《小数的意义》教案(15篇)
作为一名无私奉献的老师,常常要写一份优秀的教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们应该怎么写教案呢?下面是小编收集整理的《小数的意义》教案,仅供参考,欢迎大家阅读。
《小数的意义》教案1
教学内容:
人教版小学数学四年级下册第4单元第32页。
教学目标
1.理解和掌握小数的意义。
2.理解整数、小数、分数之间的联系。
教学重点:理解和掌握小数的意义。
教学难点:认识小数的计数单位。
教学过程
一、展示生活中的小数
师:同学们,我们在生活中经常会看到小数的存在,你能举几个例子吗? (学生回答)
我们一起来看,教室里有几个同学在进行测量。但是,他们测量的一边长1米,但是另一边不够1米,用米做单位,不够1米那应该怎么办呢?这时候,就可以用小数来表示了。
二、创设情境,导入新课:
这些数都是什么数?
生:小数。
师:小数是怎么产生的呢?
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
揭示课题:小数的意义。
关于小数你想知道些什么?今天我们继续来学习课本中的新知识:“小数的意义”。
三、探究新知:
1.提出探究问题,引出小数的性质。
我们把1米平均分成10份,每份用分数表示是多少米?
每份用分数表示是米?
1-1. 反馈交流。请学生结合图说明自己的.想法。
师:米还可以写成0.1米。这样我们就得到了一个小数0.1米。
师:0.1米是怎样得到的?谁来说一说。
生:把1米平均分成10份,每份用分数表示是米,用小数表示就是0.1米。
箭头指向30的地方怎么表示? 0.3米是怎样得到的?
我们可以看出把整数1平均分成10份,每一份是0.1, 3份是0.3,用分数表:。
0.3的计数单位是0.1,的计数单位是。所以0.3表示3个0.1
同理得出:指向7的箭头,用分数和小数分别怎么表示?
把整数1平均分成10份,每一份是0.1, 7份是0.7,用分数表:。0.7表示7个0.1
1-2.抽象概括:小数是分数的另一种表示形式。分母是10的分数可以用一位小数表示。一位小数的计数单位是十分之一,也写作0.1。
2-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成100份,也用小数来表示吗?
师:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。
师:刚才0.01米是怎样得到的?谁来说一说。
生:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。
箭头指向4的地方怎么表示?0.04米是怎样得到的?
我们可以看出把整数1平均分成100份,每一份是0.01, 4份是0.04,用分数表:。0.04的计数单位是0.01,的计数单位是。所以0.04表示4个0.01
同理得出:指向8箭头,用分数和小数分别怎么表示?
把整数1平均分成100份,每一份是0.01, 8份是0.08,用分数表:。0.08表示8个0.01
2-2.抽象概括::小数是分数的另一种表示形式。分母是100的分数可以用两位小数表示。两位小数的计数单位是百分之一,也写作0.01。
3-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成1000份,也用小数来表示吗?
师:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。
师:刚才0.001米是怎样得到的?谁来说一说。
生:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。
箭头指向6的地方怎么表示? 0.006米是怎样得到的?
我们可以看出把整数1平均分成1000份,每一份是0.001, 6份是0.006,用分数表:。0.006的计数单位是0.001,的计数单位是。所以0.006表示6个0.001
3-2.抽象概括:小数是分数的另一种表示形式。分母是1000的分数可以用三位小数表示。三位小数的计数单位是千分之一,也写作0.001。
刚才我们分的是一米,用整数“1”来表示,平均分成10份、100份、1000份......这样的一份或几份是十分之几、百分之几、千分之几......实际应用中,可以用小数来表示。像0.1、0.2、0.01、0.52、0.625等都是小数。
5、各部分名称:
(以0.625为例来说明)小数中的小圆点“.”叫做小数点。小数点右边第一位是十分位,十分位上2表示2个0.1,3表示3个0.1,因此十分位上的计数单位是0.1,也可以说成是十分之一;小数点右边第二位是百分位,计数单位是百分之一(0.01);小数点右边第三位是千分位,计数单位是千分之一(0.001); 。
归纳:每相邻两个计数单位之间的进率是10。
课堂小结:
今天你有什么收获?
1.小数的计数单位是十分之一、百分之-一、 千分之一......分别写作0.1、0.01、 0.001......。
2.小数中, 每相邻两个计数单位间的进率是10。
3.十分之几是一位小数,百分之几是两位小数,千分之几是三位小数。
《小数的意义》教案2
教学目标:
1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。
2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。
3、培养学生的迁移、类推能力,以及良好的数学学习品质。
教学重点:
理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学过程:
一、情境导入:
1、(展示一根绳子)猜猜它有多长?
生猜:1米……
师:要想知道准确的结果,怎么办?
生:量一量。
师:谁愿意来测量一下它的长度?
两名学生合作测量。
师:把你们测量的结果汇报一下。
生:一米。
师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?
生猜并测量验证。
师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?
生:不能。
师:为什么不能用整数了?
生汇报
师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的.小数。(板书:小数)
师:那你们说说在哪些地方还见过小数。
生汇报
师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)
二、探索交流,建构新识:
(一)理解一位小数的意义。
1.师:请同学们任意说一个小数。
生汇报师板书
师:那老师也来写几个。
0.1 0.01
师:猜一猜老师接下来会写什么?
生:0.001
师:同学们真的是很会推理。
2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?
生汇报
师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。
师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。
3.生展示、汇报
展示若干组学生的画法。
(编号,让学生说出自己的想法。)
师:你认为哪位同学表示出了0.1那么大小。
生:1号;3号;2号;4号。
师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)
师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。
师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)
师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。
师:那现在谁来说说0.1到底表示什么?
生汇报师小结:说简单点0.1就表示。(板书)
师:涂色部分为0.1那空白部分用哪个小数表示呢?
生汇报:0.9。
师:怎么看出0.9的?
生汇报
师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?
生:1
师:现在我们明白了1里面有(10)个0.1。(板书)
4.再涂1块能看到哪两个小数?
生:0.2、0.8。
师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)
师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?
生:分母都是10、都是十分之几……
师:那我们就可以说一位小数表示的就是十分之几。(板书)
(出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。
(二)理解两位小数的意义。
1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?
同桌交流讨论。
生汇报:把它平均分成100份,取其中的一份。
预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。
师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)
师:0.01就表示。还看到了哪个小数?
生:0.99。
师:0.99里面有几个0.01。
生:99个。
师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书
2.如何表示0.25呢?
生汇报
师:还能想到哪个小数?他们的分数朋友分别是谁?
生:0.75,分数朋友:
3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?
4.师提问:
(1)你涂了哪个小数?
生汇报。
师:猜一猜他涂了几格,还能找到另外一个小数吗?
(2)你涂了几格?谁能知道他写的是哪个小数?
5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?
生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。
(三)理解三位小数的意义。
1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)
师:那它的分数朋友是多少?()
师:那0.237表示什么?它的分数朋友是谁?
生:
师:小数是多少?
生汇报
2.师:谁能找一个大一点的三位小数?
生:0.999 =
师:要在正方形纸上涂上0.999会有什么感觉?
生汇报
如果再涂多少就涂满了?(0.001)
师:那也就是说(1000)个0.001是1。
师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。
3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)
……
师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。
(四)提炼小数意义
1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?
生汇报
小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。
2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?
0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。
3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)
三、巩固内化:
师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?
出示课件练习题。
1、填一填。
2、填上合适的数。
四、回顾反思:
1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)
2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?
3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。
师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。
《小数的意义》教案3
【教材分析】
《小数的产生和意义》是在三年级《分数的初步认识》和《小数的初步认识》的基础上教学的。这一内容,既是前面知识的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识是本节课应达到的知识教学目标。
【设计理念】
《课标》指出:学生的数学学习应当是一个生动活泼、主动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在看一看、想一想、说一说、做一做中动手、动脑、动口,逐步理解知识,掌握方法,学会思考,获得积极的情感体验。
【教学内容】
教科书P50~51小数的产生和意义及“做一做”,练习九部分习题。
【教学目标】
1、知识与能力:使学生通过观察、测量了解小数是如何产生的。理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。
2、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。
3、情感态度价值观:增强学生民族自豪感和培养学生学习的积极性。
【教学重难点】
1、重点:理解小数的意义。
2、难点:探索分数与小数的关系,深刻理解小数的意义。
【教学具准备】
PPT课件、米尺、彩带两条(2米和0。9米)
【教学过程设计】
一、情景导入
1、教师:同学们喜欢做游戏吗?今天老师带大家做一个游戏,游戏的名字叫“猜一猜,测一测。”
2、师出示2米的彩带,同学们猜一猜有多长,指名回答后让学生测量验证。师再出示0。9米的彩带,让学生猜测,然后测量出结果是9分米。
提问:9分米如果用米做单位用分数表示是多少米?(米)用小数表示是多少米?(0。9米)
二、教学小数的产生
1、课件出示老师收集的一些图片。
看来生活中小数真是无处不在啊!人们进行测量和计算时往往得不到整数的结果,于是小数就产生了。(师板书:小数的产生)
2、除了用整数,小数,我们还可以用什么样的数来表示?(分数)还是用米作单位,用分数表示又是多少米呢?(9/10米)
师:刚才我们在表示第二条彩带的长度时,有的同学用分数表示,有的同学用小数表示,看来小数和分数之间一定有联系。那么分数和小数之间究竟有什么奥秘呢?今天老师就和同学们一起去探索他们的秘密。探索秘密需要一样工具就是直尺。
【设计意图】利用学生喜欢游戏和活动的好奇心理,充分激发、调动学生学习的积极性,让学生再猜一猜、量一量的活动中经历知识的形成过程,体验到整数在生活中使用的局限性,使学生体会到在进行测量和计算时,往往得不到整数的结果,这时常用小数来表示,从而引入小数,让学生感受到小数是因为需要而产生的,从而激发学生的探究欲望,为新知的探究过程做好充分的铺垫。
二、教学一位小数意义
1、认识一位小数:大屏幕出示米尺,把1米平均分成10份,其中的一份是多少?如果还用米做单位,用分数怎么表示?小数呢?
板书:(1分米、1/10米、0.1米),谁能说说0.1米表示什么意思?
(1)那如果3份、7份呢?分别用分数、小数表示是多少?
(2)像这样的你能找一个让同学说说吗?(学生说老师补充板书)
2、观察这一些小数,你发现它们有一个什么共同的特点吗?(一位小数)将分数与小数联系起来看,又发现什么共同的特点呢?(分母是10是的分数可以用一位小数来表示)
(学生:分数和小数之间有着密切的关系,十分之几的分数用一位小数表示,一位小数表示十分之几。)学生有困难教师可引导。
3、教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关,有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。
猜想一下两位小数与什么样的分数有关?
三、教学两位小数意义。
1、学习两位小数。
(1)刚才是把1米平均分成10份,那如果老师把1米平均分成100份(老师将尺放大)取1份是几分之几米?用小数怎么表示?取3份呢?取6份呢?
(2)仔细观察这组分数和小数的特点,看看你能得到什么结论。(分母是100的分数可以用两位小数表示)
(通过学习迁移,引导学生自主学习二位小数。)
教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几。
猜一猜:下面老师要将1米平均分成多少份?
(3)、教学三位小数意义。
1、认识三位小数:同学们想一想,如果将尺平均分成1000份。你又能得到什么结论?
1毫米、 1/1000米、0.001米
6毫米、 1/1000米、0.006米
13毫米、 13/1000米、0.013米
2、小结:分母是1000的分数可以用三位小数表示。
是不是只有这三种小数呢?
四、总结小数的意义
1、教师:我们把1米平均分成10、100、1000份,用分数、小数都会表示了,如果老师再把1米平均分成10000份,这样的几份写成小数是几位小数;那么100000份呢?(万分之几是四位小数,十万分之几是五位小数)
【设计意图】由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示……到通过联想认识四位小数、五位小数的意义,再到抽象概括小数和的意义,学生经历了知识的形成过程,在获取数学知识的同时,也获得了学习的方法,提高了学习的能力。
2、教师引导学生观察这些分数和小数,然后讨论:分数和小数之间有什么联系呢?
3、学生回答后教师小结:分母是10、100、1000……的分数可以用小数表示这就是小数的意义。(教师板书)
4、反馈:教材第51页做一做。
让学生独立完成,教师提醒学生要先看一看每一幅图平均分成了多少份?然后教师讲评。
【设计意图:】教材在学生理解小数的意义之后,安排了“做一做”活动:通过用分数和小数表示出涂色部分,使学生进一步感知分数与小数的联系,加深对小数意义的理解。
五、认识小数的计数单位和进率。
(1)课件出示智慧闯关第一关
0.3里面有()个1/10 0.5里面有()个1/10 0.07里面有()个1/100 0.09里面有()个1/100
师:学生讨论完成,并说一说为什么这样想?
师指名回答后小结:像0.3、0.5这样的一位小数,我们都可以看成有许多个1/10组成的,那么我们就说十分之一是一位小数的计数单位,写作0.1。同理,像0.07、0.09这样的两位小数,可以看成有许多个1/100组成的,那么我们就说百分之一是两位小数的计数单位,写作0.01。
师:同学们猜一猜三位小数的计数单位是什么?写作?
(2)课件出示智慧关第三关
0.1米里面有()个0.01米
0.01米里面有()个0.001米
教师小结:每相邻两个计数单位之间的进率是10。
(3)课件出示智慧关第三关
0.8的计数单位是( ),里面有( )个()。
0.06的`计数单位是( ),有6个()。
0.032的计数单位是( ),有()个( )。
【设计意图:】通过设计有层次的强化巩固练习,有针对性地对使学生对所学知识进行练习、内化,使在课堂中探究所得的新知识、新概念在练习中逐步得到深化,从而内化为学生的知识和能力。
三、课堂巩固
1、练习九第2、5题
2、判断(课件出示)
【设计意图】在学生对小数的意义有了一定的理解以后,利用幻灯出示一组有一定深度的练习题,让学生通过新旧知识的对比,逐步加深理解,熟练运用。从而深刻地了解小数的意义、小数的计数单位以及小数与分数的相互关系,达到强化、内化、深化新知的目的。
四、课堂小结:同学们顺利的闯过了关,在这节课上有什么收获?
把你的收获告诉同学们。
五、课堂延伸:课件《小数点的历史》
【设计意图】通过学生自由阐述对于本节知识的理解情况,及时了解和掌握学生的学习反馈情况,再一次让学生通过自身的表现,体验学习取得成功的快乐。同时通过播放小数点的历史的视频让学生了解小数产生的背景,体会劳动人民以及以往一些数学上的伟大发现和发明,激发学生学习的动力,使学生加深对数学学习的乐趣,从而树立学好数学的信心,在以后的学学习道路上更加努力,表现的更加出色。
【板书设计】
小数的产生和意义
米1分米1厘米1毫米
9/10米1/10米1/100米1/1000米
0.9米0.1米0.01米0.001米
《小数的意义》教案4
教学内容:教科书第111—112页的例1和例2,第111页、113页上面“做一做”中的 题目和练习二十六的第1—2题。
教学目的:
1.使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。
2.培养学生的迁移类推的能力。
教学过程:
一、复习
1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克。两个小队一共采集了多少克?让学生先解答,再说一说整数加法的意义和计算法则。
2.笔算。
4.67十2.5= 6.03十8.47= 8.41—0.75=
让学生列竖式计算,指名说一说自己是怎样算的,并注意检查学生竖式的书写格式是否正确。
二、新课
1.教学例l。
(1)通过旧知识引出新课。
教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例l。让学生读题, 理解题意。
(2)引导学生比较整数加法和小数加法的意义。
教师:“例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什 么要用加法算?”
引导学生通过比较说出:从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算;从例1可以看出小数加法的意义和整数加法的意义相同.也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的'千克数合起来,所以要用加法计算。
(3)引导学生理解小数点对齐的道理。
教师板书横式以后,让学生说一说怎样写竖式,并提问:“为什么要把小数点对齐?”然 后把以千克作单位的小数改写成以克作单位的整数,列出竖式,并提问:“整数加法应该怎样算?”引导学生说出计算时要把相同数位上的数对齐,再从个位加起。
教师接着再提问:“为什么要把相同数位上的数对齐?”引导学生说出相同计数单位上 的数才能相加。教师告诉学生:小数加法也是相同计数单位上的数才能相加,所以列竖式 时只要把小数点对齐就能使相同数位上的数对齐。
然后让学生计算,算完后教师提问:“得数7.810末尾的‘0’怎样处理?能不能去掉?为什么能去掉?”引导学生说出根据小数的性质可以把末尾的“0”去掉。并告诉学生以后在计 算小数加法遇到小数末尾有“0”时,通常要把“0”去掉。
2.让学生做第111页“做一做”中的题目。
让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。
3.引导学生比较小数加法和整数加法的计算法则。
教师:“小数加法与整数加法在计算上有什么相同的地方?”启发学生说出小数加法和 整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐:
4.教学例2。
(1)引导学生通过比较得出小数减法的意义。
教师:“例2的条件和问题与例l比有什么变化?例2的数量关系是什么?”启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数.求第二小队采集 的千克数;可以看出小数减法也是已知两个加数的和与其中的一个加数。求另一个加数的运算,所以它的意义与整数减法的意义是相同的。
(2)利用知识迁移使学生理解小数点对齐的算理。
让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐: 然后教师把千克数改写成克数并列出竖式,提问:“个位上是几减几?”接着让学生看小数减法竖式,提问:“被减数干分位上没有数计算时怎么办?”利用小数的性质使学生理解被减数干分位上没有数可以添“0”再减,也可以不写“0”,把这一位看作“0”再计算,以后 在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是 否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。
5.比较小数减法与整数减法的计算法则。
让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数 加法与整数加法在计算上的关系是一样的。
6.小结。
教师:“通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?”
启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法 则,齐读一遍。
7.做第113页最上面“做一做”中的题目。
学生做题之前,教师先提问:“整数加减法各部分间的关系是怎样的?整数加减法是怎样验算的?”从而说明小数加减法各部分间的关系及验算方法与整数加减法的一样。再让学生做题.检查竖式的书写及计算有没有错误,得数的小数点点得是否正确,验算的格式 对不对。订正时,让学生说一说是怎样计算并验算的。
三、巩固练习
做练习二十六的第1—2题。
1.做第l题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:“你是根据什么来写减得的差的?”使学生加深对小数减法的 意义和加减法关系的认识;
2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时, 针对学生易出错的地方重点说一说。
《小数的意义》教案5
教学目标:
1、结合具体情境,体会生活中存在着大量的小数。
2、通过实际操作,体会小数与十进制分数的关系,了解小数的意义,知道小数部分各数位名称的意义,会正确读写小数。
3、结合具体情境,体会生活中存在着大量的小数。
基本教学过程:
一、生活中的小数
谈话引入:新的学期开始了。同学们又长大一岁了。今年是——20xx年。你们多大了?板书出数据。总结出“整数”。生活中除了碰到这些整数,我们还会碰到——小数。你在哪里遇到过小数?说一说。
二、小数的意义
1、阅读书上P2的生活中的.小数。(了解学生对小数读法掌握情况)
2、学生试着解释这些小数的意义。(初步感知小数的意义。)
3、一同探究小数意义。从长度单位“米”来研究小数产生的必要性。用1米的尺子来测量物体的长度有诸多不便。有时不足1米,因此我们可以把1米怎么样?——平均分成10份,每一份也就是1分米。如果测量更小的物体,1分米的单位长度还是大了,我们还可以继续将1分米平均分成10份……这时小数就产生了。
4、结合刚才长度的线段图,分上、下板书出十分之一,一百分之一;0.1,0.01。再让学生观察、分类。上层的数都是什么数。(分数)这些分数都可以直接写成相应的小数形式。观察这些分数都有什么共同的特征:分母都是10、100、1000……
5、观察这些小数和分数,你有什么发现?
6、我们在写整数时都可以按照数位顺序表来写,小数可不可以呢?看P4的计数器。了解数位顺序。明确十分位、百分位、千分位上的各数表示什么。边想边填。
三、运用拓展
1、 出示一个正方形,这个正方形是1,请你表示0.01可以吗?小组讨论一下,你打算怎么样表示?为什么?
2、完成试一试。注意学生的读、写小数。
3、完成练一练。
教学反思:
1、整数和整十数、整百数学生不明确。因此,虽然教材上没有整数这个概念出现,但要提一提,对理解小数意义有帮助。
2、对于17/1000,3/1000,409/1000学生容易出错。因此,在理解小数意义时,可以进一步引导学生观察、总结:1/10可以写成0.1,一位小数。小数点后面有一位数。1/100写成0.01,是两位小数……。
《小数的意义》教案6
【教学内容】 五年级上册第28页至30页例1和例2及相应的“试一试”和“练一练”,练习五1-5题。
【教学目标】
1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3.培养良好的学习习惯,提高学生的探究、归纳比较、抽象概括的能力。
【教学重、难点】理解小数的意义。
【教学过程】
一、交流信息,引入课题
课前我们收集了一些关于小数的资料,老师选择了一些,谁愿意给大家介绍一下?
(1)一块橡皮0.3元;一张信封0.05元;一本练习本0.48元。
(2)一枚1分硬币的厚度大约是0.001米。
(3)老师用的签字笔笔芯是0.38毫米的。
(4)艾兰德 “维生素C含片”净含量:0.65克×120片。
(5)钱嘉容的家到学校大约有3.9千米,她的爸爸身高1.82米。
像0.3这样的一位小数三年级时我们已经认识,这些小数和它们有什么不一样?会读吗?只读小数,谁来读一读。
你们觉得读小数时需要提醒大家注意什么?(小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。)
【设计意图:学生的知识起点是三下时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情。教材为什么三下就安排初步认识小数,因为生活中小数随处可见,孩子不陌生,早些了解也便于孩子在生活中交流。孩子对小数不陌生,因此两位小数、三位小数虽课本没安排学习,但孩子的读法早已在生活中习得,因此小数的读写方法不作为本节课的教学重点,只课之初始阶段稍做提醒,指出读法中的注意点,即尊重孩子的实际情况。】
这节课我们将继续学习小数的意义。(板书课题:小数的意义)
二、教学例1,初步感知
1、出示例1。我们先来看第一条信息。
这些小数表示物品的单价。
如果你到商店去买这些物品,该怎样付钱呢?(课件出示: 3角 5分 48分)
谈话: 这里的0.3元用分数可以怎么表示?你是怎么想的`?(板书:0.3元)
小结:1元=10角,3角是1元的3/10,可以写成0.3元。(板书:3/10元 0.3元)
2、初步认识两位小数。
你能仿照(0.3元)这样的思路说说0.05元和0.48元的意思吗?先独立想想,再同桌交流。(如果学生感到困难,提示:1元是多少分;1分是1元的几分之几;那5分呢?48分呢?可以怎样想?)
0.05元,谁来说说你是怎么想的?(同桌互相说说)
1元=100分,5分是1元的5100 ,可以写成0.05元;
0.48元谁来说?
1元=100分,48分是1元的48100 ,可以写成0.48元;
板书:5100 元 0.05元 48100 元 0.48元
3、看看这些小数,为什么(0.05)这里要写0?(因为是5分钱,1元=100分)几分钱用小数表示就是——,这里(0.48)为什么没有0?几角几分用小数表示就是——
【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。但以元为单位的小数所表示的金额是学生在生活中已经初步认识了的,比较熟悉,这些经验能支持学生理解小数的意义,从而实现感性认识到理性认识的飞跃。在初步感知阶段,利用“0.3元该怎么付?”学生把元转化成角,进而追问0.3元用分数可以怎么表示?得出3角是1元的3/10,可以写成0.3元。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。】
三、教学例2,概括意义
(一)进一步理解两位小数的意义。
1、刚才我们借助圆角分间的关系认识小数,其实还可以借助其它一些事物,这是一把米尺,把1米平均分成100份,每份长多少(1厘米)?为了方便看得清楚,我们截取一部分将它放大。想一想, 1厘米是1米的几分之一?用小数怎么表示?
投影:1米=100厘米,1厘米是1米的1/100,可以写成0.01米。
谁能这样完整的说说。(板书:1厘米 1/100米 0.01米)
2、4厘米和9厘米写成以“米”作单位的分数和小数各是多少?拿出练习纸,在第一题处填一填。和屏幕校对。谁来说说(4厘米)你是怎么想的?0.09米有多长?
(二)自主探究三位小数的意义。
1、出示第一屏,收集的小数信息:请同学们看第2条信息,读——0.001米?你认为它比要0.01米的长度——短!究竟有多长?
2、老师将米尺再截短再放大,现在你能在米尺上指出0.001米吗,并告诉大家你是怎样想。(能仿照刚才的思路说说想法)
谁再来说说0.001米的意思?板书:11000 米 0.001米
你能说一个毫米数,让大家像这样来说说吗?板书两个
3、练习纸上找到材料2完成填空。(课件出示,直接校对)
这些用米作单位的三位小数都表示1米的——千分之几。
(三)观察发现,概括意义
1、一起来观察板书,先竖着看看,再横着看,仔细观察这一行分数和对应的小数,你有什么发现?想一想四人小组交流。汇报
竖着看,这3个数量都是——相等的!下面两个数量的单位都是——相同的!这说明分数、小数之间有着密切的联系!(根据学生交流情况可适当擦去写板书,只留下分数、小数,便于观察、比较、抽象概括意义。)
从分数往小数看,什么样的分数可以直接写成小数呢?
看看下面的小数,可以分成几类?
从小数往分数看,一位小数、两位小数、三位小数各表示什么?还能往下想吗?四位小数呢?(表示万分之几)能想的完吗?
引导出示:分母是10、100、1000……的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
指出:这就是小数的意义,引导学生完整的看一看 。
(四)回到第一屏学生收集的信息,解释3、4条信息中小数的意义。
【设计意图:例2的教学分成三段进行。第一段继续教学两位小数,以“米”为单位改写成小数,从中体会不仅是“元”为单位的百分之几可以写成两位小数,其他百分之几的分数都可以写成两位小数。第二段教学三位小数,让学生把学习两位小数的经验迁移到三位小数上。数学学习的本质在于数学思维,第三段初步概括小数的意义,对一位、两位、三位……小数意义的具体分析后,抓住展示和交流这一时机,通过清晰直观的板书,从上往下又从左往右地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解。】
《小数的意义》教案7
教学目标:
1.通过测量活动,进一步理解小数的意义,体会小数在生活中的实际应用。
2.会进行单名数和复名数单位之间的换算。
3.体会小数与分数之间的关系,会进行互化。
4.通过动手操作,培养学生合作学习的能力,养成良好的学习习惯。
教学重点:
通过探索单位换算的过程,进一步体会小数的意义。
教学难点:
把单名数化成复名数。
教学准备:
多媒体课件。
课时:
课时一
教学过程:
一、导入:
师:(课件展示教材第4页上面的图)同学们好,咱们一起来看看这位小朋友在做什么?(学生小声议论:可能是在测量黑板的长度吧?)仔细观察一下,你知道这位小朋友量出的黑板长度是多少少吗?
生:学生边观察边交流。师板书课题。
设计意图:在观察过程中让学生收集数据,探讨并理解几分米或几厘米换算成以“米”作单位应怎样表示,鼓励学生想出不同的表示方法。
二、探讨与交流:
1、学生汇报:黑板长2米,又多出36厘米。
师:这些数有什么地方不一样吗?
生:数的单位不一样。
师:单位不同,计量起来不方便,那咱们该如何解决这个问题呢?
生:把这些数据的单位换算成统一的。
师:你认为换算成哪个单位来计量更合适呢?
生:我觉得换算写成以“米”为单位比较合适(也有同学说换算成以“分米”为单位比较合适)。
师:那咱们一起来讨论一下如何用“米”来表示黑板的长度吧。
2、活动要求:
(1)要求学生分组讨论把以“厘米”作单位的数换算成以“米”作单位的数应该怎样操作。可以使用不同的方法。
(2)汇报结果:鼓励学生用自己的语言说出自己的想法。
生:因为1米=100厘米,把1米平均分成100份,36厘米就是36份,就是100(36)米,如果用小数表示就是0.36米。所以黑板的长度就可以表示为2.36米。
师:(归纳)把1米平均分成10份,1份或几份可以用一位小数表示;
把1米平均分成100份,1份或几份可以用两位小数表示······
(1)一位小数表示十分之几;
(2)两位小数表示百分之几。
设计意图:进一步使学生掌握以“分米”“厘米”作单位的数换算成以“米”作单位的数,可以用小数表示。
三、探讨与延伸
师:刚才咱们学习了长度单位的.一种表示方法,那么,鹌鹑蛋和鸵鸟蛋的质量又如何表示呢?(师出示图片课件,生思考回答)
生:可以用克与千克来表示。
师:称量质量较小的物体一般用克作单位,称量质量较大的物体一般用千克作单位。那么如何用千克来表示鹌鹑蛋和鸵鸟蛋的质量呢?
生1:鹌鹑蛋的质量是12克= 1000(12)千克=0.012千克。
生2:鸵鸟蛋的质量是先把500克用千克表示出来再加上原来的的1千克。500克=1000(500)千克=0.5千克,鸵鸟蛋重0.5千克+1千克=1.5千克。
师:(归纳)把1千克平均分成1000份,1份或几份可以用三位小数表示,也就是说三位小数表示千分之几。同学们通过思考,懂得了用小数表示物体的质量,大家表现得都很好。用小数表示物体的质量在生活中的应用很广泛,所以,大家都应该熟练掌握。
设计意图:结合情境图,让学生明白由低级单位数化成高级单位数的方法,培养学生的分析能力和合作学习能力。
四、生活与应用:
师:为了能更好的熟悉低级单位和高级单位数之间的互化,咱们现在做个活动,前后位的同学相互合作,通过目视估算出对方的身高和体重。
活动要求:
1、目测估算出的结果要尽可能的接近事实。
2、把身高转换成以米为单位的数,体重转换成以千克为单位的数。
3、与其他同学互相交流,选出较为准确的数据,汇报给老师。
生:(认真估测、交流并汇报)
设计意图:引导学生把课堂上学到的知识运用到生活中去,发现生活中更多的数学信息。
五、巩固练习:
1、师:咱们先看一看这个表格,哪位同学愿意来填一填?(师出示教材第5页“练一练”第一题课件)
学生纷纷举手抢答。师给予评议。
2、师:(出示课件“练一练”第二题。)同学们知道图片上的这只鸟叫什么名字吗?它是世界上飞的最快的鸟?叫军舰鸟。大家认真读题后,自己独立完成有关军舰鸟的数学信息。
六、总结:这节课咱们学习了长度单位和质量单位换算的方法,其他的数量单位也是可以换算的。生活中,很多时候都需要进行单位换算,你可以与同学一起去找一找。
七、作业:教材第5页第4题。
八、板书设计:
36厘米=0.36米
12克=0.012千克
500克=0.5千克
九、后记:
这节课的内容主要是要求学生会把低级单位的数转化为高级单位的数,会进行单名数和复名数的互化。在单位换算方面,特别是在小数意义的基础上理解单位换算,相对孩子们来说有一定的难度,所以对于这部分知识,只是要求孩子们重在理解,掌握方法。
在备课时,我就考虑到由于孩子们在日常生活中对小数的接触不是很多,小数的意义又具有一定程度的抽象性,怎样在教学中找出孩子们生活与这一数学知识的契合点,让他们能自然地融入到学习中去,作了详细地分析。由于孩子们的接受能力有所不同,在教学中我对问题的设置与教材略有变化。我认为这样学生学习起来比较顺畅。
《小数的意义》教案8
教学内容来源:
小学四年级数学(下册)第四单元《小数的意义和性质》
教学主题:
《小数的意义》
课时:
第一课时
授课对象:
四年级学生
学习目标:
1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
教学重点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学准备:
米尺、课件。
教学过程
教学环节学生的学教师的教评价要点
环节一复习导入,情境感知教师利用米尺和书本的导图,深刻体会小数的必要性;量一量数学课本的长度,小组交流汇报表示方法。教师引导学生观看导图,通过分享生活中用到数的例子,引出小数,感悟小数产生的必要性。引导学生小组合作,用米尺测量数学课本的长度,再交流汇报表示方法,直观感知小数的必要性。进而引出今天的主题“小数的意义”。通过说一说,想一想,量一量,会发现小数应用的广泛性,进一步理解和感受小数产生的必要性。
环节二借助直观,迁移推理学生思考并归纳总结小数的表示方法,理解并归纳出一位小数的意义。小组合作,独立探究两位小数和三位小数的表示方法,理解并归纳出两位小数和三位小数的意义。教师借用米尺,直观描述:“把一米的尺子平均分成10份,每份是1dm,用米作单位,用分数表示十分之一米,也可以用0.1m来表示”,引导学生思考说出用分数和小数表示3dm和7dm;引导学生观察并归纳总结,描述自己的发现,体会抽象的数学思想方法,理解一位小数的意义。引导学生借助直观迁移,通过小组合作交流,独立探究的`方法理解两位小数和三位小数的具体意义。会理解并归纳出一位小数的意义,会探究出两位小数和三位小数的意义,体会抽象和推理的方法,达成目标1。
环节三自主探究,获得新知学生自学课本,交流汇报自己的收获,说一说小数的计数单位及自己对相邻两个计数单位间的进率的理解。提问:“默读课本,看看还有什么新的发现?”引导学生自学课本,了解小数的计数单位和相邻两个计数单位间的进率。会说出小数的计数单位是0.1、0.01、0.001及相邻两个计数单位间的进率是10,达成目标2。
环节四巩固新知,学以致用学生独立解决“找朋友”,动动手“写一写”,集体交流“说一说”。呈现“夯实基础”,“培优提升”两个层次的习题,引导学生找一找,写一写,说一说,巩固新知。会独立解决习题,达成目标1,2。
环节五回顾反思,归纳小结学生尝试总结。教师引导学生自主归纳:“1.通过今天的学习,你有哪些收获?2.你是通过什么方法获得的?”教师适时补充。至少能说出一方面的收获。会说出小数的意义及运用抽象和推理的数学思想方法。
课后反思:
本节课通过创设生活情境,帮助学生体会了小数产生的必要性,激发了学生的兴趣。
通过课中学生说一说,想一想,量一量,会发现小数应用的广泛性,进一步理解和感受小数产生的必要性。学生的积极性不高,今后设计时应该站在学生的角度上,多设计学生喜爱的教学形式。不过整个学习过程层层递进,学生通过想一想、测一测、数一数、说一说等多种活动进行观察、思考,逐步学习到小数的意义。这样的教学不仅符合学生的认知规律,而且渗透了数学思想方法,既符合学生的认知规律,又有利于增加学生的实际认知,让学生从自己的身边发现数学知识,进一步培养学生的能力,理解小数的意义。
教学过程应该是以学生为主体的过程,我今后会多让学生自己去发现、探讨、解决问题,他们身上有很大的潜力有待挖掘。作为教师,我们要相信自己的学生,他们可以学的更好。
《小数的意义》教案9
教学目标
(一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。
(二)通过归纳整理,提高学生的概括能力。
教学重点和难点
熟练掌握小数乘除法的计算法则,提高学生计算的准确率。
教学过程设计
(一)归纳整理小数乘除法的意义
1.口算下面各题,并说出各算式的意义。
15×3 1。5×3 15×0。3 15÷3
28×2 2。8×2 28×0。2 2。8÷2
25×5 2。5×5 2。5×0。5 2。5÷0。5
12×4 1。2×4 0。12×0。4 0。12÷0。4
2.思考:
①小数乘法的意义有几种情况,是按什么划分的?分别是什么?
②小数除法的意义是什么?
讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)
3.比较归纳、整理:
看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?
讨论完成下表:
(二)复习小数乘除法的计算法则
1.小数乘法的`计算法则。
(1)说出下面各题的积中各有几位小数。
23×0。5 21。4×0。7 27。5×12。03 1。84×0。026
提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)
(2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?
①0。4×2。5=(1);②0。075×0。52=(0。039)。
提问:
①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)
(3)计算并验算:
67×75= 836×25= 125×24=
订正后回答:
0。67×7。5= 8。36×0。25= 0。125×2。4=
小结:
小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?
讨论得出:
相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。
不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(4)口算:
0。8×4= 4×0。8= 0。05×20= 20×0。05=
0。03×9= 9×0。03= 1。9×5= 5×1。9=
观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)
练习:在下题的○中填上>,<或=。
①1。6×1。2○1。6; ②1。4×0○1。4;
③0。24×5○0。24; ④3。7×2。1○3。7;
⑤0×7○0; ⑥0×2。8○0。
上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)
2.小数除法的计算法则。
(1)计算并验算(P34:6):
1。89÷0。54= 7。1÷0。125= 0。51÷0。22=
计算后订正,提问:
①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)
②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)
(2)口算:
4。2÷0。6= 1。5÷5= 3。2÷0。8= 2÷4=
哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?
(除数大于1时,商小于被除数;除数小于1时,商大于被除数。)
练习:在下面的○中填上>,<或=。
30÷0。6○30 1。8÷9○1。8 0÷0。2○0
3。6÷4○3。6 27÷0。3○27 0÷1。2○0
上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)
(三)综合练习
1.口算:
39。78×1= 3。6÷3。6= 2。87×0=
1×0。56= 7。8÷1= 0÷2。87=
“1”与“0”有什么特性?
2.计算并求近似值:P35:2。
小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)
3.作业:P35:1,3。
课堂教学设计说明
复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。
通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。
板书设计
整数乘法:
4×25=100
75×52=3900
小数乘法:
小数除法:
《小数的意义》教案10
教学目标:
1、了解小数的产生和理解小数的意义。
2、掌握小数的计数单位及单位间的进率。
教育方面:
1、培养学生的观察、分析能力和抽象概括能力。
2、感受数学与生活的联系及其价值,体验数学学习的乐趣。
教材分析:
1、教学内容:义务教育课程标准实验教科书数学四年级下册《小数的认识和加减法》中的“小数的意义”问题。
2、内容分析:教材选用测量黑板、课桌,一方面这两种事物都是教室里学生非常熟悉的,另一方面学生在测量之后除了能够体会小数的产生于实际需要以外,还可以将测量结果作为一般的常识来掌握。考虑到学生对长度单位比较熟悉,教材仍选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过分米(厘米、毫米)改写成米数,三个层次共同说明,把低级单位的数改写成高级单位的数可以用分母是10.100.1000??的分数表示,再进一步用小数表示。教材着重从“小数是十进分数的另一种表现形式”的`角度说明小数的含义,最后教材说明小数的计数单位及相邻两个计数单位之间的进率由学生自己填出。
3、学情分析:小数的意义属于概念教学,比较抽象,在操作中要重过程。根据本课教学内容的特点和学生对概念认知的思维特点,我们在制定本课教学环节时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验。
4、教学目标:
(1)使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。
(2)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(3)培养学生的观察、分析、推理能力。
5、教学重点、难点。
教学重点:使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位和相邻两个计数单位间的进率。
教学难点:
小数意义的探究过程和相邻两个计数单位间的进率。
教学准备:
多媒体课件 、测量工具(米尺)。
教学过程:
(一)操作导入:
1、让两名学生测量黑板、课桌长度。(用米作单位)
2、交流测量结果,展开讨论。
3、引导小结:
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书课题:小数的产生和意义)
【设计意图】通过让学生自己动手测量黑板、课桌长度的活动,当让学生用米作单位说出黑板的长时,学生心理产生了矛盾,因为测量黑板时多出的部分不够1米,课桌也不够1米,无法得到整数的结果,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性。
(二)引导探究:
1、认识一位小数。(出示米尺)
(1)在米尺上找出1分米的地方。
①用米作单位,怎样用分数来表示? 为什么?(结合分数的意义说明)②用小数表示是:0.1米。
③谁来说说0.1米表示什么?(把1米平均分成10份,每份1分米,是 米,也可以写成0.1米。)
板书:1分米= 米=0.1米.
(2)讨论:
①用米作单位,3分米怎样用分数和小数表示?7分米呢?
②分别说说0.3米、7分米表示什么意思?
2、认识两位小数。(出示米尺)
(1)在米尺上找出1厘米的地方。
①用米作单位,怎样用分数来表示? 为什么?
②用小数表示是:0.01米。
③谁来说说0.01米表示什么?(把1米平均分成100份,每份是1厘米,是 米,也可 以写成0.01米。)
板书:1厘米= 米=0.01米.
(2)讨论:
①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?
②分别说说0.03米、0.06米各表示什么意思?
3、认识三位小数。(出示学生尺)
(1)在尺上找出1毫米的地方。
①用米作单位,怎样用分数来表示? 为什么?
②用小数表示是:0.001米。
③谁来说说0.001米表示什么?
板书:1毫米= 米= 0.001米。
(2)讨论:
①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?
②说说0.003米和0.006米各表示什么意思?
照这样分下去,还可以得到万分之一米??也可以写成0.0001米。
象刚才小圆点后面一位的小数叫一位小数,两位的小数叫两位小数??
(三)概括:
1、概括小数与分数的关系。
(1)什么样的分数可以用一位、两位、三位??小数来表示?
(2)一位、两位、三位??小数分别表示几分之几?举例说说。
2、概括小数的意义。
师:分母是10、100、1000??的分数可以用小数表示。
【设计意图】小数的意义是十分抽象的概念,学生比较难理解。要改变死记硬背、机械 训练的方式,防止重结论,轻过程的做法。因此,我引导学生进行观察,使学生始终参与 到概念的探究过程中,通过比较、归纳、分析和综合,理解小数、分数之间的关系,最后 抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。
(四)小数的计数单位和进率
(1)小数的计数单位是什么?(展开讨论)板书:(十分之一、百分之一、千分之一??,分别写作0.1、0.01、0.001??)
(2)1米里有几个0.1米?0.1米里有几个0.01米???每相邻两个单位间的进率是多少?
(3)师:因为整数和分数相邻两个单位间进率都是10,所以这些分数也可以仿照整数的写法,写在个位的右面,用一个小圆点(小数点)隔开,用来表示十分之几、百分之几、千分之几??的数,叫做小数。
【设计意图】老师没有直接告诉学生小数的计数单位是什么,每相邻两个计数单位间的进 率是10,而是让学生从解决问题中发现、归纳出来。这样能促使学生进行多角度、多方面、多层次的探索,符合学生的认知规律,培养学生应用所学知识解决问题的能力,获得学习 成功的体验,增进学好数学的信心。通过讨论交流和概括总结,培养数学思维能力和合作 精神。
(五)巩固应用
1、学生看书并完成例1的空白。
2、P51 “做一做”用分数、小数表示涂色部分。
3、闯关练习:
(1)括号里能填几?你是怎么知道的?
0.3里面有()个 ,0.09里面有()个 ;0.08里面有()个 。
(2)下面的括号里能填几?
0.1米里面有()个0.01米 ;
0.01米里面有()个0.001米 ;
0.001米里面有()个0.0001米。
(3)找朋友:(用线把上下两组数连起来)
0.045 0.13 0.0001 0.9
4、说说这些小数的计数单位分别是什么? 它里面含有多少个计数单位?
0.3 0.18 0.250.036
【设计意图】使学生明确小数和分数的关系,加深对小数意义的理解和对计数单位的认识,让所学知识得以巩固。
(六)课堂总结
这节课我们学习了什么?你知道了什么?你还有什么问题?
【设计意图】对知识点进行梳理,培养学生概括能力和语言表达能力。
(七)板书设计:
小数的产生和意义
小数的产生:在进行计算和测量时,往往得不到整数的结果。
《小数的意义》教案11
一、设疑激趣
师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?
生:小数,从大屏幕上。
师:小数的意义就是小数表示什么?那你知道吗?
生:不知道。
师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?
生:遇见过。
师:在哪遇见过?
生1:在计算器上计算有余数的除法时出现了小数。
生2:去超市买东西时会遇见小数。(师跟进说标价是小数)
生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)
【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】
二、探究新知
1、小数的产生
师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?
生:(异口同声地回答)60厘米。
师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?
生:一百分之六十。
师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?
生:0.60。
师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?
生:9.58秒。
师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。
出示口算:
10÷10= 1÷10=
100÷10= 1÷100=
1000÷10= 1÷1000=
【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】
生: 0,赶紧改成1。
师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。
师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?
生:1里面有多少个十。
师:还可以用那句话来说?
生:把1平均分成10份,每份是几?都说是十分之一。
师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)
师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。
【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】
2、教学小数的意义
师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?
0.85 9.58 38.2 0.6 39.4 98.5
生:0.85 9.58是一类,其余是一类。
师:能不能说说你的分类理由?
生:后面是两位、一位。
师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?
生:三位小数,四位小数,五位小数……
师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。
【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】
【反思:本环节的.分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】
教师出示:把 1米平均分成10份。
师:把1米平均分成10份,每一份是多长?
生:10厘米。
1分米。
师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?
生:一百分之一。
生:十分之一。
师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?
师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)
师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)
擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。
师:你发现分数与小数的联系了吗?
分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。
师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。
【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】
(2)认识两位小数
师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?
生:是一百分之一米。
师:还可以怎样表示呢?
生:0.01米,1厘米。(补充板书)
师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。
【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】
交流自己写的:
师:你写的是多少?
生1: 7厘米,是7/100米,0.07米。
师:你能猜一猜两位小数与什么样的分数有关系吗?
(指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)
生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。
引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。
师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。
(3)认识三位小数
出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。
两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。
师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道
三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。
四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。
师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)
1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )
【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】
(4)抽象、概括小数的意义
师:小数是什么?
补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。
师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?
生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。
师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?
生:个、十、百、千、万……
师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。
3、小数单位间的进率
师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)
师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。
【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】
三、巩固练习
师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)
1、下面括号里能填几。
0.1米里有( )个0.01米,0.01米里面有( )个0.001米。
得出:相邻两个计数单位之间的进率是10。
师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。
【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】
2、(1)用合适的数表示图中的涂色部分。
(2)用合适的数表示图中的空白部分。
3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)
4、找朋友。
四、课堂总结
师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?
生:每相邻的计数单位之间的进率都是十。
生:小数就是分数。
生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。
五、你知道吗
了解小数的起源、发展史。
《小数的意义》教案12
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重难点:理解小数的意义和小数的计数单位。
教具准备:米尺、课件。
教学过程:
一、回顾导入
1.读一读信息(课件出示)想一想,这样写符合实际吗?
(1)老师的体重是565千克。
(2)小明的身高是145米。
(3)笑笑的数学测验成绩是935分。
2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?
3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。
二、探索新知识
1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?
指名测量,其他同学观看。
2.汇报测量结果。
3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。
4.出示米尺图。
上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?
5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?
十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?
6.出示米尺。
指着板书:有什么新发现?学生汇报。
7.提问:如果我们把1米平均分成1000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?
让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。
学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。
8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。
小结:分母是10、100、1000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……
进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。
三、巩固练习
第一层练习:分数小数互化。
第二层练习。
1.填空
(1)0.8表示(),它的计数单位是(),它有()个这样的计数单位。
(2)1里面有()个0.1和()个0.01。
(3)0.52是由()个0.1和()个0.01组成的。
2.判断:
(1)0.8是把1个整体平均分成10份,表示这样的8份。()
(2)1毫米写成小数是0.01米。()
第三层练习:猜数游戏。
小明和小红的数各是多少?
四、总结
师生共同回顾本节课内容。
反思:
“小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的`概念有更清楚的认识。
小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。
在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。
引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1=0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。
最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。
反思这节课,也有一些地方预设的不够充分:
1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。
2.练习量较大,没有考虑学生实际。
“课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!
《小数的意义》教案13
一、教学内容:小数的意义P32——P33
二、教学目标:
1、理解小数的意义,知道一位小数、两位小数、三位小数……分别表示十分之几、百分之几、千分之几……
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。
三、教学重难点
重点:理解小数的意义。
难点:会用小数表示计量单位换算的结果。
四、教学准备
多媒体、米尺。
五、教学过程
(一)导入新授
师:生活中你在哪些地方见到过小数?你能说说吗?(出示)学生回答。
师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)
师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。
板书:小数的意义。
(二)探索发现
1、认识一位小数。
(1)出示教材第32页例1米尺图。
把1平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:“十分之一”米还可以写成0.1米。
那2分米、3分米呢? 学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义
教师根据学生的回答板书:
1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米 ……
(2)观察上面的等式你能发现分数和小数之间的联系吗?
学生观察并在小组内讨论。
师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
2、认识两位、三位小数。
我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。
(1)教师继续出示米尺的放大图。
学生思考、小组交流后进行反馈:
把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0. 04、0.01这种两位小数来表示。
1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一) 米,用小数表示就是0.001米。
(2)小结。
分母是100的分数,可以写成两位小数。两位小数表示百分之几。
分母是1000的分数,可以写成三位小数。三位小数表示千分之几。
3、小数的意义。
分母是10、100、1000……这样的分数可以用小数表示,这些小数的计数单位分别是多少?每相邻的两个计数单位之间的.进率是多少?
学生交流说说对小数的理解。
师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0. 01、0.001。每相邻两个计数单位间的进率是10。
4、阅读“你知道吗?”。
师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?
学生自学教材第33页“你知道吗?”。
师生交流时,让学生说说小数的发展史。
(三)巩固发散
1、指导学生完成教材第33页“做一做”。
让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。
2、在括号内填上合适的小数。
新人教版数学四年下第四单元小数的意义和性质教案(一)
( )元 ( )千克 ( )厘米
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。
(五)板书设计
小数的意义
分母是10、100、1000……的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
每相邻两个计数单位间的进率是10。
六、教学后记
《小数的意义》教案14
课题:人民教育出版社第八册《数学》第四单元第1课《小数的意义》
教学目标:
1、使学生知道小数的产生过程,理解分数与小数的联系。
2、使学生明确小数的计数单位,认识小数并理解小数的意义。
3、培养学生的观察能力、分析能力、抽象概括和迁移能力。
教学重点:使学生通过分数与小数的联系从而理解小数的意义。
教学难点:理解小数的意义。
教具准备:多媒体课件、米尺。
教学过程:
一、设疑激趣、揭示课题。
教师出示钢笔,写出价格13.50元。
师:这是个什么数?(学生:小数)
师:小数和我们学过的整数有什么不同?
生:有圆点……
师:小数是仿照整数写成的,用小数点隔开,左面是小数的`整数部分,右面是小数部分。在日常生活中,有很多地方要用到小数。(教师和学生比身高并引出姚明的身高。)
第一组数:1米7分米3厘米2米2分米6厘米
第二组数:1.73米2.26米
师:那一组数更简明?(学生:第二组数)
师:对。小数是人们根据生活的需要而产生的。小数里有很多的奥秘,今天,我们就一起来研究小数的意义。
二、探究新知
1、认识一位小数。
教师出示媒体。
师:把1米平均分成10份,每份是多少?生:1分米1米=10分米
师:那么反过来,1分米等于多少米呢?(生:米)师:
师:还可以把米写成小数是0.1米。
师:0.1米是由哪个分数得来的?(生:是由米得来的。)
师:3分米是多少米?写成小数有是多少呢?(学生:米0.3米。)
师:请同学们观察这一组数,你发现什么?
教师引导:小数点后面有几位数?0.1、0.3分别是由那两个分数得来的?这两个分数的分母是多少?它们的计数单位是多少?
学生:一位小数、分母是10的分数可以写成一位小数、计数单位是十分之一。
师:0.7表示()个。
2、认识两位小数。
师:把1米平均分成100份,每份是多少?你能运用学习一位小数的方法、结合媒体上的资料自己研究出新的小数吗?
分数小数分数小数
出示课件:1厘米=()米=()米15厘米=()米=()米
学生自主研究,教师参与到学生的研究中。
学生汇报研究的成果:
首先填好空。
师:你发现了什么?
学生:这是二位小数、计数单位是百分之一、分母是100的分数可以写成二位小数……
教师对学生没发现的给予引导启发。
师:0.75表示()个。
3、认识三位小数。
师;你能继续研究出其他的小数吗?
教师出示媒体:
把1米平均分成1000份,每份是1毫米。
分数小数分数小数
1毫米=()米=()米63毫米=()米=()米
学生自主研究后汇报交流:
分母是1000的分数可以写成三位小数,计数单位是千分之一………
教师对学生每发现的给予引导启发。
师:0.63表示()个。
4、抽象概括小数的意义。
讨论:1、小数是由分母是多少的分数写成的?
2、一位小数可以用来表示什么?二位小数、三位小数呢?
3、什么叫小数?
学生先自己说,教师再指明学生说。
教师通过讨论第1、2两个问题引导学生归纳出:分母是10、100、1000……的分数可以仿照整数是写法,写在小数点的右面,用来表示十分之一、百分之一、千分之一……的数,叫做小数。
教学例1:
课件出示。学生独立完成后汇报交流。
师:这个题你是怎样想的?
三、实践应用。
课件分别出示。
1、0.5里有()个0.1,
0.09里有()个0.01,
0.013里有()个0.001。
2、教师出示图,学生在书上完成后集体交流。
3、连线,教师出示连线图,学生在书上独立完成后集体交流。
四、应用拓展。
0.425里有()个0.001
0.20里有()个0.01
用0、2、5、8这四个数和小数点你能组成什么样的小数?
五、板书设计
《小数的意义》教案15
教学目标
知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。
过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。
情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。
教学重点:理解小数的意义及每相邻两个单位时间的进率是十。
教学难点:概括和理解小数的意义。
教法:启发引导法
学法:合作交流
教具学具准备:直尺。
教学过程
一、定向导学(5分)
1、判断下面哪些数是整数?
4、12、38、3.01、105、0.007、20xx、100.06。
整数每相邻的两个计数单位之间的进率都是( )。
板书课题
2、揭示目标:
理解小数的意义及每相邻两个单位时间的'进率是十。
二、自主学习(10分)
自学内容:课本p32-33上半页
方法:边看书边完成下面的要求。时间:5分钟
要求:
1、把1米平均分成10份,每份是( )米,写成小数是( )米;
把1米平均分成10份,3份是( )米,写成小数是( )米。
2、把1米平均分成100份,每份是( )米,写成小数是( )米;
把1米平均分成100份,15份是( )米,写成小数是( )米。
3、把1米平均分成1000份,每份是( )米,写成小数是( )米;
把1米平均分成1000份,27是()米,写成小数是( )米。
(1--6组的4号发言,1号评价)
三、合作交流:5分钟
1、什么是小数?
2、小数的计数单位是多少?
(7组的4号发言,1号评价)
四、质疑探究(5分)
每相邻两个计数单位之间的进率是多少?
五、小结检测(15分)
1、小结:
谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)
2、检测:
a、填空。
(1)0.1是( )分之一,0.7里有( )个0.1。
(2)10个0.1是( ),10个0.01是( )。
(3) 写成小数是( ), 写成小数是( )。
b、判断:
(1)0.40里面有4个0.01。 ( )
(2)35克=0.35千克( )
元=0.7 元 ( )
=0.01 ( )
米 =0.3米 ( )
=0.03 ( )
=0.030 ( )
c、把小数改写成分数。
0.9 0.09 0.0359
3、堂清作业:教材p33页,p36、1.2
板书设计:
小数的意义
十分之一--------- 0.1
百分之一---------0.01
千分之一---------0.001
分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
【《小数的意义》教案】相关文章:
《小数的意义》教案04-26
《小数的意义》的教案02-17
《小数的意义》教案07-11
小数的意义教案07-29
小数的意义教案模板04-26
关于《小数的意义》教案范文04-26
《小数的意义》教案(精选13篇)05-05
小数的意义教案(精选5篇)03-30
精选小数的意义教案4篇07-21
小数的意义教案15篇12-18