计意义及计算方法。

  学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的.中等水平很有帮助。

  在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。

  教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。

  教学建议

  1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。

  在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。

  在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。

  2.加强学生对中位数在统计学意义上的理解。

  中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。

  在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。

  另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。

可能性教案6

  [教学目标]

  1、在摸球活动中经历收集、整理、分析数据的过程,会选用合适的方法记录实验结果,认识条形图,初步感受条形图在表达数据中的作用。

  2、通过实验,从中体会某些事件发生的可能性有大有小,能对某些事件发生的可能性的大小做出简单判断,并做出适当的解释。

  3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效方法,发展与他人合作交流的意识与能力。

  [教学准备]

  教师:红球、黄球若干个,透明和不透明口袋,课件。

  学生:质地一样的红球、黄球各3个,四个面上写有“1”、一个面上写有“2”、一个面上写有“3”的小正方体一个,4枝红铅笔和4枝蓝铅笔(也可用小棒替代)。

  [教学过程]

  一、创设情境,提出活动要求

  师:同学们,在很多游戏之中也会藏着许多的数学奥妙,谁来介绍一下?

  (设计意图:谈游戏引入课题,激发学生学习数学的兴趣,使学生感受到数学与生活的紧密联系,引导学生用数学的眼光关注生活,并引导学生回忆上节课的游戏活动中体验到的等可能性。)

  师:今天我们继续来玩摸球游戏好吗?请同学们再袋子里装1个红球,3个黄球。如果我们闭上眼睛,任意摸一个球,可能是什么颜色的球?

  生:可能摸出红球,有可能摸出黄球,一共有这两种可能。

  二、实验操作,初步感受可能性有大有小

  1、预测

  师:在摸球之前,我们先估计一下,在这种袋子里每次任意摸一个球,摸出后把球再放回口袋里,一共摸10次。摸到哪种球的次数可能多一些呢?

  学生猜测,并与同桌交流

  2、实验

  师:你估计的有没有道理呢,我们一起把这个实验做完。

  ⑴提出实验要求:袋子里放3个黄球和1个红球,坐在左边的`同学负责摸球,先搅动一下再闭上眼睛摸1个;坐右边的同学从书上第92页选一种方法作好实验记录,一共摸10次。完成后,再依照刚才的实验,同桌互换角色,选择另一种记录方法作好记录。

  ⑵学生操作,并用不同的记录方法作记录。

  ⑶四人一小组交流摸球情况。

  3、分析

  在四人一小组里讨论以下问题:

  ⑴统计的结果和你的猜测差不多吗?

  ⑵你发现了什么?

  ⑶你喜欢用哪种方法记录?并说说理由。

  讨论得出:

  ⑴涂一个方块作记录后数一数,而涂成条形图不用数,只要看旁边的数就好了,因此涂成条形图的记录方法比较好。

  ⑵因为袋中黄球有3个,红球只有1个,所以每次摸到黄球的可能性大,而摸到红球的可能性小。所以摸到黄球的次数多一些,摸到红球的次数少一些。说明在这种情况下,事件发生的可能性有大有小。

  (设计意图:让学生经历“猜测——实验——记录数据——分析数据——作出判断” 的过程,给学生提供自主探索、合作交流的空间,使学生在活动中学习,在游戏中获得愉快的数学体验,促进学生学习能力的发展。)

  三、再次实践,加深理解

  1、做“想想做做”第1题

  ⑴认真读题,明确题目要求。

  ⑵进行抛小正方体的实验,同桌作好记录,然后角色互换。

  ⑶讨论交流:在条形图里你发现了什么?你能解释一下为什么会出现这种情况吗?

  (设计意图:在多样的游戏活动中使学生再次体验可能性的大小。)

  2、做“想想做做”第2题。

  ⑴认真读题,明确题目要求。

  ⑵同桌讨论;根据题目中两个不同的要求,各应该怎样装铅笔。

  ⑶在班内交流先后不同的装法,并说说为什么这样装。

  四、返回生活,内化提高

  1、师:苏果超市,发了1000张奖券,其中设:

  一等奖:1名

  二等奖:10名

  三等奖:50名

  如果我们班的同学去抽奖,大家预测一下得奖的可能性大不大?如果得奖,得到哪种奖项的可能性大?哪种奖项的可能性小?为什么?

  2、问:联系身边的生活想一想,哪些地方要用到可能性大小的预测?

  (设计意图:联系现实生活交流,进一步培养学生用数学的思想方法看生活的意识和能力,同时深化对可能性的认识。)

  五、全课总结

  师:回家后把今天所学的知识讲给爸爸妈妈听,看看生活中还有哪些事情发生的可能性大一些,哪些事情发生的可能性小一些,下节课我们继续交流,比比谁讲得多,讲得好!

  (设计意图:让学生把今天学习的知识说给爸爸妈妈听,不仅给学生提供表现自我的机会,也较好地巩固新知识。让学生调查预测可能性大小的运用,能使学生再一次体会数学源于生活,生活中处处有数学,让学生真正做到学以致用。)

  六、布置作业

  1、把今天所学的知识讲给爸爸妈妈听。

  2、找一找,生活中还有哪些事情发生的可能性大一些,哪些事情发生的可能性小一些。

可能性教案7

  【教学内容】

  义务教育课程标准实验教科书(西师版)四年级上册第125~126页例1、例2,第127页课堂活动,练习二十五第1题。

  【教学目标】

  1、能在活动中初步体验有些事件的发生是可能的,有些则是不可能的。

  2、在具体的情景中能用“一定”、“可能”、“不可能”等术语来判断生活中的确定现象和不确定现象。

  3、体验数学与生活的联系,培养学生猜想、分析、判断、推理以及语言表达能力。

  【教学重点】

  在具体的活动情景中体验生活中的确定现象和不确定现象。

  【教学难点】

  能用比较规范的数学语言对确定现象和不确定现象进行分析描述。

  【教具学具准备】

  硬币、装乒乓球的盒子等。

  【教学过程】

  一、情景引入

  1、教师:上课之前告诉同学们一个消息,我们班马上要转来一位新同学,请同学们猜一猜,是男同学还是女同学?”

  2、学生猜:可能是男同学,也可能是女同学,不能确定,都有可能。

  3、教师小结:生活中,有些事情我们可以确定它的结果,有的事情则不能确定它的结果。这节课我们一起来研究事情发生的可能性。

  (板书课题)

  二、探究新知

  1、研究不确定现象。

  (1)教师:大家喜欢玩游戏吗?我们来玩一个抛硬币游戏怎么样?抛硬币之前请同学们猜一猜硬币落地后,是

  正面向上呢?还是反面向上?

  (2)学生分组进行抛硬币活动,注意记录和观察硬币落地后,是正面向上还是反面向上。

  (3)活动后请学生用语言描述硬币落地后,是正面向上还是反面向上,得出这件事是不确定的结论。

  (4)教师引导学生用规范语言描述:同学们的这些意思,在数学上我们一般用“可能……也可能……”(板书:可能……也可能……)这个词语来描述这种不确定现象。

  (5)教师小结:抛一枚硬币,落地后可能是正面向上,也可能是反面向上,在数学上,我们把像这样的,可能出现的结果不止一种,而使人们事先不能确定的现象叫做“不确定现象”

  (板书:结果不止一种?不确定)。

  2、研究确定现象

  (1)展示盒子里的球——全是白球。学生可分组摸球后,记录摸球后的结果。教师:当盒子里全是白球时,从里面任意摸出一个,结果怎样呢?学生用自己的语言进行描述:全是白球,都是白球……

  教师引导规范语言:同学们的这些意思,在数学上我们一般用“一定”这个词来说。

  (板书:一定)

  教师:这样放球可能从盒子里摸出黄球吗?

  学生用自己的语言进行描述:不可能,不会……

  教师引导规范语言:同学们的这些意思,在数学上我们一般用“不可能”这个词来说。

  (板书:不可能)

  教师:(展示盒子里的球全是黄球)当盒子里全是黄球时,从里面任意摸出一个,结果又怎样呢?

  学生用“一定”、“不可能”来描述摸球结果。教师小结:像这样结果只有一种,我们就用“一定”、“不可能”来描述确定现象。

  三、猜想验证

  1、(教师将两种球混装)提问:现在盒子里装了3个黄球和3个白球,从里面任意摸出一个,会是什么球呢?教师引导学生用规范语言来描述摸球结果。

  2、小组摸球,试验验证。

  (1)试验要求。

  教师:老师给每组都准备了一个盒子,里面有3个黄球和3个白球。请组长负责安排,小朋友按次序摸球。

  要求:

  ①每人可以摸两次,摸之前要先想想:会摸出什么球呢?然后再摸。

  ②组内的记录员要将小朋友每次摸球的结果记录下来。

  ③每次摸出的.球要放回盒子里摇一摇,再继续摸。教师:比一比哪个小组最会合作,小组活动开展得又快又好。小组活动,教师巡回指导。

  (2)教师小结:完成教科书127~128页1~3题。

  2、讨论生活中的不确定现象。

  教师:生活中,哪些是可能发生的事情?哪些是一定要发生的事情?

  教师举例,引导思考,如:“猜中指”、“石头、剪子、布”等游戏。教师:谁来介绍一下这些游戏?你能预测一下结果吗?

  教师小结:可能出现的结果不止一种,是事先不能确定的。

  学生举例,分析游戏结果。

  教师:想一想,平常你还玩过哪些游戏,或者你能不能自己来设计这样一个游戏,使它可能出现的结果不止一《xxx》种,是事先不能确定的。

  要求:独立思考,同桌互玩,边玩边想:这个游戏的结果是确定的吗?为什么?

  学生汇报交流。

  教师小结:刚才大家说的这些有趣的游戏,它可能出现的的结果不止一种,在玩之前是不能确定的,属于数学上的“不确定现象”。也正是因为结果的不确定,人们才可以反复玩,在可能出现的结果中去感受无穷的乐趣。

  四、全课小结

  教师:今天我们研究了什么知识?你有哪些收获?

可能性教案8

  第1课时

  [教学内容]摸球游戏(第87页)

  [教学目的]通过“摸球游戏”的活动,让学生了解数据表示的方式。又通过学生的讨论与交流,逐步使他们体会到数据表示的简洁性与客观性。

  [教学过程]

  1、交流中复习旧知

  师:同学们,我们已经认识了可能性的大小,请看下面一道题。教师呈现题目并配图,然后问:

  (1)你认为小青摸出的球可能是什么颜色?

  (2)哪一种颜色的球摸出的可能性大,为什么?与同学进行交流。

  2、在分析中理解数的'表示方法

  师:现在盒子里只有2个红球,能否摸到白球呢?

  生:不能。因为盒子里没有白球。

  师:那么可以用一个数来表示从这个盒子里摸到的白球的可能性呢?

  生:用0,因为0代表没有。那么摸出红球的情况呢?

  生:一定能摸到红球,因为盒子里都是红球。

  师:从盒子里一定能摸到红球,我们说此时摸到红球的可能性是1。谁能说一说生活中哪些事情发生的可能性是0,那些事情发生的可能性为1?(生举例说明)

  3、在观察、讨论中理解数的表示方法

  师出示一个只有1个红球与一个白球的盒子。

  师:从这个盒子中摸到红球的可能性是多少呢?

  生:摸到红球的可能性是一半。

  师:如果用数来表示摸到红球的可能性,可以怎样表示?

  生:12。

  师:这个同学说的很好,如果在盒子里在放入一个黄球,那么摸出红球的可能性怎样表示呢?让学生开展分组讨论。(也可以让学生自己想办法,如给每个球标上字母,再观察等)

  4、课堂练习:

  87页1题、2题。(生小组讨论)

  5、归纳小节:用数据表示可能性大小的方式。(可让学生自己,也可师生共同归纳)。

  6、布置作业:

  87页下面的实践活动题。

可能性教案9

  一、活动导入

  1、师抛硬币生猜结果:哪面朝上?(1元字样正面,另一面看作反面。)

  2、你想试一试吗?在组长的带领下学生进行抛硬币的活动。

  3、活动总结导入:硬币朝上的一面可能是正面,也可能是反面。这就是我们生活中的可能性。今天我们就一起来研究可能性。(板书课题:可能性)

  二、探究体验

  1、一定是黄球、不可能是黄球。

  (1)摸球比赛。比赛规则:分男、女生组来举行一次摸球比赛,谁摸到黄球的`次数多,谁就获胜。(男生瓶内全是黄球,女生瓶内全是白球)比赛开始。

  (2)一定是黄球。

  A、师:(疑惑地)怎么男生每次都能摸到黄球?你有什么想法吗?打开瓶观察。

  B、追问:全是黄球,那任意摸一个,结果会是?一定吗?(师板书:一定)

  (3)不可能是黄球。

  A、师:那女生怎么一次黄球也没摸到?你有什么想法?师打开瓶观察。

  B、师追问:没有黄球,那我去任意摸一个,结果会是?可能是黄球吗?(不可能是黄球,因为里面没有黄球)(师板书:不可能)

  2、可能是黄球

  A、师:比赛结束了,男生队赢得了最终的胜利,女生队你们服气吗?

  B、你认为怎样才公平呢?生自由说一说。

  C、组织学生汇报交流。派一个小组装球,进行一场公平的比赛。

  D、师:通过刚才摸球,你认为我们能摸到黄球吗?(能)一定能摸到黄球吗?(不一定)也就是说我们摸到的可能是黄球,也可能是白球。(板书:可能)

  3、超级竞猜:出示挂图,学生抢答。(课本105页例1)

  三、拓展应用

  1、师:在我们生活中同样有很多事情都可以用这些表示可能性的词语来表述。

  2、完成例2。

  (1)出示挂图,小组讨论。

  (2)组织学生汇报交流、评价,你想说哪一幅图的内容就说哪一幅。

  3、你还能用这些词来说说生活里的事吗?先和同桌交流,然后组织汇报、评价。

  4、游戏:在三叠卡片中各选一张,按排列顺序组成一句话,说一说这件事发生的可能性。

  5、作业:在书上完成108页第1、2题。

  四、总结全课

  1、师:今天,我们主要学习了什么内容?

  2、小结:生活里可能性的事情还有很多很多,有些事情一定会发生,有些事情可能会发生,有些事情不可能会发生。希望同学们做生活中的有心人,找一找生活中的可能性。

可能性教案10

  本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  1.体验事件发生的确定性和不确定性。

  对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。

  教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的

  (1)主题图的教学。

  教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。

  需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。

  (2)例1的教学。

  教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。

  教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。

  ①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。

  ②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。

  ③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教

  科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。

  ④另外,在汇报时只要学生能够结合具体的.问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的盒子里摸出红棋子这个事件的发生是确定的”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。

  ⑤(3)例2的教学。

  ⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。

  ⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。

  ⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。

  ⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  ⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。

  为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。

  一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。

  由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。

可能性教案11

  教学目标:

  1、体验事件发生的可能性以及游戏规则的公平性,会求简单事件发生的可能性。

  2、根据可能性事件与游戏规则的公平性关系能设计合理的游戏规则,解决实际问题。

  3、创设问题情境,激发学生学习的热情和兴趣。

  教学重难点:

  重点: 理解掌握可能性的意义,用分数表示等可能性

  难点: 能设计合理的游戏规则,解决实际问题。

  教学准备:白球、黄球、硬币

  教学过程:

  一、创设情境,导入课题

  1、今天老师跟大家一起玩个比赛好吗? 这里有三个盒子,盒子里都装有了6个球,老师想跟同学比赛,看谁能摸得到白球,比比谁的运气好(老师盒子里装6个白球,学生的一个装6个黄球,另一个盒子里装了3个黄球和3个白球)

  师生比赛。

  思考:你能猜出老师运气好的奥秘吗?

  估计回答:

  1、老师的盒子装的全是白球,所以一定摸到是白球。

  2、一个盒子里装除了白球还有其他颜色的球,所以摸到的可能是白球。

  3、还有一个盒子没有装白球,所以不可能摸到白球。

  板书: 可能 一定 不可能

  在日常生活中,有的事物可能发生,有的事物不可能发生。今天我们来研究有关可能性的问题。

  板书: 可能性

  二、探究新知

  1、同学们最喜欢课外活动,你们看参加课外活动的小朋友可多了。

  引导学生看课本图

  老师让我们红队先开球吧!还是让我们黄队先开球吧!…

  谁先开球呢?同学们你们有没有公平的办法。

  学生汇报

  1、石头 剪子 布

  2、转转盘

  3、抛硬币

  介绍:国际足球比赛一般采用抛硬币办法决定谁开球,你们认为抛硬币的方法公平吗?为什么?

  我们来做抛硬币实验来验证。

  2、活动体验,感受过程

  抛硬币游戏

  游戏规则:

  1、竖着把硬币放在20厘米左右的高处让硬币自由落在桌面,每组抛20次。2,用“正”法在草稿纸上做好记录。3,抛完后,小组长统计本组的情况并填好记录表,组内同学共同校对。4,活动时我们要互相合作,有秩序,保持安静。

  教师统计

  <<<12>>>

  组别

  抛的次数

  正面朝上

  反面朝上

  第一组

  第二组

  第三组

  合计

  观察每小组的实验结果,正面朝上和反面朝上的可能性是不是各是1/2?

  小结: 抛硬币的次数越多正面朝上和反面朝上的可能性越接近1/2现在我们就把全班的实验结果加起来,看看是不是正面朝上和反面朝上的可能性越来越接近1/2。

  正面朝上 1/2 板书: 抛硬币 可能性相同都是1/2 反面朝上 1/2 四、巩固拓展

  放学以后,你喜欢做什么?(看动画片)你喜欢看什么动画片?

  1、(出示课件:小明喜欢看动画片《电击小子》小丽喜欢看《羊羊快乐的.一年》,但只有一台电视机,该怎么办)

  生:他们可以抽扑克牌解决。

  生:可以用“石头、剪子、布”来解决。

  生:可以掷骰子来解决。

  ……

  师:你们的方法很好,我们再来看小明和小丽的办法好吗?

  (课件:掷一枚正方体决定谁看动画片。小正方体共有6个面,每个面上标有数字1,2,3,4,5,6。如果朝上的数字是6,则小明看,如果朝上的数字不是6,则小丽看。)

  生:老师,这样不公平 。

  生:是呀是呀,小丽要耍赖了。

  生:我给他们改游戏规则吧!改为如果朝上的数字是1,2,3则小丽去,如果朝上的数字是4,5,6则小明去。

  生:这个办法对他们来说是公平的。都是3/6=1/2 师:你想的办法也很公平。

  小军不看动画片,他喜欢下飞行棋,你玩过飞行棋吗?怎样玩的?掷一个正方体骰子,朝上的面数字是几,就走几步。正方体的6个面上分别写着1,2,3,4,5,6,掷出每个数字可能性一样吗?

  生:可能性都是1/6 师:如果我们把这个正方体改成长方体,掷出的可能性一样吗?为什么?

  师:长方体的六个面不一样大,所以每个面朝上的可能性不相等。

  五、全课总结

  今天我们在游戏中知道了一件不确定的事情它的可能性可以用一个数表示,例如,掷硬币掷出正面和反面的可能性都是1/2,掷一个正方体的骰子,每个面掷出的可能性都一样。

  六、布置作业

  <<<12>>>

可能性教案12

  (第一课时)

  教学目标:

  1、使同学了解有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性是有大小的,能用分数表示。

  2、结合生活实例,进一步让同学体验生活中存在的数学问题。

  教学重难点:使同学经历实验的具体过程,从中体验某些事情发生的可能性的大小。

  教学准备:白球1个、黄球3个、红绿两种颜色的铅笔等。

  教学过程:

  一、情境、引入

  1、师述、情境:庆“庆六一”联欢会,教师要求每人都要扮演节目,节目的形式有:唱歌、跳舞、相声、小品等。用抽签的方法决定。

  小华在抽签之前想:我是金嗓子,最好让我抽到唱歌……

  2、讨论:小华肯定能如愿以偿吗?为什么?

  [点评]:给同学发明机会留有空间,让同学开动脑筋,捕获生活中的现象,将所学的知识和同学的生活实际紧密结合,加深对数学知识的理解。这一情境,是同学经历过并且有体验,所以他们知道小华有可能抽不到唱歌,有可能抽得到,但抽到的'可能性不大,因为在这些签中只有一张签是唱歌,这就自然引出课题:可能性大小。

  3、小结:在我们的生活中,有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性有大有小。今天我们就学习(板书)可能性大小。

  二、实验探究

  1、摸球活动。

  活动规则:准备3个黄球,1个白球,球的大小一样,放进袋子里,搅拌一下。

  (1)同桌活动。每人摸10次,每次摸一个球,然后把摸出来的球放进去,搅拌后再摸第2次、第3次……填好摸20次的统计表(可用“正”字)。

  (2)同学分组活动。

  (3)观察:第一次实验结果与预测结果一样吗?

  (4)四人一小组活动,填好摸40次的统计表。

  (5)观察讨论:汇总后的结果与预测结果是否接近?

  (6)小结:摸的次数越多,结果与预测结果越接近。

  [点评]:这一活动体现了“动手实践、自主探索与合作交流”的学习方式,同学从实践中获取知识。

  2、练习教材89页中的1—4题。

  (1)同学独立考虑,进行练习。

  (2)集体交流,讨论学习情况,并说明你的理由。

  三、拓展、延伸

  1、在一个正方体中标出1、2、3三个数,符合下面要求:数字1和数字2的可能性都是1/6,数字3的可能性是2/3。

  2、摸奖活动。

  (1)盒子里有4红、2绿,两种颜色的铅笔,要求先说出你想摸一支什么颜色的铅笔?可能性是多少?然后到盒子里摸,假如说的和摸的颜色一致,就可以拿走这支铅笔。

  (2)盒子里有红色、蓝色、黑色三支一样的笔,假如随意拿出2支笔,可能出现多少种结果?

  [点评]:这是同学比较感兴趣的活动,富有情趣和挑战性,为同学提供充沛发展的空间。

  四、总结:这节课你有什么收获?

  [总评]

  本节课的关键在于关注了同学的学习过程,教师创设了一个有利于同学生动活泼主动发展的教育氛围,教师真正成为教学活动的组织者、引导者和合作者。从实际教学效果看,同学学得积极主动,时时闪烁着创新思维的火花。

可能性教案13

  [教学内容]

  教材第94、95页的内容,第96页练习十八的第1、2题。

  [教学目标]

  1、使学生初步理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。

  2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

  3、使学生在学习过程中乐意与他人交流自己的想法,并获得一些成功的体验。

  [教学重点]

  会用分数表示简单事件发生的可能性大小。

  [教学难点]

  理解并掌握用分数表示可能性大小的基本思考方法。

  [教学过程]

  一、谈话

  你们知道我们国家的国球是什么吗?你知道哪些著名的乒乓球运动员?(电脑上显示著名乒乓球运动员的照片。)这些运动员通过努力为祖国争得了许多的荣誉,真了不起,我们要向他们学习。

  大家都这么喜欢乒乓球这一运动,老师想考考大家对乒乓球比赛的规则是不是了解呢?(猜裁判把乒乓球放在左手还是右手,猜对的先发球;五局三胜;每球得分制;每局11分)

  [教学设想:乒乓球是我们国家的国球,和学生交流相关的话题,往往可以激发学生的兴趣,学生乐于交流,这样一种良好的交流氛围也一定可以延伸到之后的教学活动中。在谈话的同时放一些相关的图片,学生在交流和欣赏的同时一定会产生自豪感的,同时进行了思想教育。]

  二、新课教学

  1、教学例1。

  谈话:刚才我们讲到在乒乓球比赛中,通过猜裁判把乒乓球放在左手还是右手的方法来决定谁先发球。(出示场景图。)

  你们认为这种用猜左右的方法决定由谁先发球的方法公平吗?(公平)你们有没有想过为什么这么做对双方运动员来讲都是公平的呢?能不能把你的想法先和你同桌交流一下。

  全班交流,形成共识:裁判员把1个乒乓球握在手里,不让任何人知道球在哪只手里,给参加比赛的运动员猜。由于乒乓球可能在裁判的左手,也可能在裁判的.右手,所以,有可能猜对,也可能猜错。也就是说猜对或猜错的可能性是一样的、相等的。

  老师也要做一回裁判,请两位学生也来猜一猜,验证一下我们刚才讨论的结果。

  [教学设想:先让学生通过讨论,让他们有自己的一些理解,再通过实际演示让学生更加直观地明白在这种情况下,猜对或猜错的可能性是一样的、相等的,所以是公平的。]

可能性教案14

  教学目标:

  1、通过猜测、游戏活动、生活体验让学生初步体验有些事件发生是确定的,有些则是不确定的。

  2、能结合已有的经验对一些事件的可能性用一定(肯定)、可能、不可能做出合理判断,并能简单地说明理由。

  3、培养学生的表达能力和逻辑推理能力。

  4、培养学生学习数学的兴趣和良好的合作学习态度。

  教学重点:

  能对一些事件的可能性做出正确判断。

  教学准备:

  1、学具:彩色笔1盒、学习答题卡等。

  2、教具:课件、纸盒(3个)、乒乓球(白色和黄色各12个)。

  教学时间:

  1课时

  教学过程:

  一、游戏激趣,导入课题

  师:同学们,喜欢玩游戏吗?(喜欢)玩过“剪刀、石头、布”的猜拳游戏吗?

  1、先让学生以同桌的形式试一试,再请两名同学到台前玩猜拳游戏。玩之前猜一猜:谁会赢呢?举手表决,你们支持谁呢?

  2、猜拳2-4次,出现不同的结果,问:你们猜对了吗?

  3、教师小结:刚才的猜拳游戏中,有可能是自己赢,也有可能是对方赢,这就是一种可能性。(相机板书课题:可能性)

  [设计意图]通过学生熟悉的猜拳游戏活动,激发学生学习的兴趣。

  二、摸球游戏,探究新知

  师:(出示1号盒,教师摇一摇)听一听,猜到老师给大家带来了什么?(让学生猜一猜,再开始摸球游戏)

  1、初步感知确定性事件。认识“一定”、“不可能”

  (1)、出示装有8个白球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?用一句话来表示。(学生猜测,板书:一定)

  (2)、出示装有8个黄球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?我们可能从这盒子里摸出白球吗?(板书:不可能)

  你们为什么那么肯定?(板书:确定)

  2、初步感知不确定性事件。认识“可能”

  出示装有4个黄球和4个白球的盒子,每人只能摸一次。用一句话猜猜你摸到的`结果。(板书:可能)

  当事情的结果是不确定的,我们用“可能”来描述。(板书:不确定)

  [设计意图]学生通过摸球游戏活动,在猜一猜、摸一摸、说一说中,感受事件发生的可能性,能用一定、不可能、可能等词语做出合理的判断。

  三、联系生活,巩固新知(教学例2)

  师:原来,数学就在我们身边,在我们生活中处处都有“可能性”。那么,你能用“一定”、“可能”和“不可能”对下面几个与我们生活紧密相关的现象进行准确的判断和说说理由吗?

  1、观察课本第105页的例2,思考后在书上作出判断。

  2、与组内的同学交流自己的想法。

  3、汇报,小结。

  重点提示:图1教师借助视频资料帮助学生理解“地球每天都在转动”是一定的;图5通过一些图片资料展示,让学生理解“吃饭时,人用左手拿筷子”是可能的;图6借助调查资料显示让学生明白“世界上每天都有人出生”是一定的。

  [设计意图]通过教学例2,让学生体验生活中可能性的现象,感受数学与日常生活是相互联系的。

  四、巩固练习,强化新知

  1、完成练习二十四第1题。

  (1)、指明学生判断事件可能性的方法。

  (2)、重点提示:图1大王花像粪便一样臭,再列举缅桂、兰花等花是香的花,所以“花是香的”是不确定的。图2教师可播放“月球的运动”视频帮助学生理解“月球绕着地球转”事件发生的必然性。

  2、完成练习二十四第2题。(按要求涂一涂)

  (1)、要求学生读懂题意后再涂一涂。学生独立完成。

  (2)、学生汇报,教师小结。重点提示:图1的5个小方块全部涂成红色即可;图2的5个圆形只要不涂成蓝色,其它颜色和五颜六色都可以;图3的五个锥体至少有1个或2个以上黄色。

  3、完成练习二十四第3题。(结合你的生活经验,在下面的句子里用上“可能”、“一定”、“不可能”这些词。)

  [设计意图]通过涂一涂、想一想、说一说练习,培养学生的表达能力,巩固强化可能性知识。

  五、课堂小结

  这堂课,你学到了什么?(指名说,教师小结)

  板书设计:

可能性教案15

  教学内容:

  九年义务教育六年制小学苏教版数学第七册p90—91。

  教学目标:

  1、经历与体验收集、整理、分析数据的过程,学会用画正字的方法收集整理数据,体会统计是研究解决问题的方法之一。

  2、经历试验的具体过程,能对试验可能发生的结果做出简单判断,并做出适当解释,从中体验某些事件发生的可能性是相等的。

  3、培养积极参与数学活动的意识,初步感受动手试验是获得科学结论一种有效方法,激发主动学习的积极性,进一步发展与他人合作交流的意识和能力。

  教学重点:

  通过活动认识一些事件发生的等可能性。

  教学难点:

  理解任意摸一次球,红球和黄球的机会是相等的。设计理念:课堂中重视学生学习能力和方法的培养,让学生学习“猜测—验证—结论”这一学习方法。教学中比较重视学生在参与、操作活动的过程中得出可能性相等的概念,促进学生的思维,培养学生的预测能力和抽象概括能力。教学步骤教师活动学生活动一、故事导入,复习旧知1、教师讲阿凡提的故事:阿凡提在地主巴依老爷家辛辛苦苦干了一年活,小气的巴依不想付工资给阿凡提,于是想了个歪主意。对阿凡提说:“阿凡提,我这儿这两张纸条让你抽,分别写着“付工资”和“不付工资”,如果你抽到哪一张,我们就按哪一张上写的办,你还是有一半机会的哦”。如果你是阿凡提,你会怎样想?(引出“可能”)

  2、复习“一定”“可能。”

  (1)出示装有3个红球的袋子,提问:如果从中任意摸出一个球,摸球的结果怎样?(一定摸出是红球)

  (2)往口袋加入3个黄球,提问:如果从这样的口袋中任意摸出一个球,摸球的结果怎样?

  3、揭题:在我们生活中,有些事情一定会发生,有些事情不一定会发生,只能说具有可能性,今天,我们继续研究可能性问题。(板书:可能性)学生说想法。(引出“可能”)学生回答。(一定摸出是红球。可能摸出是红球,可能摸出是黄球)二、活动体验,感受过程1、摸球游戏

  2、小结并揭示学法

  1、摸球游戏

  (1)猜测出示透明袋子:袋子里加入3个黄球,提问:如果遮住眼睛从这个口袋中每次任意摸出一个球,摸出以后再把球放回口袋,一共摸40次,猜一猜,红球和黄球可能各摸多少次?学生自由猜测。

  (2)验证:这仅仅是我们的猜测,想知道自己猜测的对不对,我们可以怎么做?

  游戏规则:

  1、摸前先把袋中球搅一搅,然后转过脸去从中任意摸一个,摸出后回头看一看,给大家看自己摸到的是什么颜色的'球,把球再放入口袋中,按这样,大家轮流摸,一共40次。

  2、组长用画“正”字的方法来记录。

  3、摸完后,组长填写统计表,其他同学负责校对。

  4、请各小组在小组长的带领下分工。

  怎样用画“正”的方法来记录,谁来给我们介绍一下?教师在黑板演示一下。

  活动体验:

  (3)归纳小组汇报统计结果,教师在实物展示台上填写。红球黄球合计红球黄球次数提问:统计的结果和我们的猜测差不多吗?我们将各小组结果进行比较,你有什么发现?如果继续摸下去,摸到红球的次数和黄球的次数会怎样?

  2、小结:说明从装有3个红球和3个黄球的袋子任意摸出一个球,摸到红球和黄球的机会是相等的,也就是说可能性是相等的。

  提问:

  (1)我们是用什么方法来记录摸球的结果的?你觉得用画“正”字的方法好不好?

  (2)记录之后我们又对数据作了怎样的处理?可见我们用统计的方法来研究事情发生的可能性是一个很好的方法。

  (3)通过试验和统计得到什么结论?用的是什么方法?小结:猜测————验证————结论过渡:想不想用我们刚才的方法做第二个游戏?二、抛小正方体教师出示两个面上都有1、2、3的小正方体。

  游戏规则:

  1、上抛小正方形,不宜太高,看落下时“1”“2”“3”朝上的次数,大家轮流抛,一共30次。

  2、组长派一人用画“正”字的方法来记录。

  3、抛完后,派一人填写记录表和统计表,其他同学负责校对。

  各组汇报,学生上台填入数字提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?教师:在每个数字个数相同的情况下,抛的次数越多,数字123朝上的次数越接近。这三种情况的可能性是相等的。

  学生自由猜测。教师把学生的猜想板书出来)学生回答(摸一摸验证)

  活动体验:

  学生分组试验,填写统计表,