分数与小数的互化教案

时间:2023-02-14 12:43:24 教案 投诉 投稿

分数与小数的互化教案

  作为一名优秀的教育工作者,常常需要准备教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么写才合适呢?以下是小编帮大家整理的分数与小数的互化教案,仅供参考,大家一起来看看吧。

分数与小数的互化教案

分数与小数的互化教案1

  教学内容

  教科书第107~109页的内容和做一做中的题目、练习二十八的第1~4题.

  教学目的

  1.使学生理解百分数和分数、小数进行互化的必要性.

  2.掌握百分数和分数、小数互化的步骤和方法.

  3.学会总结百分数和分数、小数互化的规律.

  4.通过计算、比较和找规律发展学生的抽象概括能力.

  教具准备

  将下面的复习题写在小黑板上;幻灯片.

  教学过程

  一、复习

  教师出示小黑板.

  1.把下面的小数化成分数.

  0.451.20.367

  2.把下面的分数化成小数.

  1

  3.把下面的分数化成百分数.

  1

  请三名学生到黑板前做这三个小题,其余学生在练习本上做.

  二、新课

  教师:我们已经初步认识了百分数,理解了百分数的意义,但是用百分数直接进行计算不太方便,一般要将百分数化成分数或小数来进行计算;另一方面,在求百分率的时候,需要将求得的结果化成百分数.所以,学习百分数和分数、小数之间的互化是很有必要的,下面我们就来学习怎样互化.

  板书课题:百分数和分数、小数的互化

  1.教学例1.

  用幻灯显示例1:把0.25、1.4、0.123化成百分数.

  教师:刚才我们复习了将分母是100的分数化成百分数,所以,只要能将例1中的小数化成分母是100的分数,就可以化成百分数了.提问:

  0.25写成分母是100的分数是多少?学生口答后,教师板书0.25=.

  那么谁能将改写成百分数?学生口答,教师继续板书0.25==25%.

  教师:再来看看怎样将1.4化成百分数.首先要将它化成分母是100的分数,然后再改写成百分数.请同学们跟着我一起将这个过程写一遍.(教师板书将1.4化成百分数的过程:1.4=1===140%,学生跟着在练习本上写.)

  最后,请一名学生在黑板上将0.123化成百分数,其余学生在练习本上做,教师巡回检查,及时纠正学生做题过程中出现的问题.

  2.做第21页做一做的题目.

  先提问:3是整数,怎样将它化成百分数?请仔细思考.然后,让每个小组做一题,抽四名学生在黑板上做,集体订正.

  3.总结把小数化成百分数的规律.

  教师:我们来看看例1的这三个小数化百分数的过程,如果我们将中间的推理过程去掉(如教科书上一样,用虚线框将中间过程框出来),大家可以发现什么规律?让两至三名学生回答,互相补充.

  教师:既然我们已经发现了规律,请大家接着想一想:怎样能把小数直接化成百分数?(让学生自由讨论.)

  小结:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号就可以了.

  4.教学例2.

  用幻灯显示例2:把27%、124%、0.4%化成小数.

  教师:我们已经学过把分数化成小数,现在要把百分数化成小数,可以怎样做?请学生集体讨论.教师再指出:我们可以先将百分数化成分数,再化成小数.下面我们先把27%化成小数.

  请学生集体口答,教师板书27%==27100=0.27.

  请两名学生到黑板前做后面两题,其余学生在练习本上做,教师一边巡视,一边提示思路.最后集体订正.

  5.做第22页做一做的题目.

  让学生在课堂练习本上做,教师巡视,及时纠正出现的错误,集体订正.

  6.小结把百分数化成小数的规律.

  教师将黑板上百分数化小数的推理过程用虚线框框出来.提问:

  如果将推理过程去掉,大家可以发现什么规律?怎样能把百分数直接化成小数?请学生讨论:

  教师:我们看到,百分数化成小数与小数化成百分数是两个互逆的过程,所以,只要把百分号去掉,同时把小数点向左移动两位就行了.

  请学生把教科书翻到第22页,读一读方框中的结论,进一步明确百分数和小数的互化方法.

  7.教学例3.

  教师:下面我们再来学习百分数和分数的互化.(板书百分数和分数的互化)

  用幻灯显示例3:把、、1化成百分数.

  教师:我们在前面已经学习过小数化成百分数的'方法,所以,只要先把例3中的分数化成小数,就可以化成百分数了.

  教师在黑板上演示把化成百分数的过程:=0.75=75%.

  接着演示把化成百分数的过程,一边演示一边提醒学生注意:百分数的分子一般保留一位小数,因此分子除以分母的商要算到小数第四位,近似商用四舍五入法取三位小数,再化成百分数.如果要求把直接化成百分数,就要写成16.7%,而不能写成等号.

  教师小结:把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.

  8.教学例4.

  用幻灯显示例4:把17%、40%、12.5%化成分数.

  教师:把百分数化成分数,实际上就是将分母是100的分数化成最简分数.

  着重讲解把12.5%化成分数:

  提问:当百分数的分子部分是小数时,怎样将它化成分数?

  教师一边在黑板上演示转化过程一边口述:如果百分数的分子部分是小数,要先应用分数的基本性质,把分子、分母同时扩大若干倍,去掉分子的小数点,然后能约分的再约分.(板书转化过程:12.5%===)

  让学生自己完成例4中的其他题,然后对照教科书,找出问题,自行订正.

  请学生将教科书翻到第23页,读一读方框中的结论,进一步明确百分数和分数的互化方法.

  9.让学生做第23页做一做的题目,集体订正.

  三、作业

  1.理解并掌握第108、109页两个方框中的结论.

  2.做练习二十八的第1~4题.

分数与小数的互化教案2

  《百分数与小数的互化》这节课是在学生掌握了分数与小数的互化、百分数的初步认识基础上进行教学的。我把本节课的教学理念定位为:自主学习、合作交流、探索发现下面结合数学课程标准的教育理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。谈谈教学后的感想。

  首先,生活情景引入,体现数学的价值。环节:小芳跳绳的次数是标准数的1.15倍;小明跳绳的次数是标准数的6/5;小丽跳绳的次数是标准数的`110%。问:谁跳的次数最多?我原设计意图是:借助学生熟悉的跳绳数据改编成的数学问题,让学生感受生活中处处有数学、感受数学的价值。同时要想比较3人跳绳次数的多少,就必须进行相互的转换,从而感受互化的必要性。但是这个情景并没有达到最大的利用效果,并且只有提出没有解决,这是比较遗憾的地方。

  其次,合作交流,确保人人有收获。由于教学内容比较简单,完全可以放手让学生自学,因此我提前一天布置学生仿写类似的例子。上课的时候首先让学生结合自己所举的例子,同桌合作交流,说一说百分数怎样化成小数。通过仿写、交流等活动使得每位学生都或多或少有些收获。但是如果在后面的练习中能设计一些同桌互相出题、互相批改的环节,或许对本知识的学习更扎实。

  最后,探索发现,使得学生得到不同的发展。在百分数化小数的合作交流中,我发现学生当中出现两种方法,方法1是把百分数化成分数再化成小数,80%的学生都用这个方法;方法2是把分数的小数点向右移动两位,再添上%。这个方法只有少部分学生知道,而且他们只是停留在知道的份上,并没有真正理解这个方法为什么行得通,我通过设计了一个探索发现的环节,既突破了重难点,又满足了不同学生的发展需求。

  但是由于我没有组织学生进行两种方法的比较,而是直接说方法2是简便快捷的方法,感觉有点硬塞给学生了。其实可以出一些位数较多的小数,让学生用两种方法来做,从而对比得出方法2是快速简便的方法。整节课下来,我感觉过程算是比较顺畅的,但是存在较大的困惑。就是像这个内容比较简单、学生通过自学基本弄懂的一节课,我该教给学生什么知识?该怎么拓展提高?

分数与小数的互化教案3

  第一课时分母是10、100、1000。。。。。。的分数化成小数

  教学目标:掌握小数化成分数的方法并能正确在把小数化成分数;掌握分母是10、100、1000。。。。。。的分数化成小数的方法并能正确地把它们化成小数。

  教学过程:

  一、创设情境营造氛围

  复习第八册学习过的有关小数、分数的转化。

  二、尝试探索建立模型

  1.教学分数化成小数

  A、直接出示例2,让学生说一说这些分数的分母有什么特点?应怎样转化?

  B、小结转化方法P105

  C、练习P105、2

  2.教学小数化成分数

  A、自学例1,说一说你学会了什么?要注意什么?

  B、反馈讲评

  C、小结转化方法

  D、P105、1

  3.比较分数和小数的大小:试一试,想一想可以怎样比较?哪种方法更好?

  4.P105、3

  三、巩固深化拓展延伸

  1.自己说几个分母是10,100,1000。。。。。。的.分数,并把它化成小数

  2.自己说几个小数,请同桌同学转化成分数。

  3.一人说一个小数,另一人说一个分数,比一比它们的大小

  4.小结:这节课我们学习了什么?你是怎样学会的?你还有什么要说告诉其他同学的?

分数与小数的互化教案4

  教学目标:

  1. 掌握分数和小数的互化方法,并能熟练地把小数化成分数,把分数化成小数。

  2. 在学习过程中,感悟转化的数学方法,培养迁移类推的能力。

  3. 体验学习数学的乐趣,养成自主学习的习惯。

  教学重点:

  掌握分数和小数的互化方法。

  教学难点:

  熟练地进行分数和小数之间的互化。

  教学过程:

  一、复习。

  1. 填空

  (1)0.8表示()分之()。

  (2)0.12表示()分之()。

  (3)0.013表示( )分之()。

  (4)一位小数表示( )。

  (5)两位小数表示( )。

  (6)三位小数表示()。

  2.说一说分数和除法有什么关系。被除数÷除数=

  二、新授。

  1.把下面的小数化成分数。

  0.80.120.050.013

  老师出示题目要求后,先让学生独立思考,然后和同位交流化法,再()。

  以开火车的形式指名说一说化法.最后老师演示化法,重点强调小数化成分数后,不是最简分数的,应化成最简分数。

  2.想一想:怎样把小数化成分数?

  请学生先以小组为单位讨论再汇报交流,最后老师总结并演示化法:小数化分数,原来有几位小数就在1的后面写几个0做分母, 把原来的小数去掉小数点作分子;化成分数后,能约分的.要约分,约成最简分数。

  老师出示题目要求后,先让学生独立思考,然后和同位交流化法,再指名说一说化法.最后老师演示化法,重点讲解不是10.100.1000的分数化法。

  3. 想一想:怎样把分数化成小数?

  请学生先在小组内交流,然后汇报化法,最后老师总结并演示化法:分母是10.100.1000……的分数,可以直接写成小数;分母不是分母是10.100.1000……的分数,可以用分子除以分母。注意:分子除以分母,除不尽时,得数一般保留三位小数。

  三、课堂小结

  让学生谈一谈本节课有什么收获。

分数与小数的互化教案5

  教材分析:

  这部分内容是在学生学过百分数的意义,明确了百分数和分数、小数的联系的基础上教学的。由于百分数的'计算,通常是化成分数、小数来进行,而求百分率,又要把算出的结果化成百分数,所以学好这部分内容就为后面学习百分数的计算和应用打下基础。教材先教学百分数和小数的互化,再教学百分数和分数的互化。

  学情分析:

  学生以前学过小数与分数的互化,因此,学习本课内容对于学生来说并不会很困难。在学习新课之前有必要引导学生复习小数与分数互化的知识和百分数的意义,十分必要。同时教学中还要引导学生总结、理解掌握百分数和分数、小数互化的方法,从而使其明确三者之间的关系

  教学目标:

  1、知识与技能:学会百分数与小数互化的方法;能正确地较熟练地进行百分数与小数的互化。

  2、过程与方法:通过自学、讨论与交流等学习活动,理解百分数与小数互化的方法。

  3、情感与态度:积极参与百分数与小数互化的学习活动,体验互化方法的多样性,并获得成功体验。

  教学重点和难点:

  教学重、难点:指导学生理解百分数与小数互化方法。

分数与小数的互化教案6

  教学目标

  1、知识与技能

  掌握分数和小数的互化方法,并能熟练地把小数化成分数,把分数化成小数。

  2、过程与方法

  在学习过程中,感悟转化的数学方法,培养迁移类推的能力。

  情感态度与价值观

  体验学习数学的乐趣,养成自主学习的习惯。

  教学过程

  一、探索交流,解决问题

  1、出示例1 把一条3米长的 绳子平均分成10段,每段长多少米?平均分成5段呢?

  (1)学生先独立计算,然后用小数表示计算结果和用分数表示计算结果。

  3÷10=0.3(米) 3÷5=0.6(米) 3÷10=33(米) 3÷5=(米) 105讨论:能否把小数直接写成分数呢?如果能,怎么写?分组讨论,再试着完成课本第的“试一试”。

  (2)小结

  小数化成分数时,先把小数写成分数,原来有几位小数,就在后面写几个0作分母,原来的小数去掉小数点作分子。注意能约分的要约分。

  2、出示例2。把0.7,来。

  (1)提问:这6个数中,有分数、有小数,要比较这些数的大小,该怎么办? 学生想到的方法可能有两种:一是把分数化成小数,二是把小数化成分数,再通分。提问:哪种方法比较简便?为什么?

  (2)大家先来看看,两种方法:

  方法一:把943711,0.25,这6个数按从小到大的顺序排列起101002545943、写成小数分别是多少? 101007的分子和分母同时乘上相同的数,转化为分母是10,100,1000…的分25数,再改写成小数。

  287==0.28 25100

  方法二:利用分数与除法的关系,用分子除以分母得出小数。

  7=7÷25=0.28 25(3)在让学生将11化成小数。 45学生自己尝试解决,看看出现了什么问题?(分母45不能转化成10,100,1000……作分母。用分子除以分母时,出现了除不尽。)

  指出:像这样的分数化成小数时,只能用分子除以分母这种方法,一般情况下,分子除以分母除不尽时,要根据需要按“四舍五人”法保留几位小数。这道题要求保留两位小数。

  11=11÷45≈0.24 45

  (4)现在,你能把这6个数按从小到大的顺序排列了吗? 学生独立完成。

  (5)小结:分数化成小数时有几种方法?

  引导学生概括出,一般方法是:用分子÷分母(除不尽时按要求保留几位小数)。特殊方法:①分母是10,100,1000……时,直接写成小数。②分母是10,100,1000……的因数时,可化成分母是10,100,1000……的分数,再写成小数。

  (6)完成给出的练习。

  先让学生判断哪几个分数可以写成小数?哪几个分数可以化成分母是10,100,1000……的分数,再写成小数。哪几个分数只能用一般方法。然后独立完成,选择自己喜欢的方法,把这些分数化成小数。

  二、巩固应用,内化提高

  1、 分别用小数和分数表示下面每个图中的涂色部分。

  2、李阿姨平均每秒打0.9个字,王叔叔一分钟打50个字,谁打字快些?

  5≈0.83 0.83<0.9 6答:李阿姨打字快。

  3、小林从学校回家要花25分钟,小凡回家要花相同,谁家离学校远些?

  1小时,如果他们两个人的行走速度451325÷60=12412答:距离学校远的是小林家。

  4、你知道什么样的最简分数能化成有限小数吗? 你想了解这个规律吗? 其实,只要把分数的`分母分解质因数,如果分母中除了 2 和 5 以外,不含有其他质因数,这个分数就能化成有限小数。例如, 的分母 20 = 2×2×5,它就能化成有限小数。如果分母中含有 2 和5 以外的质因数,这个分数就不能化成有限小数。例如, 的分母 30 = 2×3×5,它就不能化成有限小数。

  三、回顾整理,反思提升

  本节课我们学习了分数和小数互化的方法。小数化成分数时,可以直接把小数转化成分母是10、100、1000……的分数,注意能约分的要约分。而分数化小数时,一般情况下是用分子÷分母,除不尽的按要求取近似值;如果分数的分母是10、100、1000……,可以直接化成小数;如果分母是10、100、1000的因数,可以转化成分母是10、100、1000的分数,再改写成小数。因此,在做分数化成小数的题目时,要认真观察数的特点,灵活选择方法,使得计算又对、又快。

分数与小数的互化教案7

  教学内容:

  分数和小数的互化。

  教学目标:

  1、通过教学,使学生理解和掌握小数化分数的方法,能熟练、正确地将小数化分数。

  2、培养学生综合应用所学数学知识解决问题的`能力。

  3、培养学生应用数学知识解决实际问题的意识。

  教学重难点:

  理解和掌握小数化分数的方法。

  教学过程:

  一、分数化成小数

  把分数化成小数:根据分数与除法的关系,用分子除以分母,就可以化成小数,除不尽的按要求保留几位小数(注意用≈)。

  例1:4分之1=( ) 2又5分之1=( )

  10分之9=( ) 1又5分之4=( )

  二、小数化分数

  把小数化成分数:先看是几位小数,用10,100,1000……做分母写成分数,然后再约分成最简分数。

  例2:把一条3m长的绳子平均分成10段,每段长多少米?如果平均分成5段呢?问题:你能用小数和分数分别表示出每段绳子的长度吗?

  ①3 ÷ 10 =0.3( m )②3 ÷ 10 = 3/10( m )3 ÷ 5 = 0.6( m )3 ÷ 5 = 3/5( m )0.3=3/100.6=3/5

  一位小数、两位小数、三位小数……分别表示就是十分之几、百分之几、千分之几……。所以可以直接写成分母是10、100、1000的分数,再化简。

  练习:

  1 、填空。

  (1) 0.7 表示()分之() , 写作 (2)0.09 表示()分之() , 写作 (3)0.125 表示()分之(),写作 。

  (2)0.3表示( )分之( ),写作 。

  2、0.07=7/( ) 0.04= 24/( )=()/( )0.123=( )/( )

  小结方法:小数化成分数时,先把小数写成分数,原来有几位小数,就在1 后面写几个0作分母,原来的小数去掉小数点作分子。注意约分的要约分。

  知识点:

  如果一个最简分数的分母只含有2或5这两个质因数,它就能化成有限小数。

  课堂练习:

  1、把小数和分数相等的用线连起来.

  0.1250.280.550.0711/201/87/10014/50

  2、把下列小数化成分数。

  0.090.250.120.40.150.450.840.234

分数与小数的互化教案8

  教学目标:

  1、在解决问题的具体情景中探索发现百分数改写成分数和小数的方法。

  2、会将百分数改写成小数和分数。

  3、在经历把百分数改成分数和小数过程中,培养学生的归纳能力。

  教学重难点:

  分数、小数化成百分数的方法和规律。

  教学过程:

  一、创设情景,导入新课

  出示第7页两个监测人员的对话情景:“我们监测了340个城市的空气质量”,“其中有35%的`城市达到了二级标准”。

  教师:观察情景图,说说你获得了哪些数学信息。

  学生:……

  教师:根据提供的信息,你能提出哪些数学问题?

  (学生可能会提出:还有百分之几的城市空气质量没有达到二级标准、空气质量达到二级标准的城市有多少个等)教师引导学生思考:要解决“空气质量达到二级标准的城市有多少个”的问题怎样列式?引导学生列出算式:340×35%。

  教师:说说这样列式的想法。

  学生:……

  教师:该怎样计算340×35%呢?学生独立思考340×35%的计算方法,并进行交流汇报。在交流中教师重点引导学生借助已有知识,发现要计算340×35%,可把35%写成分数或小数后进行计算,即把35%改写成35100或0.35。

  学生尝试计算,并指名板演计算过程:

  340×35%=340×0.35=119(个)=119(个)

  教师:我们通过把35%改写成分数或小数的形式解决了“空气质量达到二级标准的城市有多少个”的问题。如何进行百分数和分数、小数的互化呢?这是我们需要进一步学习的内容。

  板书揭示课题:百分数和分数、小数的互化。

  二、自主探索,总结方法

  出示第7页例1。

  学生自主尝试把17%,40%化成分数学生汇报改写过程并板演:17%=1710040%=40100=25教师:当把百分数改写成分数后,不是最简分数的应化简成最简分数。

  教学把46%,128%化成小数学生尝试把46%和128%化成小数。(学生可能会有下面的一些改写形式)46%=46100=46÷100=0.46,128%=128/100=128÷100=1.28。你能将0.5%化成小数吗?

  同桌交流后汇报。

  教师:观察比较上面的改写式子,你发现了什么规律?

  学生:……

  小组讨论

  交流归纳百分数化成分数、小数的方法

  教师:根据我们刚才把17%,40%改写成分数,把46%,128%,0.5%改写成小数的过程,同学们能不能试着说说,怎样把百分数化成分数或小数呢?

  学生讨论交流中,教师逐步引导学生有条理地归纳总结得出百分数化成分数或小数的方法。

  教师:请同学们自己看教科书第8页两个同学的对话框的内容。教师引导学生总结百分数化分数、小数的方法:把百分数化成分数,先把百分数改写成分母是100的分数,注意不是最简分数的要化简成最简分数;把百分数化成小数,可以直接去掉百分号,同时把百分号前的数的小数点向左移动两位。

  三、巩固练习

  1、教科书第9页,课堂活动第2题教师:说说怎样才能准确地在格子里涂色呢?学生思考后独立完成在书上。

  2、完成教科书第10页第2题和第5题第1小题指名板演,集体订正。

  四、课堂总结,结束全课

  教师:通过这节课学习,同学们有哪些收获?

  学生:……

分数与小数的互化教案9

  教学内容:

  苏教版义务教育教科书《数学》六年级上册86~87页例2、试一试和练一练,第90页练习十四第12~15题。

  教学目标:

  引导学生通过独立思考、小组讨论、比较归纳,在解决问题的过程中自主探索百分数与小数互化的方法。

  教学重点:

  百分数与小数相互改写的方法。

  教学难点:

  理解百分数与小数的改写方法。

  教学过程:

  一、创设情境,引导探究需求

  1.出示例2,读题,理解题目意思。

  2.讨论:王红同学完成了指定个数的1.15倍,李芳完成了指定个数的'110%,谁完成的多?要比较两位同学完成仰卧

  起坐个数的多少,就需要比较什么?(1.15与110%的大小)

  3.揭示课题:百分数与小数互化。

  二、教学例2

  1.独立思考:你想怎么比较?

  2.小组交流:自己是怎么比较的,结果怎么样?

  3.汇报交流,优化比较的方法。(1)先把小数改写成百分数,再比较。

  1.15==115%

  因为115%>110%,所以1.15>110%,王红完成的多。思考:将小数改写成百分数的方法是什么?

  (2)先把百分数改写成小数,再比较。110%==1.1

  因为1.15>1.1,所以1.15>110%,王红完成的多。思考:将百分数改写成小数的方法是什么?

  4.小结百分数与小数互化的方法。

  三、巩固练习

  1.完成“试一试”。

  第1题:

  练习后比较:把百分号前面的数与原来的小数比较,你有什么发现?想一想:怎样将小数直接改写成小数?有怎样

  把百分数直接改写成小数呢?

  第2题:

  运用上面发现的规律直接写得数。

  2.完成“练一练”:

  独立完成,并指名板演。

  重点理解把1.6%、0.4%改写成小数的方法

  3.完成练习十四第13题:

  独自练习后交流。

  提问:把1.05与1.5、0.09与0.009改写成百分数,有什么不同的地方?

  四、作业

  完成练习十四第14、15题。

分数与小数的互化教案10

  【设计说明】

  1.关注学生已有的知识基础,理解并掌握互化的方法。

  小数的意义是小数化成分数的基础,而分数化成小数的依据是分数与除法的关系和分数的基本性质。因此,教学时先回顾相关的知识,在学生已有知识的基础上,让学生自主探究、交流讨论分数和小数互化的依据,促进学生掌握分数和小数的互化方法。

  2.在注重算法多样化的同时,更注重优化。

  比较分数和小数的大小的策略是比较丰富的,教学时既注重启发运用多种策略解决问题,同时又适时地提出一般的方法,那就是把分数化成小数计算比较简便。这样不仅可以让学生体会算法的多样化,还可以提高学生解决问题的能力。

  【课前准备】

  教师准备PPT课件投影仪

  【教学过程】

  ⊙知识回顾,沟通联系

  1.分别用小数和分数表示下面各图中的阴影部分。

  小数:( )小数:( )

  分数:( )分数:( )

  2.想一想,填一填。

  (1)0.3里面有( )个十分之一,它表示( )分之( ),写成分数是( )。

  (2)0.17里面有( )个百分之一,它表示( )分之( ),写成分数是( )。

  (3)0.009里面有( )个千分之一,它表示( )分之( ),写成分数是( )。

  师:通过上面的练习,你认为分数和小数存在着什么联系?(板书课题:分数和小数的互化)

  设计意图:学生在学习小数的意义时,已经知道小数表示的是十分之几、百分之几、千分之几……的数,前面学生又了解了“分数与除法的关系”,因此,这里设计练习的目的就是唤起学生的回忆,建立分数和小数之间的联系,为学生进一步学习做好准备。

  ⊙自主探究,总结规律

  (一)教学例1。

  1.课件出示教材77页例1。

  2.请学生在练习本上试做,教师巡视并进行个别指导。

  3.交流:教师根据巡视的.情况,选择两种不同形式的结果投影展示。

  4.让展示的同学介绍自己在做题时是怎么想的,其他同学可以补充。

  5.思考:根据前面同学的汇报,你对这两种不同形式的结果有什么认识?

  (引导学生总结并确定两种不同形式的结果是相等的,同时注意最后的结果要化成最简分数)

  0.3=0.6=

  6.比一比,看谁做得快。

  (1)填一填。

  0.07=0.24==

  0.123=0.032==

  (2)把下面的小数化成分数。

  0.4 0.05 0.37 0.45 0.013

  7.提问:从上面的几个题目中,你发现小数化成分数有什么简便方法了吗?小数化成分数后要注意什么?

  (学生讨论后汇报)

  师生共同总结:把小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,化成分数后,能约分的要约分。

分数与小数的互化教案11

  一、教材分析:

  1、知识内容:分数与小数的互化

  2、教材的地位和作用: 本课教学是学生在学习了分数的加减乘除混合运算后,而对于分数与小数的混合运算该如何做呢?因而必须要全都是小数或全都是分数这样才能进行计算。这节课就在这基础上进行的,目的是使学生掌握分数化成小数的方法以及小数化成分数的方法,也让学生总结并掌握能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。这样就为今后学习分数与小数的混合运算打下良好的基础。在本节课的教学中,体现了数学知识的内在联系,让学生从已有的知识背景出发,通过习题练习、自主探索、合作交流等方式积极探索分数与小数互化的规律。

  3、教学目标

  (1)知识目标

  ①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。

  ②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。

  (2)能力目标

  在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。

  (3)情感目标

  在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。

  教学重点

  分数与小数互化的方法

  教学难点:

  能化成有限小数的分数的特点。

  二、 教学分析:

  根据本节教材特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,通过“观图设疑,提出问题,自主探究,总结规律,形成概念,知识运用”等环节,逐步推导归纳得出结论,使学生始终处于主动探索问题的.积极状态,从而培养思维能力。

  三、教学思路:

  1.通过请同学回答说出九大行星如何比较它们的大小来激发学生兴趣,提出数学问题;

  2.结合课堂操练,逐步把握知识的本质,形成认知结构,总结规律。

  四、教学过程:

  一、观图设疑,提出问题

  幻灯片显示出九大行星,请学生说出有哪九大行星?并提出:已知水星、冥王星、月球的直径分别是地球直径的 ,问如何比较它们直径的大小并指出哪个行星是最大的,让学生带着这个问题学习新课,这时学生的兴趣已被调动。他们就能积极自主参与知识的发生、发展、形成的过程,带着问题学习新课。 二、出示课题,自主探究 例1把下列分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。 、 、 、 、 、 学生完成后,在视频台上展示部分学生写的作业,然后教师请学生看自己的作业的对错,并纠正。

分数与小数的互化教案12

  教学目标:

  1、通过整理,使学生熟练掌握常见的分数转化成小数,提高计算能力。

  2、通过练习讲解,使学生熟练掌握分数有关问题的解答方法,提高解决问题的能力。

  教学重点:分数与小数的互化

  教学流程

  一、分数转化为小数的方法:

  要根据具体的数据选择合适的方法。如1/2可以用1除以2等于0.5算;而2/25可以先等于8/100再等于0.08而带分数转化成小数的时候,直接把整数部分写成整数部分,分数部分转化为小数部分。指出学生的错误:转化成假分数后再转化成小数。

  举例:2又2/25

  二、学生在作业本上完成指定的练习:

  1/2=

  1/3=2/3=

  1/4=2/4=3/4=

  1/5=2/5=3/5=4/5=

  1/6=2/6=3/6=4/6=5/6=

  1/8=2/8=3/8=4/8=5/8=6/8=7/8=

  1/9=2/9=3/9=4/9=5/9=6/9=7/9=8/9=

  分母是两位数的分数:

  1/20=()/100=

  1/25=()/100=

  1/40=()/1000=

  1/50=()/100=

  算一算:1/16=()

  可以用除法算,也可以想它是1/8的一半也就是0.125的一半。

  继续推算:1/321/64

  小结:分数转化成小数时,有的可以除尽,有的不能除尽。不能除尽时,要么根据题目的要求保留,题目没要求的时候,通常保留成两位小数。

  分母是两位数的分数,要知道上面这些是可以除尽的,更多的是不能除尽的。

  三、作业指导:

  1、比大小的实际问题(题略)

  要求学生分三步:

  (1)分数转化成小数

  (2)小数与小数的大小比较

  (3)完整的答句

  2、解决“每一步的长度?”应该用长度÷步数

  3、数轴上写分数

  1/3:在0~1之间量出长度3厘米,平均分成3份,其中的.第一份就是1厘米,点上点,写好1/3

  5/5:也就是1。可以直接在“1”上写5/5

  1又1/4:在1~2之间,3厘米的1/4是7.5毫米,那就是在1后面的7.5毫米处写上1又1/4

  9/4:先改写成带分数2又1/4,方法基本同上。

  9/3:也就是3,在3的地方写9/3

  小结:在数轴上写分数,假分数的要先转化成带分数或整数,然后再看把“1”平均分成了几份。

  4、判断题:把单位1平均分成5份,这样的3份是3/5

  一个分数的分母越大,它的分数单位就越小。

  让学生说明判断理由。特别是后面一个判断题。

分数与小数的互化教案13

  教材分析:

  分数和小数的互化是学习分数、小数混合运算的基础,必须切实学好。分数能化成有限小数的,其方法有两种,一是根据分数与除法的关系,用分母去除分子,得出小数商。二是根据分数的基本性质,将分数转化成分母是10、100、1000……的分数,然后再化成小数;分数不能化成有限小数的,只能用分子除以分母的方法,得出的小数商再按四舍五入法则根据要求保留小数的位数。教学时要讲清“=”和“≈”使用的道理。

  学情分析:

  在教学分数与小数的互化时,应始终从学生已有的知识基础出发,引导学生运用自身的策略和方法进行尝试和探索,通过交流、辨析和比较,逐步明确分数与小数互化的基本方法。如在教学例9时,放手让学生用自己的方法比较0.5与3/4的大小。学生可以用估算的方法比较,也可以把分数化成小数,还可以用画图的方法比较。至于如何把分数化成小数,要启发学生应用前面学习的分数与除法的关系进行思考,并在交流的过程中让学生理解这种方法。

  教学目标:

  (体现多维目标;体现学生思维能力培养)

  1、知识目标:使学生理解小数化成分数的方法,能根据分数与除法的关系把分数化成小数

  2、能力目标:在学生探究新知的过程中培养学生观察、归纳、解决问题的能力。

  3、情感目标:在总结规律过程中培养学生对待知识的科学态度和探索精神。

  教学重点:

  掌握分数化小数的基本方法以及小数化成分数的基本方法。

  教学难点:

  灵活运用小数与分数互化的方法解决实际问题。

  教法学法:

  1、通过直观形象的课件展示,让学生主动探究分数化小数,小数化分数的方法。

  2、采用启发式教学法,循序渐进的引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。

  教学过程:

  一、媒体运用、任务导学、明确任务

  最近,和我们同一学年的明明和欢欢,遇到了一些关于分数和小数的数学问题,你们愿意帮助解决吗?(愿意)同学们非常乐于助人,要想帮助他们解决难题,并不是一件容易的事,必须有一定的知识基础,老师先来考考大家,敢接受挑战吗?

  1、说出下列各分数的意义。 (出示幻灯片)

  2、填空

  (1)根据分数与除法的关系,3÷5=

  (2) 0.9 表示( )分之( )。 0.07 表示( )分之( )。

  0.013表示( )分之( )。 4.27 表示( )又( )分之( )

  二、课堂探究,自主学习

  1、同学们对分数和小数的这些知识掌握的真不错,下面让我们一起来看看明明和欢欢,遇到了什么难题?

  (出示灯片)学校手工课上教同学们编中国结,欢欢编的中国结用了0.6米红绳,明明编的中国结用了3/5 米的红绳,谁用得红绳多?为什么?(指名读题)

  师:要想知道谁用得红绳多,实际就是求什么?生:比较分数和小数大小

  怎样比较分数和小数大小呢?,这节课就让我们共同探讨分数和小数的互化{板书课题)

  师:老师相信同学们一定会用智慧解决问题,有没有信心?让我们一起看合作要求。

  探究要求

  怎样比较这两个数的大小呢?先独立思考,把方法记录下来,再和小组同学交流。

  2、学生试做,指名板演汇报。

  (1)因为3/5=3÷5=0.6,所以欢欢和明明用的红绳一样多

  师:同学们你们可真聪明,用三种方法解决同一个问题

  下面就请第一名同学汇报

  (1)根据小数的意义,在线段图上找到0.6,明确就是6/10

  师:他是根据分数与小数的意义,用画图的方法解决问题,实在是太棒了

  (2)下面就请第二名同学汇报

  生:因为0.6= 6/10= 3/5,所以欢欢和明明用的红绳一样多。你能说说理由吗?生1:利用小数的意义,因为0.6里有6个十分之一,表示十分之六,就是6/10,约分后是3/5。

  师:他是根据小数的意义把小数化成分数,再与分数比较大小,他这种方法非常好,不仅解决了问题,而且掌握了小数化分数的方法。

  课件出示

  三、合作探究

  师:那老师再出几道,1,2,3位小数,你能用小数化分数的方法做出来吗?

  合作要求

  1、把 0.3,0.15,0.543化成分数, 你发现了什么?

  2、请你用一句话概括小数化分数的方法。

  生1:一位小数----十分之几,两位小数---百分之几,三位小数---千分之几……

  生2:把小数写成分数,原来有几位小数,就在1后面写几个0作分母,原来的小数去掉小数点作分子。

  3、师:谁来总结一下小数化分数的'方法和注意点。(出示灯片)

  生:小数化分数,把小数化成分母是10、100、1000……的分数,能约分的要约分。

  师:老师相信大家运用这个规律,在做小数化分数的时候会做得更快,下面就请同学们运用这种方法快速地做下面的题

  (1)(出示灯片)练一练:把“0.07,0.24,0.123,1.05化成分数。用作业本试着做一做

  师:刚才我们研究了小数化分数的方法,那么分数又该怎样化成小数呢?

  下面就请第三名同学汇报

  (2)因为3/5=3÷5=0.6,所以欢欢和明明用的红绳一样多

  师:他是用分数化小数(板书)的方法来解决问题的,同学们你们听明白了吗?谁能说说分数化小数的方法?(分子除以分母),如遇到除不尽的,怎么办

  4、利用分数化小数的算法,探究分数化小数的方法。

  (1)出示灯片分数化小数的方法,可以用分子除以分母。除不尽的,可以根据需要按四舍五入法保留几位小数

  (2)师:下面请同学们用刚才分数化小数的方法做下面一组题,看谁做得又对又快(出示灯片)练习题:把3/4,1/2,4/7化成小数。汇报

  四、交流展示

  师:刚才我们总结了分数化小数,小数化分数的一般方法,但有些分数的分母比较特殊,用什么巧妙的方法把分数化成小数呢?

  (灯片)交流讨论:请观察下面几个分数分母的特点,你能找到更巧妙的方法把他们化成小数吗?想好后组内交流。

  把9/10,43/100,7/25化成小数。

  生1:象9/10,43/100,这样,分母是10、100、1000……的分数,可以直接化成小数。

  生2:象7/25,这样,分母是10、100、1000 ……的因数的,可以通分化成分母是10、100、1000 ……的分数,再直接化成小数。

  师:刚才同学们总结了分数化小数的两种特殊的方法,再加上之前我们总结的分数化小数一般方法,一共有三种方法,谁来说说分数化小数的三种方法?

  出示灯片:方法(齐读)

  希望大家在做分数化小数的实际做题的过程中要根据题目的特点灵活的选择恰当的方法,提高做题的速度和准确率。

  五、反馈拓展,拓展提升

  师:同学们真了不起,不但帮助小朋友们解决了问题,而且还学到了这么多的数学知识。接下来老师就要考考大家,看看你们是否会运用这些知识解决实际问题。

  1、基本题型

  (1)数学书99页1题

  学生观察图,结合分数和小数的意义思考并独立完成。完成后,分别请学生说一说每个图中分数和小数的意义。

  (2)数学书99页3题

  学生先独立连线,然后集体交流方法。可以将小数化成分数,然后与下面的分数比较;也可以将分数化成小数,再与上面的小数比较。

  2、灵活题型,

  有三位同学进行登山比赛,从山下到山顶,甲用了 3/4 时,乙用了0.8时,丙用了3/25时,你能比较出哪位同学登得快吗?先试着做,然后汇报

  小结:当分数和小数比较大小时,一般都把分数转化为小数来比较大小简便。

  3、知识拓展,100页,你知道吗?

  师:同学们,其实有些分数能化成有限小数,有些分数不能化成有限小数,这其中有什么奥秘,同学们想知道吗?请你自学教材第100 页的“你知道吗”,并回答下面两个问题

  (灯片)思考

  (1)通过阅读,你了解了什么?

  (2)7/8,7/25,7/40,7/9.7/30,7/44,这些分数哪些能化成有限 小数?哪些不能化成有限小数?为什么?

  六、总结

  今天你学到哪些知识?还有什么疑问

  七、评价检测

  练习十九6题7题

分数与小数的互化教案14

  活动(一)创设情境,提出问题:补充(点评)

  1、口算比赛:(时间:1分钟)

  5/6―1/23/102/91―1/44/51/54/54/3

  5/8+3/47/124/77/8+1/41/5+1/33/45

  想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占

  总题数的几分之几?)

  2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?

  3、提出问题:能否将做对的题数占总题数的几分之几的分数应用题改成一道百分数应用题呢?补充(点评)

  (将做对的题数占总题数的几分之几改成做对的题

  教学设计

  校对并让学生说说自己的口算情况,

  补充(点评)、

  数占总题数的百分之几)

  活动(二)相互合作,探究问题:

  (一)初步感知

  1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。

  2、小结:求一个数是另一个数的百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。

  (二)共同探讨

  1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?

  2、学生举一些日常生活中的'百分率的例子,举例的同时要让学生说说他所举百分率的意义。

  板书学生所举的百分率及其含义。如:

  合格的产品数发芽的个数

  产品的合格率=────────100%发芽率=───────100%

  产品总数种子的总数

  3、尝试解答例题:

  (1)出示课本例1和例2的条件:

  例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?

  例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?

  (2)完成第113页的做一做

  活动(三)运用知识,解决问题:

  1、口答:

  (1)2是5的百分之几?5是2的百分之几?

  (2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。

  2、判断:

  (1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。

  (2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。

  (3)25克盐放入100克水中,盐水的含盐率是25%。

  3、课堂作业:

  1、我国鸟类种数繁多,约有1166种。全世界鸟类约有8590种。?

  2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)

  活动(四)、全课总结

  1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?

  2、学生谈谈今天所学的知识在我们的日常生活中有什么用?

  课堂总结

  学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。

  一、补充练习:

  1、判断题

  ①五年级98个同学,全部达到体育锻炼标准,达标率为98%.

  ②今天一车间102个工人全部上班,今天的出勤率是102%

  ③甲工人加工103个零件,有100个合格,合格率是100%.

  2、应用题

  ①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.

  ②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.

  二、作业:结合练习二十九第6题进行课外调查。

分数与小数的互化教案15

  1.引导学生主动进行新旧知识的类比,利用知识间的迁移解决问题。

  儿童心理学指出:类比、迁移能充分调动学生利用原有的知识经验解决新问题。因为百分数应用题的解题思路及方法与分数应用题大致相同,所以教学中要有效地利用两者之间的联系。上课伊始,通过对例题改编而成的分数应用题的分析、列式、解答,使学生进一步明确解答此类题的关键是弄清谁是单位“1”,谁和谁相比。

  2.体会算法的多样化。

  在解决问题的过程中,鼓励学生采用不同的计算方法,体会算法的多样化,充分培养学生用不同策略解决问题的能力。所以在教学时,鼓励学生自主解决问题,组织交流解决问题的过程,使学生明确根据数据的特点可以灵活地进行转化,再解决问题。

  课前准备

  教师准备 PPT课件 学情检测卡

  教学过程

  ⊙复习导入

  1.复习。

  (1)课件出示复习题。

  春蕾小学的一项调查表明,有牙病的学生人数占全校人数的。春蕾小学共有750名学生,有牙病的`学生有多少人?

  (2)引导学生思考。

  ①解答此题的关键是什么?(解答此题的关键是弄清谁是单位“1”,谁和谁相比)

  ②用什么方法计算?怎样列式?(用乘法计算,列式为750×)

  (3)尝试解答。(指名板演,其他学生自己做)

  2.导入。

  师:刚才我们复习了用分数解决问题,下面我们就来学习用百分数解决问题。(板书课题)

  设计意图:通过复习“求一个数的几分之几是多少”的问题,引导学生复习解答此类问题的关键及解法,为实现知识间的迁移作铺垫。

  ⊙学习新课

  旧知迁移,探究新知。

  (1)课件出示教材85页例2。

  (2)学生尝试解题,交流计算过程。

  预设

  生1:求有牙病的学生有多少人,就是求750的20%是多少。题中的数量关系符合“求一个数的几分之几是多少”,所以列式为750×20%,计算时可以把百分数直接化成小数进行计算。

【分数与小数的互化教案】相关文章:

《分数与小数的互化》教案01-10

《分数与小数的互化》教案04-19

《分数和小数的互化》教案07-27

分数与小数的互化教学反思01-31

《分数与小数的互化》教学设计03-03

《分数与小数的互化》的教学设计04-12

《分数和小数的互化》教案15篇02-26

《分数与小数的互化》教学反思范文06-18

《分数与小数的互化》的教学设计15篇05-05