初中数学教案通用15篇
作为一名教学工作者,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么大家知道正规的教案是怎么写的吗?以下是小编为大家整理的初中数学教案,欢迎阅读与收藏。
初中数学教案1
一年级学生认知水平处于启蒙阶段,尚未形成完整的知识结构体系。由于学生所特有的年龄特点,学生有意注意力占主要地位,以形象思维为主。从整体上看一年级学生都比较活跃,大多数学生上课基本上能够跟上教师讲课的思路,教师上课组织课堂纪律并不难,而且学生的学习积极性也很容易调动。但每个班都有个别的学生上课不注意听讲,我行我素。
对于他们数学知识和能力掌握情况的分析:
1、对于一年级的数学学习,新生无论在数学知识上还是数学能力上都有所准备。就数的认识来看,新生二十以内的数数非常流利和连贯,可以正数倒数。学生在这方面具有良好的知识准备的原因之一是学生受过这方面的训练,在幼儿园中大部分学生学习过十以内的加减法,同时在一些家长在家中也进行过辅导,另一方面,数数和十以内数的分解组合学生在生活中有机会使用,因此这方面的准备比较好。
2、在数的计算中,学生对于十以内数的计算较为熟练,这和学生的生活需要、学习需要有关。
3、新生在数感方面的发展是不平衡的数感——学生对数的意义理解有一定困难。通过个别访谈,了解到学生对于蕴涵在实际生活中的数的意义的理解较为准确,例如对于“你的小组中有几个小朋友,从前往后数,你是第几个,从后往前数,你是第几个,第几个小朋友是谁”这样的问题,学生的解答没有问题,都能根据实际情况作出正确的回答,但是对于图形,学生的理解有一定的困难。这可能是学生对图形的认识造成了对数的基数序数意义理解的干扰。
4、概括能力和推理能力——普遍学生关注的范围比较小,角度单一。全册教材分析
本册教材一共分为八个单元,本册教材主要是通过各种各样的活动对学生进行数感及观察能力、思维能力、口头表达能力、学习习惯、合作与交流的能力等方面的培养,让学生对数学产生浓厚的学习兴趣,同时鼓励学生用自己喜欢的.方式去学习自己有用的知识,对学生进行有效地思想品德教育,初步了解一定的学习方法、思考方式。
全册教学目标
1、熟练地数出数量在20以内的物体的个数,会区分几个和第几个,掌握数的顺序和大小,掌握10以内各数的组成,会读、写0――20各数。
2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和10以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、认识符号“=”“<”“>”,会使用这些符号表示数的大小。
5、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
6、初步了解分类的方法,会进行简单的分类。
7、初步了解钟表,会认识整时和半时。
8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
9、认真作业、书写整洁的良好习惯。
10、通过实践活动体验数学与日常生活的密切联系。
全册重、难点:
教材重点:在具体的情境中能熟练的认读、写、20以内的数,能用数表示物体的个数或事物的位置与顺序;建立初步的空间观念;能按照给定的标准或选择某个标准对物体进行比较和分类。
教材难点:体会20以内加减法的意义,能熟练的口算20以内的数的加减法;初步形成空间观念;经历简单的数据收集过程,形成初步的统计观念。教学准备
画有田字格的小黑板挂图小棒圆片
多媒体课件视频展示台部分实物模型
智能培养
1、培养学生应用数学知识解决问题的能力。
2、培养学生独立思考与合作交流的能力。
3、培养学生学习数学的良好情感。
4、培养学生学习数学的兴趣和良好的学习习惯。
教学思路及措施
1.一年级学生的计算学习要和意义理解与思维训练相结合。在小学数学课堂教学中要重视计算策略的优化和算理的渗透,同时在计算教学过程中要渗透思维的训练。
2.数学教学中加强学生的生活经验的积累和对学习对象的直接感知。学生的生活经验和已有的知识能力对学生解决问题有着很大的帮助,甚至很多学生都是建立在生活经验的基础上进行学习的。因此,一年级的数学教学应该加强学生的实际感知,丰富学生的生活经验,让学生在现实情景中把握数的意义和运算的意义,发展数感和符号感。扩大学生的信息贮备,提供有利于学生理解数学、探究数学的生活情景,给学生机会在实际情景中感知、操作、认识数学知识,理解数学,学习数学。
3.空间观念的培养要把握好度,在具体和抽象的空间观念的建立,在低段
要紧密和学生的动手操作相联系,可以通过观察、接触(摸、折、剪、拼等)等各种手段来让学生认识几何形体,建立空间观念。同时,要将生活材料数学化,在具体、半抽象、抽象之间建立一座桥梁,发展学生的空间想象能力。
4.在教学中要逐步渗透重要的数学概念和数学思想方法。数学思想方法已经作为数学知识的一部分,教师在教学中要逐步随着数学知识的学习进行渗透。例如一年级教材中有很多地方可以渗透一一对应思想、函数思想、符号化思想的,要在平时的教学中加以落实。
初中数学教案2
1.知识结构
2.重点和难点分析
重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:
一个是夹在两条平行线间;
一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.
难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.
3.教法建议
(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.
(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.
(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.
平行四边形及其性质第一课时
一、素质教育目标
(一)知识教学点
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2.
3.并能运用这些知识进行有关的证明或计算.
(二)能力训练点
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
(三)德育渗透点
通过要求学生书写规范,培养学生科学严谨的学风.
(四)美育渗透点
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美
二、学法引导
阅读、思考、讲解、分析、转化
三、重点·难点·疑点及解决办法
1.教学重点:平行四边形性质定理的应用
2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.
四、课时安排
2课时
五、教具学具准备
教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
第一课时
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
图1
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的`一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“
”表示,如图1就是平行四边形
,记作“
”.
align=middle>
图1
3.平行四边形的性质
讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.
平行四边形性质定理1:平行四边形的对角相等.
平行四边形性质定理2:平行四边形对边相等.
(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)
图2如图3
所以四边形是平行四边形,所以.由此得到
推论:夹在两条平行线间的平行线段相等.
图3
要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出图4
4.平行线间的距离
从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.
我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.
图5
注意:(1)两相交直线无距离可言.
(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.
例1 已知:如图1,
初中数学教案3
一、素质教育目标
(一)知识教学点
1.掌握的三要素,能正确画出.
2.能将已知数在上表示出来,能说出上已知点所表示的数.
(二)能力训练点
1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.
2.对学生渗透数形结合的思想方法.
(三)德育渗透点
使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
(四)美育渗透点
通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.
二、学法引导
1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.
2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.
三、重点、难点、疑点及解决办法
1.重点:正确掌握画法和用上的点表示有理数.
2.难点:有理数和上的点的对应关系。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片.
六、师生互动活动设计
师生同步画,学生概括三要素,师出示投影,生动手动脑练习
七、教学步骤
(一)创设情境,引入新课
师:大家知识温度计的用途是什么?
生:温度计可以测量温度
(出示投影1)
三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的'液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
我们能否用类似温度计的图形表示有理数呢?
这种表示数的图形就是今天我们要学的内容—(板书课题).
【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.
(二)探索新知,讲授新课
1.的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
第一步:画直线定原点原点表示0(相当于温度计上的0℃).
第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).
第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).
【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.
让学生观察画好的直线,思考以下问题:
(出示投影1)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。
学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。
初中数学教案4
初中数学分层次教学案例
【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。
【背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??
例题:课本p123证明两个角之间的关系,
请同学们总结一下他们可能出现的情况。
【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)
生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)
师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。
师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。
在师生的共同研讨下得出了这些方法。
师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。
生:??以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的`方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??
【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。
1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。
2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与
就不是主动性参与,而是被动的、消极的参与。
3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。
4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。
初中数学教案5
一、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的`绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
初中数学教案6
图样,图样,还是图样。到处都是图样,有的用尖细的木片潦草地写在满是灰尘的大理石桌上,有的用一块木炭涂在墙上,有的用粉笔画在地上。阿基米德穿着一件白色的旧长袍,坐在桌子上思索起来。手指象发烧似的微微颤抖。豆大的汗珠裹着灰尘,从他极度疲倦的脸上落在手上,落到衣服上,落到随手扔在桌子上的一卷草片纸上。
他没有跑,没有象一个无耻的胆小鬼那样从战场上逃跑。他竭尽全力,把全部的智慧和热情都献给了这座城市。多少个不眠之夜,多少个酷热难耐的白天,他就是整个叙拉古防御阵地的大脑和心脏。一提到他的名字,罗马人就惊恐地逃离城墙,他们唯恐躲避不及致命的投石炮,以及纷纷落下的炽热的涂满油脂的麻屑,标枪与长矛的骤雨。不就是他,不动咫尺就把接近城市海防工事的罗马舰队都烧毁了吗?不就是他,一个人用他发明的一组复杂的滑车把罗马的兵船吊在半空,再从高处把船抛向深海里去了吗?但这对于一个人的独创才能和精力来说,已经是极限了,他已经是一个衰弱的老人,他的手握不住战剑。他坚持留在阵地上,直至敌人出现在城墙外边。而这时戴着盔形帽的罗马人已经开始在被岁月磨出来的马路的石块上晃动。希腊人竭尽最后的力量进行抵抗,肉搏战当然没有阿基米德参加的份。。。。。。
在中午被烈日晒的发烫的物体,现在让令人惬意的凉爽的空气温柔地笼罩着。战斗的喊声透过厚实的门帘隐隐约约地传进屋里。挂在两个窗户上的草帘子使得屋里稍微有点昏暗,但一点也不妨碍看清楚眼睛看惯的东西。 生命就要完结,这一生是漫长而又艰难的。在命运给予他的七十五年里,在不停的探索中,在持续的紧张中,在旅行中,在工作室,造船厂和采石场的不断的争论中,他从未能回顾过自己的人生,没有考虑一下是否活得合理。伊壁鸠鲁(前341—前270 古希腊唯物主义哲学家,在伦理观上,主张人生的目的在于避免苦痛,使心身安宁,怡然自得,这才是人生最高的幸福)这位激进的老人如此忘情地说过的那种快乐,哪怕是一部分,阿基米德也没有从生活中得到过。在他还是一个十七岁的青年人时,曾经站在这位伟大哲学家的坟墓上,思索着用自己的一生实现他富有人生乐趣的哲学。他实现了吗?
还在青年时代,他就踏上了这条荆棘丛生的,曲折的,布满无数坎坷的学者道路。学者的生活。。。。。。当生活道路开始的时候,他曾经把生活想象的很不实际。他用充满甜蜜的幸福,普遍的崇敬和持久不变的,任凭什么也不能蒙蔽的荣誉来描绘自己青年时代雄心勃勃的梦想。但生活并非如此,他竟然是格外地严酷。他实际体验到,这生活是一天一时也不停地,终身为一个神灵,一个偶像,一个各种思想和愿望的主宰服务。科学就是一个催眠术家,只要一次受到科学真理魔术般的诱惑,立刻就会为了科学而忘掉一切,直至最后进入坟墓。
荣誉是有的,但是这荣誉足以为不学无术者和嫉妒者们的大声嘲笑所败坏。是有许多狂热的崇拜者,但也有许多恶毒的非难者,他们不错过任何一个机会,通过假借的名义,公开和秘密地对他进行侮辱,诋毁和诽傍,以他为笑柄。。。。。。
他本人的生活是这样,他父亲的生活也是这样。他父亲叫做菲迪亚斯。供人参阅的`备忘录描述了他很早的童年时代的情形,小阿基米德似乎不得不让每一个新认识的人相信,他的父亲只是和奥利匹亚的<<宙斯>>像和雅典的女神像的著名的建造者,比阿基米德天文学家的父亲早生一百多年的雕刻家菲迪亚斯同姓。奇怪的是,菲迪亚斯竟然不是国王亥厄洛的亲戚,相反,完全出乎意料之外,阿基米德却是国王亥厄洛的一个亲戚,就是说,也是国王儿子格隆的一个亲戚。。。。。。
这里是繁华的亚历山大城。阿基米德花了许多时间沿着城市的石头道散步,登上佛洛斯灯塔,从那里了望拥簇着似乎是从地球上所有有人居住的地方抵达到这里的希腊,罗马,腓尼基,波斯和其它国家的船只的港湾。但是,比这多得多的时间,他是在著名的亚历山大图书馆里度过的。世界上任何一个图书馆可能都要羡慕这家图书馆所收集的抄本和手稿。在图书馆里,集中了伟大的亚历山大城所有最优秀的青年人。在和那些崇拜本国著名的欧几里德的年轻人的热烈争论中,阿基米德对自己的科学立场的理解逐渐成熟,有些地方与亚历山大人接近,有些地方则与他们截然不同。但是,尽管在观点上有所不同,他刚一熟悉欧几里德的著作,对已故的伟大学者欧几里德的虔诚的敬意就完全征服了阿基米德。欧几里德的<<几何原本>>从此成为他整个漫长一生的必读之书。。。。。。
战斗的呐喊声越来越大。厚实的窗帘已经挡不住获胜的罗马人狂喜的欢呼声,战剑打击叙拉古最后一批保卫者的盾牌的叮当声,还有那刺向他们被长时间的防御战折磨得精疲力尽的身体的沉闷声。获胜的敌人已经占领了这座苦难的城市,又醉心于卑鄙无耻的,令人痛恶的杀掠,连儿童,妇女和老人也不放过。
非常奇怪的是,所以这一切————战剑的叮当声,垂死者的呻吟声,罗马人胜利的欢呼声,都是这样地遥远,似乎是在半个多世纪以前发出的。阿基米德突然以一种可怕的清醒回想起自己乘一艘小船从亚历山大到叙拉古所经历的漫长而又十分危险的旅程。在危机四伏的不平静的大海中,绿色的波涛的巅峰翻腾着白色的大理石般的泡沫,不停地撞击着毫无保护的不坚固的小船,船上可怜的人们觉得好像无论是人,还是超人的力量都已经不能把他们从海神的怀抱里解救出来。 而就在这时,舵手使出全身的力气掌稳沉重的船舵,高高地向上搬动舵尾,用力地冲向那轰隆作响的摇荡的浪山。船象一匹戴上嚼子的马,战栗着,一会儿呆立在高高的浪峰上,一会儿又摇晃着跌进随之而来的无底的深渊。。。。。。
船驶离亚历山大之时,装饰着色彩缤纷的船帆,宛如一位服装时髦的美女,而抵达叙拉古时,却遍体鳞伤,千疮百孔,失去了桅杆和船帆,简直就是一个衣衫褴褛的女乞丐了。。。。。。
一个罗马兵凶恶的面孔突然出现在眼前,在他身后是一群形形色色的叙拉古人,正在走去迎接无数条载着有半死不活的航海者的战船。这个外国的不速之客从哪里来?是怎么来的呢?这个人张牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德却听不见他的话。往事仍然把阿基米德死死地拖住不放,忘却现实的销魂的魔力还没有退却。。。。。。
幻影没有消失。在它还没有最后填满整个房间,把整个古老的叙拉古阳光充足的港湾里毫无剩余地从房间里排挤出去之前,它在数学家视线模糊的眼睛里仍然在扩大,扩大。啊,原来这里还有个人。这时,一个强盗,杀人凶手找到了数学家阿基米德的住宅。这个残忍的罗马士兵————数学家以前几乎没有想过的死亡就这样悄悄地向她逼近了。
"别动我的图案!"老人声音低微,但语气却强硬地命令道。这就是他说的最后一句话。一把宽大的双刃剑用力地砍在这位伟大的世界公民头发斑白,疲惫不堪的,但却威严自豪,充满灵感的头颅上。。。。。。
据说,阿基米德就这样在位于被罗马人攻取并抢劫的叙拉古的一条街道上的房间里被杀害了。甚至罗马主将马尔采勒,这个长期徒劳地企图占领这座城市的不共戴天的,阴险的敌人,在得知这位最伟大的学者和最热情和无畏的爱国主义者的死讯之后,也感到极度的悲伤。
初中数学教案7
学习目标:
1.理解平行线的意义两条直线的两种位置关系;
2.理解并掌握平行公理及其推论的内容;
3.会根据几何语句画图,会用直尺和三角板画平行线;
学习重点:
探索和掌握平行公理及其推论.
学习难点:
对平行线本质属性的理解,用几何语言描述图形的性质
一、学习过程:预习提问
两条直线相交有几个交点?
平面内两条直线的位置关系除相交外,还有哪些呢?
(一)画平行线
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"画"。
3、请你根据此方法练习画平行线:
已知:直线a,点B,点C.
(1)过点B画直线a的平行线,能画几条?
(2)过点C画直线a的'平行线,它与过点B的平行线平行吗?
(二)平行公理及推论
1、思考:上图中,①过点B画直线a的平行线,能画 条;
②过点C画直线a的平行线,能画 条;
③你画的直线有什么位置关系? 。
②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?
二、自我检测:
(一)选择题:
1、下列推理正确的是 ( )
A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d
C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c
2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )
A.0个 B.1个 C.2个 D.3个
(二)填空题:
1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。
2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:
(1)L1与L2 没有公共点,则 L1与L2 ;
(2)L1与L2有且只有一个公共点,则L1与L2 ;
(3)L1与L2有两个公共点,则L1与L2 。
3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。
4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。
三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
初中数学教案8
教学目标:
1、理解切线的判定定理,并学会运用。
2、知道判定切线常用的方法有两种,初步掌握方法的选择。
教学重点:切线的判定定理和切线判定的方法。
教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一.
教学过程:
一、复习提问
【教师】问题1.怎样过直线l上一点P作已知直线的垂线?
问题2.直线和圆有几种位置关系?
问题3.如何判定直线l是⊙O的切线?
启发:(1)直线l和⊙O的公共点有几个?
(2)圆心O到直线L的距离与半径的数量关系 如何?
学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)
再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)
二、引入新课内容
【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。
证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。
定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,
求证:直线l是⊙O的切线
证明:略
定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A
∴直线l为⊙O的切线。
是非题:
(1)垂直于圆的半径的直线一定是这个圆的切线。 ( )
(2)过圆的半径的外端的.直线一定是这个圆的切线。 ( )
三、例题讲解
例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。
求证:直线AB是⊙O的切线。
引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。
证明:连结OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直线AB经过半径OC的外端C
∴直线AB是⊙O的切线。
练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。
练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。
求证:CD是⊙O的切线。
例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。
求证:DE是⊙O的切线。
思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?
四、小结
1.切线的判定定理。
2.判定一条直线是圆的切线的方法:
①定义:直线和圆有唯一公共点。
②数量关系:直线到圆心的距离等于该圆半径(即d = r)。[
③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。
3.证明一条直线是圆的切线的辅助线和证法规律。
凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。
五、布置作业:略
《切线的判定》教后体会
本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:
成功之处:
一、 教材的二度设计顺应了学生的认知规律
这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。
二、重视学生数感的培养呼应了课改的理念
数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。
不足之处:
一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。
二、课的引入太直截了当,脱离不了应试教学的味道。
三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。
通过本节课的教学,我深刻感悟到在教学实践中,教师要不断地充实自己,拓宽知识面,努力突破已有的教学形状,适应现代教育,适应现代学生。课堂教学中,敢于实验,舍得放手,尽量培养学生主体意识,问题让学生自己去揭示,方法让学生自己去探索,规律让学生自己去发现,知识让学生自己去获得,教师只提供给学生现实情境、充足的思考时间和活动空间,给学生表现自我的机会和成功的体验,培养学生的自我意识,发挥学生的主体作用,来真正实现《数学课程标准》中提出的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一教学理念。
初中数学教案9
教学目标:
1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)
2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)
3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)
教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题
教 具: 多媒体、棉线、三角板
教学过程:
情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。
如何来描述我们所看到的现象?
教学过程:
1、 一段拉直的棉线可近似地看作线段
师生画线段
演示投影片1:①将线段向一个方向无限延长,就形成了______
学生画射线
②将线段向两个方向无限延长就形成了_______
学生画直线
2、 讨论小组交流:
① 生活中,还有哪些物体可以近似地看作线段、射线、直线?
(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)
②线段、射线、直线,有哪些不同之处, 有哪些相同之处?
(鼓励学生用自己的语言描述它们各自的特点)
3、 问题1:图中有几条线段?哪几条?
“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。
点的记法: 用一个大写英文字母
线段的记法:①用两个端点的字母来表示
②用一个小写英文字母表示
自己想办法表示射线,让学生充分讨论,并比较如何表示合理
射线的记法:
用端点及射线上一点来表示,注意端点的字母写在前面
直线的记法:
① 用直线上两个点来表示
② 用一个小写字母来表示
强调大写字母与小写字母来表示它们时的区别
(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)
练习1:读句画图(如图示)
(1) 连BC、AD
(2) 画射线AD
(3) 画直线AB、CD相交于E
(4) 延长线段BC,反向延长线段DA相交与F
(5) 连结AC、BD相交于O
练习2:右图中,有哪几条线段、射线、直线
4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?
学生通过画图,得出结论:过一点可以画无数条直线
经过两点有且只有一条直线
问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?
为什么?(学生通过操作,回答)
小组讨论交流:
你还能举出一个能反映“经过两点有且只有一条直线”的.实例吗?
适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。
5、 小结:
① 学生回忆今天这节课学过的内容
进一步清晰线段、射线、直线的概念
② 强调线段、射线、直线表示方法的掌握
6、 作业:①阅读“读一读” P121
②习题4的1、2、3。4作为思考题
初中数学教案10
教学目标
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
教学重点、难点
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的.方程.
教学过程
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.
2.新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
4.课堂练习:
1)已知:5xm-2yn=4是二元一次方程,则m+n=;
2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_
5.课堂总结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
作业布置
本章的课后的方程式巩固提高练习。
初中数学教案11
一、课题
27.3 过三点的圆
二、教学目标
1.经历过一点、两点和不在同一直线上的三点作圆的过程.
2.. 知道过不在同一条直线上的三个点画圆的方法
3.了解三角形的外接圆和外心.
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程.
难点:知道过不在同一条直线上的三个点画圆的方法.
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1.过已知一个点A画圆,并考虑这样的圆有多少个?
2.过已知两个点A、B画圆,并考虑这样的圆有多少个?
3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的`垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.
不在同一直线上的三个点确定一个圆.
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.
例:画已知三角形的外接圆.
让学生探索课本第15页习题1.
一起探究
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.
(二)、小结
七、练习设计
P15习题2、3
八、教学后记
后备练习:
1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .
2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()
A.在AC,BC两边高线的交点处
B.在AC,BC两边中线的交点处
C.在AC,BC两边垂直平分线的交点处
D.在A,B两内角平分线的交点处
初中数学教案12
一、学生起点分析
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?
反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中
可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
二、学习任务分析
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理
并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:
● 知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
● 过程与方法目标
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
● 情感与态度目标
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点
理解勾股定理逆定理的具体内容。
三、教法学法
1.教学方法:实验猜想归纳论证
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验
但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:
登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
意图:
通过情境的创设引入新课,激发学生探究热情。
效果:
从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
第二环节:合作探究
内容1:探究
下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足 吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
意图:
通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
效果:
经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。
从上面的分组实验很容易得出如下结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
内容2:说理
提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
满足 的三个正整数,称为勾股数。
注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
活动3:反思总结
提问:
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
意图:进一步让学生认识该定理与勾股定理之间的关系
第三环节:小试牛刀
内容:
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是 ,则这个三角形的面积是( )
A 250 B 150 C 200 D 不能确定
解答:B
3.如图1:在 中, 于 , ,则 是( )
A 等腰三角形 B 锐角三角形
C 直角三角形 D 钝角三角形
解答:C
4.将直角三角形的三边扩大相同的倍数后, (图1)
得到的三角形是( )
A 直角三角形 B 锐角三角形
C 钝角三角形 D 不能确定
解答:A
意图:
通过练习,加强对勾股定理及勾股定理逆定理认识及应用
效果
每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。
第四环节:登高望远
内容:
1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
解答:由题意画出相应的图形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船转弯后,是沿正西方向航行的。
意图:
利用勾股定理逆定理解决实际问题,进一步巩固该定理。
效果:
学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。
第五环节:巩固提高
内容:
1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。
解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF
2.如图5,哪些是直角三角形,哪些不是,说说你的理由?
图4 图5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意图:
第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。
效果:
学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。
第六环节:交流小结
内容:
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的.困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
效果:
学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。
第七环节:布置作业
课本习题1.4第1,2,4题。
五、教学反思:
1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。
2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4.注重对学习新知理解应用偏困难的学生的进一步关注。
5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
附:板书设计
能得到直角三角形吗
情景引入 小试牛刀: 登高望远
初中数学教案13
学习目标:
1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系
2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明、
3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力
学习重难点:
重点:矩形的性质定理
难点:灵活应用矩形的性质进行有关的计算与证明
课前准备
教具准备:活动平行四边形框架、教师准备PPT课件
教学过程:
知识回顾
1、什么叫平行四边形?
2、平行四边形有哪些性质?
【设计意图】:
通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫
合作探究一:矩形的定义
阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?
用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示下图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?
【设计意图】:
通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维
归纳:有一个角是直角的平行四边形叫做矩形、
合作探究二:矩形的性质定理
1、自主完成18页的观察与思考,通过实际操作回答提出的问题
2、小组合作:完成对性质的证明过程
【设计意图】:
通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础
矩形的性质定理1:矩形的四个角都是直角
矩形的性质定理2:矩形的两条对角线相等
合作探究三:直角三角形的性质定理3
设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB中一条怎样的特殊线段
(BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关系,为什么?
【设计意图】:
根据图形学生很容易猜想结果,关键是从数学的角度证明留足充分的时间让学生交流,教师适时引导,明确论证方法、学生独立完成证明,以培养学生的推理能力、让学生感受数学结论的`确定性和证明的必要性
结论:直角三角形斜边上的中线等于斜边的一半
例题讲解:
例1、如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=6㎝,求矩形对角线AC的长?
当堂检测:
1、矩形具有而平行四边形不具有的性质()
(A)对角相等(B)对边相等(C)对角线相等(D)对角线互相平分
2、已知Rt△ ABC中,∠ABC=900,BD是斜边AC上的中线
(1)若BD=3㎝,则AC=㎝
(2)若∠C=30°,AB=5㎝,则AC=㎝,BD=㎝
3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的长
4、工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图1),使AB=CD,EF=GH;
(2)摆放成如图(2)的四边形,则这时窗框的形状是_____,根据的数学道理是__________;
(3)将直角尺靠紧窗框的一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是____,根据的数学道理是________________。
课堂小结:
请说出你本节课的收获,与大家一块分享!!
作业:
课本P、20第2题
板书设计:
xxx
初中数学教案14
问题描述:
初中数学教学案例
初中的,随便那个年级.20xx字.案例和反思
1个回答 分类:数学 20xx-11-30
问题解答:
我来补答
2.3 平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.
二、教学目标:
知识与技能:掌握平行线的性质,能应用性质解决相关问题.
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神.
三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器.
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸.
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题.
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质.
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论:两直线平行,同位角相等.
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立.
2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示.
教师活动:引导学生说理.
因为a‖b 因为a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
语言叙述:
性质2 两条直线被第三条直线所截,内错角相等.
(两直线平行,内错角相等)
性质3 两条直线被第三条直线所截,同旁内角互补.
(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1 = 110°,则∠2 = °.理由:.
②若∠1 = 110°,则∠3 = °.理由:.
③若∠1 = 110°,则∠4 = °.理由:.
(2)如图,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2= .
学生提问,并找出回答问题的同学.
2.(讨论解答)
如图是一块梯形铁片的'残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题.
(六)作业 第69页 2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.
②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.
初中数学教案15
教学目标
1.知识与技能
能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2.过程与方法
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
3.情感态度与价值观
培养学生主动探究、合作交流的意识,严谨治学的学习态度.
重、难点与关键
1.重点:去括号法则,准确应用法则将整式化简.
2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.
3.关键:准确理解去括号法则.
教具准备
投影仪.
教学过程
一、新授
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的'符号相反.
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).
利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x-3(括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)
去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.
二、范例学习
例1.化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.
解答过程按课本,可由学生口述,教师板书.
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
解答过程按课本.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
三、巩固练习
1.课本第68页练习1、2题.
2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路点拨:一般地,先去小括号,再去中括号.
四、课堂小结
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.
五、作业布置
1.课本第71页习题2.2第2、3、5、8题.
2.选用课时作业设计.
【初中数学教案】相关文章:
初中数学教案11-26
人教版初中数学教案12-30
初中数学教案范文08-24
初中数学教案(精选15篇)02-16
初中数学教案15篇12-29
初中数学教案(15篇)12-30
初中数学教案精选15篇02-27
初中数学教案14篇03-26
初中数学教案(精选20篇)03-29
初中数学教案(合集15篇)01-10