分数除法教案

时间:2023-02-06 14:46:52 教案 投诉 投稿

分数除法教案(精选15篇)

  作为一位不辞辛劳的人民教师,就有可能用到教案,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!下面是小编帮大家整理的分数除法教案,仅供参考,希望能够帮助到大家。

分数除法教案(精选15篇)

分数除法教案1

  教学内容

  复习分数除法的意义和计算

  教材第46、第47页的内容。

  教学目标

  1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。

  2.熟练掌握分数除法的计算法则,提高灵活解题的能力。

  3.在整理知识体系的过程中,帮助学生掌握复习的方法。

  重点难点

  重点:概念和计算法则的.整理。

  难点:运用所学概念,灵活解决问题。

  教具学具

  练习题投影片。

  教学过程

  一、整理本单元的知识

  1.课前布置作业,学生自己整理本单元的知识点。

  2.展示学生的知识结构图。

  二、复习分数除法的意义和计算法则

  1.回忆。

  分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。

  2.根据学生的汇报整理成下表。

  三、课堂作业新设计

  四、思维训练参考答案

分数除法教案2

  说课内容:

  九年义务教育六年制小学数学人教版第十册第65页。

  教学地位:

  分数与除法是在学生学习分数的产生和分数的意义基础上学习的。教材讲分数的产生时,学生认识到在整数计算中往往不能得到整数的结果,要用分数表示,初步涉及分数与除法的关系。学习分数的意义时,认识到把一个物体或一个整体平均分成若干份,蕴含着分数与除法的关系,但是没有明确点出分数与除法的关系。教材在学生理解了分数的意义之后,让学生学习分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数表示商,这样可以加深和扩展学生对分数意义的理解,同时也为学生进一步学习假分数以及假分数与整数、带分数的互化做好准备。

  教学目标:

  1、通过分数与除法的学习,渗透事物是互相联系的、变化的、发展的辩证的唯物主义的基本观点。

  2、使学生通过观察与操作,探索分数与除法的关系,会用分数表示两个数相除的商。

  3、使学生在自主探索、合作交流的过程中,进一步发展数感,培养观察、比较、分析、推理等能力。

  教材分析:

  首先,认真钻研教材正确把握教学内容,明确教学目标是正确选择教法的前提。把握教学内容一要全面、二要具体、三要恰当。所谓全面指从思想教育、能力、非智力的心理品质等全面考虑(见教学目标);所谓具体指在40分钟内实现知识领域,能力领域,情意领域的各项任务;所谓恰当,指教法的选择符合教材的内容要求,学生的知识水平,认识能力以及教学内容的阶段性,注意不随意拔高和降低教学要求。避免重点不突出,难点过分集中,以及贪多求快偏差,教师在选择教法前,要深刻地钻研教材,领会编者意图,合理组织教材内容。教师要从具体教材中选择本质的、区别于其他事物的特有属性,也就是了解概念的本质特征和这一概念所反映的对象的全体。例如,分数与除法的概念教学,要明确其本质特征,一是计算整数除法不能整除的时候,可以用分数表示除法的商。以1/3个为例,按照分数的意义,把一个蛋糕平均分成3份,其中的一份是一个的1/3,就是1/3个,还可以这样理解1/3个,表示把一个平均分成3份,每份是1/3米。二是分数与除法的关系可以用用文字表示,即被除数÷除数=被除数/除数,在分数中分母不能是零;还可以用字母表示a÷b=a/b(b≠0)。三是分数与除法的关系,表述为除法与分数的比较:被除数相当于分子,除号相当于分数线,除数相当于分母,商相当于分数值。

  其次,选择教法必须符合小学生的年龄特点和认知规律。小学生形成概念必须经过思维的加工,逐步完成从具体形象到抽象化的过渡。由于学生知识和思维能力的局限,实现这一过渡需要有一定的阶段性和层次性。为此,要帮助学生形成分数与除法关系的概念拟分五个层次(一)复习旧知,引进新课;(二)启思讨论,探求新知;(三)实际操作,寻找规律;(四)比较分析,发现规律;(五)多层练评,反馈总结。

  第三,选择教学必须考虑结合教学内容侧重培养学生某一方面的能力和智力,受到思想品德教育。“分数与除法”这节概念课要侧重引导学生对教学内容进行分析、综合、比较、抽象、概况,并运用所学知识进行简单的.推理和判断。例如,在寻找规律,这一层次安排4个步骤:(1)分析题意列出算式(2)实际操作:让学生拿出同样大小的三个圆形纸片,把3个月饼看作单位“1”,把它平均分成4份,求一份是多少,你们能分吗?(3)展示分法:出示3种,有一种是把3个饼叠在一起,平均分成4份,取出一份,这一份是3个饼的几分之几?把3个1/4拼在一起看看拼成了一个饼的几分之几?(4)初步抽象:从图中可以看出:一个饼的3/4就是3个饼的1/4,3/4个饼表示什么意思?把3个饼平均分成4份表示这样1份的数;把一个饼平均分成4份,表示这样3份的数。这样,通过教学使学生既增长知识又长智慧,同时,结合教学内容渗透事物是相联系的辩证唯物主义的基本观点。

  教学学法:

  教学是师生的双边活动,现代教育理论重视课堂教学以学生为主体,重视学生学习方法的指导。叶圣陶先生说过:“教是为了用不着教”,为了“不教”,教师要充分调动学生的积极性和主动性,让学生参与数学概念形成的过程。初步掌握概念教学的基本程序:通常是引入概念,理解概念,巩固概念,应用概念,遵循学生建立和形成数学概念的基本规律:感知表象——建立概念——巩固概念——应用概念等基本环节,通过数学内容的学习逐渐掌握上述的“程序”与“规律”,以提高数学概念的自学能力。

  在“分数与除法”的教学中,学法指导体现于(1)抓要点,促联系;(2)抓理解,促深化;(3)抓方法,寻策略;(4)抓整理,促记忆。在教学中,让学生参与概念的形成过程。在这个过程中,让学生对一组对象中的每个事物的个别属性进行了解,(例1、例2)对对象间的属性异同进行剖析,接着通过比较,采取异中求同的方法抽象出分数与除法的共同属性即分数与除法的关系式:a÷b=a/b(b≠0),同时引导学生探索分数与除法关系的外延,强调b≠0,弄清其道理;最后,引导学生将新概念与已有的相关的概念联系起来,并进行适当划分从中渗透比较、对应等数学思想,指导学生学习方法策略,进而构建新概念系统。如设计通过填表,让学生进一步了解分数与除法各部分间的联系与区别。

  这样,帮助学生将所学感念纳入知识系统,形成良好稳定的认知结构。

分数除法教案3

  教材分析

  1.教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,从而得到两个关系式:1÷2=1/2,7÷3=7/3。再引导学生比较两组关系式,发现分数与除法的关系。分数中分母的相当于除法中的除数,因为0不能作除数,所以分母也不能是0。

  2.学习本节课也便于我们在今后的学习中更好的学习分数的基本性质等。

  学情分析

  1.通过课前与学生交流获得学生掌握旧知的情况。

  2.学习本课前,学生已经理解了分数的意义和除法的意义,具有一定的操作画图能力和小组合作能了,知道了出书不能为0。

  3.假分数与带分数的互化在以后的.应用中较少,因此要求不必过高,难度不要过大,只要学生会做就可以了。

  教学目标

  1、让学生理解和掌握除法和分数的关系,能用分数表示两个自然数相除的商;

  2、能应用这种关系把整数表示的低级单位的单名数改写成用分数表示的高级单位的单名数,

  3、培养学生的观察、比较和分析、推理等思维能力。教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生动手操作的能力和抽象,概括,归纳的能力。

  教学重点和难点

  教学重点:分数的数感培养,以及与除法的联系。

  教学难点:抽象思维的培养。

分数除法教案4

  教学目标:

  1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。

  2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

  3、能很好的计算分数乘除混合运算的题目。

  教学重点:分数除法的计算的方法。

  难点:分数乘除的混合运算的运算的计算的正确率

  教学过程:

  一、复习回顾

  小组讨论

  1、怎么样来计算分数除法

  请学生进行讨论,讨论好以后 再请学生进行回 答。

  2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。

  请生说说你是怎么来理解这句话的。

  二、进行练习

  1、做课本66的1

  请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。

  学生做好了以后再请学生进行口答。

  对于做错的题目,让请学生自己来分析下错误的原因是什么?

  2、做第2题

  前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的'?

  并请学生上黑板进行板演。

  进行集体订正。

  3、对比练习

  1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?

  2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?

  4、做66页第4题

  请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

  做好以后请学生进行板演

  5、根据方程或算式,将应用题补充完整。

  1)、120×3/8

  ( ),苹果树的棵数是梨树的3/8,( )?

  2)、3/8x=120

  ( ),苹果树的棵数是梨树的3/8,( )?

  3)、120+120×3/8

  ( ),苹果树的棵数是梨树的3/8,( )?

  请学生独立的做,做好了以后请学生说说是怎么想的?

  三、布置作业

  做66页第5~7题

  1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。

  在( )里填上“>”“<”“=”

  4/7×1/3( )4/7 4/7×4/3( )4/7

  4/7÷1/3( )4/7 4/7÷4/3( )4/7

  4/7÷1( )4/7 4/7×1( )4/7

  先让学生独立思考,再说说判断的结果和理由。

  2、在解决实际问题时,要紧紧围绕数量关系的分析学生掌握分数应用题的解答方法。

  3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

  课后反思:

  通过今天的复习,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

  在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

  在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

分数除法教案5

  教学目标

  1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型

  2、在解方程中,巩固分数除法的计算方法

  教学重点

  能用解方程解决简单的有关分数的实际问题

  教学难点

  巩固分数除法的计算方法

  教具准备

  挂图

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、创设情境,引入新知

  1、出示主题图

  让学生大胆地提出问题:操场上有多少人参加活动?

  2、解决问题

  鼓励学生用方程解决问题

  3、选择用除法计算借助线段图的动能理清思路

  板书:

  二、尝试解决

  1、试一试第1题

  板书:

  解:设踢足球的有x人。

  4/9x=4x=9

  或4÷4/9=9

  2、试一试,第1题(2)板书:

  学生仔细观察情境图后,提出问题

  学生独立解决问题,可能会出现多种解决问题的策略让学生用方程和除法计算两种方法,板演在黑板上

  全班进行交流

  学生可以列方程解决,也可以用分数除法解决

  集体纠正

  学生独立解方程

  捐名板演

  然后进行全班交流

  集体纠正

  充分利用主题图,让学生大胆地提出问题

  引领学生做好分析理清思路

  鼓励学生独立完成,引导学生讲清解题的思路

  巩固学生用方程计算的.方法

  教师指导与教学过程

  学生学习活动过程

  设计意图

  9×1/3=3(人)

  三、练一练

  1、解方程:

  1/5x=73/4x=4

  5/8x=1/123/8x=1

  2、解决问题

  让学生先弄清“八折8/10,可利用方程法解,术法作基本要求”

  3、解决练一练,第3、题

  板书:

  解:设妈妈的身高是xcm15/16x=150

  X=160或

  150×15/16x=160

  解:设鹅的孵化期是x天

  14/15x=28或x=30

  28÷14/15或x=30天

  的意思,即现价是原价也可用算术法解,算术法作基本要求

  学生独立解决

  或用算术法解决问题

  然后进行全班交流纠正

  引导学会寻找有用的数字信息

  结合鸡、鸭、鹅孵化期的长短为学生创设运用分数乘除法解决问题

分数除法教案6

  【学习目标】

  1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。

  2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。

  3、通过练习,培养计算能力及初步的逻辑思维能力。

  【学习重难点】

  1、重点是确定运算顺序再进行计算。

  2、难点是明确混合运算的顺序。

  【学习过程】

  一、复习

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;

  如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面

  的,最后算中括号外面的'。

  2、整数四则混合运算定律在分数四则运算中同样适用。

  3、说出下面各题的运算顺序。

  (1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4

  (3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)

  二、探索新知

  1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。

  A、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3

  算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  2、列出综合算式,想一想它的运算顺序,再独立计算。

  ______________________________________________________________

  3、独立完成P34 “做一做”第1、2题

  4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。

  三、知识应用独立完成练习九第1题,组长检查核对,提出质疑。

  四、层级训练:巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。

  (1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。 (2)第7题:“60瓦”与计算无关。 (3)第10题:最后得数与原数相同,原因是231、的倒数与的积正好是1。 342

  五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

分数除法教案7

  一、教学内容:分数与除法,教材第65、66页例1和例2

  二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  三、重点难点:1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  四、教具准备:圆片、多媒体课件。

  五、教学过程

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1.学习教材第65 页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3.学习例2 。

  ( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  ( 3 )加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

  ( 4 )巩固理解

  ① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4.归纳分数与除法的关系。

  ( l )观察讨论。

  请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2 )思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的'分母也不能是零。)

  ( 3 )用字母表示分数与除法的关系。

  老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5.巩固练习:

  (1)口答:

  ①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)

  ②1米的等于3米的( )

  ③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

  解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的 ( )

  ②1米的与3米的一样长。( )

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )

  ④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  教学反思:

  教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数除法教案8

  【学习目标】

  1、掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,

  能熟练地列方程解答这类应用题。

  2、进一步培养自主探索问题的能力和分析、推理和判断等思维能力。

  3、提高解答应用题的能力。

  【学习重难点】

  1、重点是弄清单位“1”的量,会分析题中的数量关系。

  2、难点是分数除法应用题的特点及解题思路和解题方法。

  【学习过程】

  一、复习

  1、复习题:根据测定,成人体内的水分约占体重的24,而儿童体内的水分约占体重的,35

  六年级学生小明的.体重为35千克,他体内的水分有多少千克?

  2、观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  3、选择解决问题所需的条件,确定出单位“1”,并说出数量关系式。_______________

  4=体内水分的重量 5

  4列式计算____________________________________________

  二、探索新知

  1、解决例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)结合线段图理解题意,分析题中的数量关,写出等量关系式。_________________

  (

  3)这道题与复习题相比有什么相同点和不同点?

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?

  1”设为χ,列方程来解决问题。 注意解题格式。(将此题在反面按正确格式解答一遍。)

  (5)也可以应用算术方法来解答此题。__________________________________________

  2、阅读例1第(2)个问题,并思考下列问题,若有问题可以小组讨论。

  (1)要求爸爸体重,需要题目中出现的哪两个条件?

  (2)画出线段示意图,将已知条件和问题标注在线段图上。想一想上一题的线段图和这一

  题的线段图有什么区别?

  (3)写出等量关系,列出方程并解答。(在反面)

  三、知识应用:独立完成P38“做一做”,组长检查核对,提出质疑。

  四、层级训练:1、巩固训练:完成P40练习十第1、2、3、5题。

  2、拓展提高:练习十第6、7、8、9题。

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

分数除法教案9

  教学内容

  一个数除以分数

  教材第31、第32页的内容。

  教学目标

  1.结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。

  2.能够熟练、正确地进行计算。

  3.渗透转化的数学思想。

  重点难点

  重点:理解一个数除以分数的算理,掌握计算方法。

  难点:能够熟练、正确地进行分数除法的计算。

  教具学具

  练习题投影片。

  教学过程

  一导入

  1.口算。

  3.解答应用题。

  投影出示:小明步行2小时走了6千米。他每小时走多少千米?

  学生计算后,说出这道题中的数量关系。

  板书:路程÷时间=速度。

  二教学实施

  揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。

  板书课题:一个数除以分数

  1.出示例2。

  (1)学生读题,明确题意。

  提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)

  (2)列式。

  提问:怎样求小明的速度和小红的速度?

  引导学生利用“速度=路程÷时间”这个关系式列式。

  了2千米”。

  提问:1小时行多少千米,在图上怎样表示?

  小时行了多少千米)

  4.归纳方法。

  老师:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?

  学生自由发言。

  板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  5.练习。

  (1)完成教材第32页“做一做”的第1、2、3题。

  (2)完成教材第34页练习七的.第1~8题。

  学生独立完成,集体订正。

  三课堂作业新设计

  1.在○里填上运算符号,在( )里填上适当的数。

  四思维训练参考答案

  思维训练

  练习七

  板书设计

  3.分数除以分数

  4.甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  当一个数(0除外)除以小于1的数,商大于被除数;当除以大于1的数,商小于被

  除数;当除数为1时,商等于被除数。另外,0除以任何数都为0。

  备课参考教材与学情分析

  本节课根据已有的数量关系,引出一个数除以分数的计算。在分数除以整数的基础上,例3研究一个数除以分数的计算,这是一个难点。教材以比较小明、小红两位同学“谁走得快些”,引导学生根据“路程÷时间=速度”这个数量关系列出两个除法算式。算式列出后,请同学们估一估结果是多少,是比被除数2大还是小,然后想办法进行验证,这个环节的设计既激发学生的探究欲望,又为发现被除数和商之间的关系留下悬念。另外,例2的设计体现了一种转化的思想。将“图”与“式”相对照进行解释、分析、说理,使学生在讲述算理的过程中,感受到用“数形结合”的思想解决问题的便捷性、科学性。

  课堂设计说明

  1.借助线段图引导学生一点点进行分析、说理,学生很自然就理解到要乘除数的倒数。因为有线段图辅助,学生理解起来很容易,自然而然地就明白了算理。

  2.渗透思想,明确结构。

  每一个数学知识都不是孤立存在的,计算教学更是如此,每个新内容都是在已学知识的基础上的进一步延伸,都是在已有知识基础上生长出来的。所以每次新课内容都不能把它看作一个孤立的内容。

分数除法教案10

  教学目的:使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。

  教学过程

  一、复习

  1.口算下列各题。

  2.把下列假分数改写成带分数。

  3.把下列带分数改写成假分数。

  让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。

  二、新课

  1.教学例5。

  教师出示例5:

  教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)

  教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)

  教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。

  2.做教科书第39页中间做一做的题目。

  让学生独立完成。做完后集体订正。

  3.教学例6。

  (1)准备题。

  ①的3倍是多少?②的是多少?③的是多少?

  教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)

  教师让学生计算后集体订正。

  (2)教学6。

  教师出示例6:

  教师指名说题目的条件和问题。

  教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)

  教师:从上节课学习过的`内容来看,例6怎样解答比较方便?(用方程解答比较方便。)

  教师:应该设什么数为未知数x?(设这个数为未知数x。)

  让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。

  4.做教科书39页下面做一做题目。

  让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。

  三、巩固练习

  1.做练习十第1题第1行的小题。

  让学生装独立完成。做完后集体订正。

  2.做练习十第2题的前2个小题。

  让学生装独立完成,做完后集体订正。

  3.做练习十第3题的第(1)~(3)题。

  第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。

  第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)

  4.做练习十的第5题。

  教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。

  四、作业

  练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。

分数除法教案11

  教学目标

  1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。

  2.能运用所学知识解决简单的实际问题,提高综合解题的能力。

  3.培养学生认真审题、准确计算的好习惯。

  重点难点

  重点:掌握分数四则混合运算的顺序。

  难点:正确计算分数四则混合运算。

  教具学具

  投影仪。

  教学过程

  一、导入

  1.笔算下面各题。

  24÷4+16×5-37 46+50×[(900-90)÷9]

  提问:整数四则混合运算的顺序是什么?

  2.计算下面各题。

  二、教学实施

  (5)分析运算顺序。

  提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?

  指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。

  2.巩固练习。

  完成教材第33页“做一做”。

  学生说明运算顺序。

  3.变式练习。

  学生可以先讨论怎样计算,再明确顺序进行计算。

  老师说明:一般情况下,在分数、小数混合的式子里,通常把小数化成分数进行计算。

  三、课堂作业新设计

  1.填空。

  四、思维训练参考答案

  思维训练

  1.D 2.略

  教材习题

  教材第33页做一做

  板书设计

  分数四则混合运算

  运算顺序

  (1)不含括号的分数混合运算的.运算顺序:在一个分数混合运算算式里,如果只

  含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二

  级运算,再算第一级运算。

  (2)有括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果既

  有小括号又有中括号,要先算小括号里面的,再算中括号里面的。

  备课参考教材与学情分析

  例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。

  课堂设计说明

  1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。

  2.通过解决问题,理解分数混合运算的顺序。

  教学例3时,可以先复习以前学过的四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。

  3.注重直观操作,渗透数学的思想和学习方法。

  直观操作——主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。

分数除法教案12

  设计说明

  《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:

  1.注重对算理的探究。

  探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的方法,即分数除法的意义可以联系整数除法的意义进行学习。

  2.突出自主探究的过程。

  《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。

  课前准备

  教师准备 PPT课件

  学生准备 圆形纸片

  教学过程

  第1课时 分数除法(二)(1)

  ⊙创设情境,导入新课

  有4张饼,平均每人得到了2张;还是同样的4张饼,平均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?

  设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的'兴趣。

  ⊙合作交流,探究新知

  1.初步探究计算方法。

  (1)课件出示教材57页上面例题。

  (2)组织学生独立完成前两个小题,明确数量关系。

  学生独立完成后汇报:

  每2张一份,可分成几份?4÷2=2(份)

  每1张一份,可分成几份?4÷1=4(份)

  (3)组织学生讨论后,明确一个数除以分数的计算方法。

  ①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。

  生1:我把每个圆都平均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。

  生2:我把每个圆都平均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。

  ②观察算式,明确计算方法。

  组织学生观察下面两个算式,交流自己的发现。

  4÷=4×2=8 4÷=4×3=12

  小结:一个数除以一个不为零的数,等于乘这个数的倒数。

  设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。

  2.进一步巩固计算方法。

  (1)出示教材57页中间例题的表格。

  (2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。

  (3)组织学生填写表格。

  (4)讨论:从表格“算式”一栏,你发现了什么?

  (一个数除以一个不为零的数,等于乘这个数的倒数)

  3.算一算,巩固计算方法。

  (1)组织学生独立完成教材57页下面例题。

  (2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)

  ⊙巩固练习,提升反馈

  完成教材58页3题,集体订正。

  ⊙课堂总结

  通过本节课的学习,你有哪些收获?

  ⊙布置作业

  教材58页1、2题。

  板书设计

  分数除法(二)(1)

  4÷=8 4÷=12

分数除法教案13

  教学内容:

  五年级下册教科书第65—66页。

  教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  教材分析:

  《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

  本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

  教具学具:

  课件,模型。

  教学设计

  一、导入

  师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

  生:月饼。

  师:你们的课外知识真丰富,你们喜欢吃月饼吗?

  生:喜欢。

  师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

  生:2块,6÷3=2(块)。(板书)

  师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

  生:0.5块,1÷2=0.5(块)。(板书)

  师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

  师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

  生:七分之五。

  师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

  生:可以用分数表示。

  师:在表示整数除法的商时,用谁作分母?用谁做分子?

  生:用被除数作分子,除数作分母。

  师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

  生:被除数除以除数等于除数分之被除数。

  师:你表达得这么清晰流畅,了不起!

  师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

  生:a÷b= a/b(b≠0)(板书)

  师:这个关系式里每个数的范围要注意什么?

  生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

  师:想一想分数与除法有哪些联系和区别?

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

  二、巩固练习

  师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

  1.1.用分数表示下面各式的商。

  (1)3÷2 =()

  (2)2÷9 =()

  (3)7÷8 =()

  (4)5÷12 =()

  (5)31÷5 =()

  (6)m÷n =()n≠0

  2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

  的( )是相等的

  三、课堂小结

  说说你的`收获是什么?重点说说分数与除法的关系。

  结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

  四、作业布置

  练习十二第1,3题。

  板书设计

  分数与除法

  被除数÷除数=被除数/除数

  a÷b= a/b(b≠0)

  教学反思

  这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

分数除法教案14

  教学目标:

  1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数式另一个数的几分之几。

  2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

  教学重难点:

  理解分数与除法的关系,会用分数表示两个整数相除的商。

  教学过程:

  一、复习引入

  1、口算。

  (1)把8块饼干平均分给4个小朋友,每位小朋友分得几块?

  (2)把4块饼干平均分给4个小朋友,每位小朋友分得几块?

  口答列式及结果。

  2、说说把一个数平均分成4份,应该用什么方法列式?

  二、教学新课

  1、教学例6。

  (1)出示例6。

  (2)把3块饼干平均分成4份,每人分得几块?应该怎样列式?

  谈话:把3块月饼平均分给4个小朋友,每人能分得1块吗?

  指出:每人分得的不满1块,结果可以用分数表示。

  那么,可以用怎样的分数来表示3÷4的商呢?

  (3)动手操作,解决问题。

  谈话:请大家拿出准备好的3张同样大小的`圆形纸片,把它们看作3块月饼,按题目要求来分一分,看结果是多少?

  学生操作。

  交流,并演示分法。

  ①一块一块地分,把每个圆片平均分成4份,每人每次分得1/4块,结果每人分得3个1/4块,也就是3/4块。

  ②一块一块地分之后,把12个1/4块合在一起平均分成4份,每份是3个1/4块,再把3个1/4块拼在一起,每人分得3/4块。

  ③把3个圆片叠在一起,平均分成4份,每份是3块的1/4,再把3个1/4块拼在一起,每人分得3/4块。

  (4)如果把3块饼平均分给5个小朋友,每人分得多少块?怎样列式?

  3÷5的商是多少?怎样用分数表示?

  在小组中说说自己的想法。汇报各自想法。

  板书:3÷5=3/5(块)

  (5)归纳方法。

  <<<12>>>

  观察上面两个等式,你发现分数与除法有什么关系?

  在小组中说说。

  板书:被除数÷除数=被除数/除数

  如果用a表示被除数,用b表示除数,这个关系式可以怎样写?

  a÷b=a/b

  b可以是0吗?为什么?

  互相说说分数与除法的关系。

  板书课题:分数与除法的关系。

  2、试一试。

  (1)独立完成填空。

  (2)汇报结果,说说是怎样想的?根据什么得到的?

  指出:两个数相除,得不到整数商时,可以用分数表示。

  3、练一练。

  (1)完成第1题。

  独立填写,比较上下两行有什么不同?

  指出:用分数表示整数除法的商,要用除数作分母,被除数作分子。

  一个分数也可以看作两个数相除,分子相当于被除数,分母相当于分子。分数线相当于除号(2)完成第2题。

  独立完成填写,集体核对。

  说说是怎样想的?

  三、巩固练习

  1、完成练习八第1题。

  在小组中说说是怎样想的?集体核对。

  2、完成第2题。

  独立填写,集体核对。

  3、完成第3题。

  独立填写,说说是怎样想的?

  把1米长的彩带平均分成3份,求1份有多长,可以怎样列式?(1÷3)

  把2米长的彩带平均分成3份,求1份有多长,可以怎样列式?(2÷3)

  4、完成第4题。

  独立填写,集体核对。

  问:这两个问题有什么不同?

  指出:每人分得这袋糖的的几分之几,是把单位“1”平均分成5分;每人分得几分之几千克,是把2千克平均分成5份。

  5、完成第5题。

  独立完成填写。

  说说你是怎样想的?

  联系分数的意义填空,根据分数和除法的关系列式。

  四、课堂小结

  今天这节课,学习了什么内容?互相说说自己的收获。

分数除法教案15

  课时目标

  ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道“事物间在一定的条件下是可以相互转化的观点”。

  教学及训练

  重点求一个数是另一个数的几分之几的应用题。

  教学内容和过程教学札记

  一、创设情境

  1.口答:30分米=()米180分=()时

  练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

  2.说一说:分数与除法的关系?

  3.用分数表示下面各算式的商。

  (1)7÷9(2)4÷7(3)8÷15(4)5吨÷8吨

  二、揭示课题

  这节课学习“分数与除法关系的应用”。(板书课题)

  三、探索研究

  1.出示例4。

  (1)出示例4并审题。

  (2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

  让全体学生尝试练习。

  (3)集体订正。订正时让学生说说是怎样想的?

  (4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

  重点说明当两数相除得不到整数商时,其结果可以用分数表示。

  2.练习教材第80页下面的'“练一练”第1题。

  3.教学例5。

  (1)出示教材第80页复习题,让学生独立列式解答。

  集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

  板书:30÷10=3

  答:鸡的只数是鸭的3倍。

  (2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

  讨论后师生共同评价,主要有两种方法:

  ①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的。

  ②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:7÷10=。

  (3)比较复习题与例5异同点。

  通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

  4、练习。教材第80页“练一练”第2题。

  四、课堂实践

  1.在括号里填上适当的分数。

  8厘米=()米146千克=()吨23时=()日

  41平方分米=()平方米67平方米=()公顷37立方厘米=()立方分米

  2.五(1)班有女生25人,比男生多4人。

  (1)男生占全班人数的几分之几?

  (2)女生占全班人数的几分之几?

  (3)男生人数是女生人数的几分之几?

  五、课堂小结

  1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

  2、求一个数是另一个数的几分之几应用题的解答方法是什么?

  六、课堂作业

  练习十四第5-9题。

  板书设计

  求一个数是另一个数的几分之几

  一个数÷另一个数=教学

  后记

  教学效果良好,学生能熟练应用所学知识解决简单的“求一个数是另一个数的几分之几”的应用题。

【分数除法教案】相关文章:

分数与除法教案12-15

分数除法教案11-17

《分数除法》教案02-23

【热门】分数除法教案03-17

分数除法教案范文04-26

分数除法计算教案04-12

【精】分数除法教案04-21

《分数与除法的关系》教案03-03

关于分数除法教案03-27

分数与除法关系的应用教案08-26