《轴对称图形》教案

时间:2023-02-15 11:43:52 教案 投诉 投稿

《轴对称图形》教案(15篇)

  作为一位杰出的老师,时常会需要准备好教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写呢?以下是小编整理的《轴对称图形》教案,欢迎阅读,希望大家能够喜欢。

《轴对称图形》教案(15篇)

《轴对称图形》教案1

  15.1轴对称图形教案

  【教学目标】

  知识与技能

  1、能理解平面直角坐标系中,与已知点关于x轴或轴对称的点的坐标的规律。

  2、能作出与一个图形关于x轴或轴对称的图形。

  过程与方法

  1、通过作图提高学生的实践能力。

  2、通过现实情境的创设,使学生体验到数学就在我们身边,从而培养审美情趣。

  情感、态度与价值观

  1、通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。

  2、在作图过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

  【重点难点】

  重点:用坐标表示点关于坐标轴对称的点的坐标。

  难点:找对称点的坐标之间的关系、规律。

  【自主学习】

  一、复习:

  1、如果一个平面沿着一条直线折叠,直线两旁的部分能够_____,那么这个图形叫轴对称图形,这条直线叫____。

  2、经过线段的___并且___于这条线段的直线叫做线段的垂直平分线,又叫做线段的中垂线。一条__的中垂线是它的对称轴。

  3、如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的_____;反过来,如果两个图形各对对应点的连线被同一条直线____,那么这两个图形关于这条直线对称。【 : 】

  4、在平面直角坐标系中,点 P(1,-1)关于 x 轴对称的点的坐标是___;点 P1(1,2) 关于 轴对称的点的坐标是____。【 】

  二、思考:

  分别写出下列各点关于 x 轴、 轴对称的点的坐标:

  一般地,已知点 P (a,b):

  ⑴ 点 P 关于x 轴对称的点的坐标为P1(__,__),

  ⑵ 点 P 关于 轴对称的点的坐标为 P2(__,__)。

  关于 x 轴对称的点,横坐标_______,纵坐标_______,关于 轴对称的点,横坐标_______,纵坐标_______。

  四、例题:

  ⑴ 如上图,写出四边形 ABCD 的 4 个顶点的坐标;

  ⑵ 画出四边形 ABCD 关于 轴的对称图形 A1B1C1D1;

  ⑶ 写出点 A1,B1,C1,D1 的坐标。

  五、巩固练习:

  1、分别写出下列各点关于 x 轴、 轴对称的点的坐标:

  A(-2,4) , B(3,-2) ,

  C(-1,-2) , D(4,0) 。

  2、作出图中多边形 ABCD 关于 x 轴、 轴的对称图形。 (上图“五-2”图)

  3、已知长方形 ABCD 的顶点坐标为 A(2,4),B(6,4),C(6,2),D(2,2) 。

  ⑴ 在图⑴中画出长方形 ABCD 向下平移 6 个单位得到的长方形 A1B1C1D1,写出点 A1,B1,C1,D1 的`坐标;【 】

  ⑵ 在图⑵中画出长方形 ABCD 关于 x 轴对称的长方形 A2B2C2D2,写出 A2,B2,C2,D2 的坐标;

  ⑶ 你认为上述两题变换所得的结果是否一样?为什么?

  4、△ ABC 在平面直角坐标系中的位置如图所示。

  ⑴ 作出△ABC 关于 轴对称的△A1B1C1,并写出点 A1,B1,C1,的坐标;

  ⑵ 将△ABC 向右平移 6 个单位,作出平移后的△A2B2C2,写出点 A2,B2,C2,的坐标;

  ⑶ 观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴。

  六、习题:

  1、若点 P 在第三象限,则点 P 关于 轴的对称点在第__象限,点 P 关于 x 轴的对称点在第__象限。

  2、点 P (-2,3) 关于 x 轴的对称点坐标是______。

  3、已知点 P (3,-1) 关于 轴的对称点 Q 的坐标是 ( a+b,1-b ) ,则 ab=__。

  4、已知点 A (2,a) 关于 x 轴的对称点是 B ( b,-3 ) ,则 ab=__。

  5、若点 (10-a,5+b) 与点 (2,-5) 关于 轴对称,则 a+b=___。

  6、在平面直角坐标系中,若点P(3,a) 和点Q(b,-4) 关于x轴对称,则a+b=__。

《轴对称图形》教案2

  教学内容:

  教材第4~5页的例题。

  教学目标:

  1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。

  2、让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。

  教学重点:

  经历发现长方形、正方形对称轴条数的过程。

  教学难点:

  画平面图形的对称轴。

  教学准备:

  多媒体课件、书P114页的平面图形。

  教学过程:

  一、复习导入

  出示飞机图、蝴蝶图、奖杯图。提问:这三幅图有什么共同的特征?(都是轴对称图形)

  指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)

  把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点划线画出对称轴,并板书:对称轴)

  思考:怎样判断一个图形是不是轴对称图形?

  谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(把课题补书完整)

  二、教学例题

  1、师:首先我们研究长方形的对称轴。请拿出一张长方形纸对折,并画出它的对称轴。

  学生折纸画图,教师巡视,发现不同的折法。

  2、指名到投影仪前展示自己的折法和画法。

  提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?

  对他的发言有没有不同的意见?

  谁还有不同的折法吗?也来展示一下。(指名展示)

  提问:为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?

  3、师:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。

  通过操作我们发现长方形只有两条对称轴。

  追问:对角线折出来的是轴对称图形么?为什么?他们不是一样的吗?

  4、出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。

  让学生充分发表意见。

  如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?

  如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?

  如果学生想不到取对边中点连线的'办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?

  指名到黑板上量长方形的边,取中点。

  学生说怎样画对称轴,教师画,画成如右形状(图略),并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。

  5、让学生各自在课本上画长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?

  三、教学“练一练”

  谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸,再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。

  让学生独立画对称轴。

  交流:各画出了几条对称轴?你是怎样想的?

  先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗?

  再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。

  提问:正方形有几条对称轴?

  四、教学例5

  (1)让学生读题后自己在书上作图。

  (2)展示部分学生的答案,共同评议。

  (3)提问:谁能以左图为例说一下作图的步骤?(先找出四个对应的顶点再连线)

  五、课堂总结

  提问:这节课你对轴对称图形有了哪些新的认识?你学到了什么本领?有什么收获?还有不明白的问题吗?

  六、课堂作业

  1、课堂作业:《补充习题》第3页。

  2、家庭作业:《伴你学》第3页。

  板书设计:

  3、轴对称图形

  图形是否为轴对称图形对称轴条数

  任意三角形否0

  等腰三角形是1

  等边三角形是3

  等腰梯形是1

  平行四边形否0

  长方形是2

  正方形是4

  圆是无数条

《轴对称图形》教案3

  教学设计理念

  1、新课标指出:“数学课程不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……”新课标的这一理念强调了数学与生活紧密联系,在教学中,我注意联系学生的生活实际,寻找生活中轴对称图形的踪影,让他们感受到数学与生活的密切联系,学会用数学的眼光看待周围事物,从中体验数学的价值。

  2、为了将课堂还给学生,让课堂散发活力,使他们成为课堂教学过程中的参与者和创造者。本着这样的思想,在本节课中,我主要采用让学生自主探究、合作交流、动手实践的策略,并恰当运用多媒体辅助教学,以期达到课堂教学的高效。通过教师适时的“引”来激发学生主动的“探”,通过教师恰如其分的“放”来指导学生独立自主的“学”,使师生双边产生共鸣和谐发展。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

  教学对象分析

  鉴于学生模仿能力强,思维信赖于具体直观形象的特点,我选用的是引导发现教学法,充分运用教具、学具,在实验、演示、操作、观察、练习等师生的共同活动中引导学生,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,另外,在教学中我还注意运用投影仪提高教学效率,动态演出直观生动的教学图片,激发学生的学习兴趣,培养应用意识。

  教学内容分析

  《轴对称图形》是人教版数学八年级上册第二单元的内容。本章是《新课程标准》中规定的图形与变换中重要的内容。这节课是在学生学习了三角形及全等三角形等平面图形的基础上来探索、研究、认识轴对称图形的,学生能够通过欣赏、探索生活中的轴对称,培养学生的审美观,提高归纳总结的能力,激发学生学数学的兴趣。通过本节课的学习应能完成上述的教学目标。

  知识与技能目标

  1、理解轴对称图形,两个图形关于某直线对称的概念。

  2、了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点。

  3、了解轴对称图形与两个图形关于某直线对称的区别和联系。

  过程与方法目标

  (1)通过认真观察,学会用自己的语言概况轴对称的共同特征。

  (2)鼓励学生从自己的生活经验出发举出符合轴对称特征的物体。

  (3)学生通过亲自实验、探索发现,“创造性”的学习数学。

  情感与态度目标

  (1)欣赏现实生活中的轴对称图形,体会轴对称图形在现实生活中的广泛应用和它的丰富文化价值。

  (2)欣赏生活中的对称美,增强美感。

  教学重点:轴对称图形和两个图形关于某直线对称的概念。

  教学难点:轴对称图形和两个图形关于某直线对称的区别和联系。

  教学策略

  1、提供图片,激发兴趣。通过欣赏奥运会图片,给学生初步认识轴对称图形的表象,同时激发学生的研究兴趣。

  2、合作探究,共同进步。以小组为单位,对问题展开探究活动,总结出结论。给学生创造互相交流、互相帮助的机会,提高学生的合作交流意识与技能。

  教学媒体:

  各种图片、多媒体、练习纸、小剪刀等。

  教学过程:

  一、创设情境,引入新课

  1、回顾雅典奥运会

  (1)欣赏图片:学生边听教师的简要介绍边欣赏雅典奥运会图片(CAI)

  (2)提出问题:从展示图中选出奥运会开幕式上水中燃烧着的五环、火炬和文艺表演中水面上的纸船这三幅图片,抽象其形状(CAI),提出问题:这三个物体的形状有什么特点?

  2、欣赏北京奥运会中几个国家的国旗:

  分别出示中国国旗、加拿大国旗、美国国旗、肯尼亚国旗、韩国国旗、瑞典国旗的图片(CAI),让学生说说,这些国旗哪些是对称的?哪些不是对称的?

  【学生在小学已初步认识对称,在这里,我通过奥运会图片,让学生感知对称、欣赏对称美,激发求知欲,从而揭示课题—本节课学习轴对称图形】

  二、动手操作,合作交流

  1、剪一剪。

  教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这张对折纸,让学生欣赏,然后学生自己动手按上述方法剪一剪。

  2、想一想。

  (1)小组交流剪纸的方法。能说一说你们是怎样剪的吗?

  (2)展示作品,比较各种剪法。

  (3)教师进一步用辅助,演示剪纸方法。

  【教师演示剪纸的过程起一个示范作用,学生动手剪纸是让学生参与到活动之中,发展学生的动手操作能力。充分发挥多媒体的优势,直观操作、形象感受对称图形的基本特征,同时也增强学生的合作精神,发挥交流、合作的实效。】

  3、议一议。

  学生观察,互相交流,尝试表述这些图形的共同特征。教师归纳学生的表述,引导得出轴对称图形及对称轴的`概念,并板书概念。

  【在前面的操作活动中,学生已有了形象的感知。在这基础上,让学生议一议,说出先折后剪的方法能剪出对称图形,使学生对这一概念的认识直观、自然。从而水到渠成地总结出轴对称图形的特征。这种自然的、用学生自己的话总结出来的特征,让学生更容易理解、更印象深刻。】

  4、举一举。

  (1)联系实际,你能举出一个轴对称图形的实例吗?

  (2)说说你所熟悉的图形是否是轴对称图形?与同学讨论、交流,同小组互相补充。

  5、练一练。

  你能正确地完成书本第30页的练习吗?

  【通过举例、练习,进一步认识轴对称图形的本质。】

  三、观察对比,获取新知

  1、看一看展示的图形,每对图形有什么共同特征?(学生观察,讨论交流后,代表汇报)教师进一步用动漫演示,,教师引导得出两个图形关于某直线对称及对称轴、对称点的概念,并板书概念。

  【通过学生观察、主动思考,认识两个图形关于某直线对称的本质特征,鼓励学生善于观察、勇于发现,培养合作意识。】

  2、联系实际,你能举出一些生活中两个图形成轴对称的例子吗?你能正确地完成教科书第31页的练习吗?

  【通过学生举例,独自练习,进一步认识两个图形成轴对称的本质。】

  3、出示彩图:通过动漫演示,让学生观察,自主讨论,小组交流总结,得出轴对称图形和两个图形成轴对称的区别与联系。

  【给学生充分思考、交流的时间,鼓励学生畅所欲言,通过学生自主探究、合作交流进一步理解新知并应用新知。】

  4、讨论总结:成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?学生独立思考后,再展开讨论,教师参与学生讨论,及时指导。教师提出问题,学生独立完成。学生回忆归纳,教师指导。

  【通过思考成对称的两个图形与全等之间的关系,培养学生思维品质。】

  四、发挥想象,创造设计

  请同学们发挥想象,以给定的图形“ =、△△ 、〇〇”(两条平行线、两个圆、两个三角形)为构件,构思出独特且有意义的轴对称图形。请画出与众不同的图形,并写一两句贴切、诙谐的解说词。

  【使学生所学知识得以升华,生活处处离不开数学,从而体现学习数学的价值,激发其强烈的学习情感。】

  五、归纳小结,效果评价

  通过回答问题的方式进行

  ①通过本节课的学习,你学会了什么?

  ②本节课中你学会了哪些学习方法,对你有什么启发?

  【通过小结,使知识成为“体系”,帮助学生全面地理解,掌握所学知识。】

  六、布置作业,巩固提高

  布置作业:教科书习题12.1第2、3题

  板书设计:12·1轴对称

  1、轴对称图形:①一个图形能沿某一直线折叠。

  ②直线两旁的部分完全重合。

  2、轴对称:①两个图形能沿某一直线折叠。

  ②直线两旁的部分完全重合。

  3、区别与联系:

  教学反思:

  《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”结合新课标的精神,笔者认为学生对于这方面的知识不是一个简单的接受过程,而是一个发现、创新的过程。学生只有通过自己的实践,比较、思索、发现,才能真正对学习内容产生兴趣,进而领悟,内化为自己所有。回顾本节课的教学,笔者认为有以下几点可取之处:

  第一,这本身是一节很枯燥的概念课,但我能够灵活运用先进的电教媒体,把它讲透了、讲活了,学生兴趣很浓,学得也很愉快;第二,充分体现了新的教学理念,让学生懂得数学于生活又应用于生活。通过剪一剪、想一想、议一议、举一举、练一练等一系列观察、操作、体验活动让学生自主探究,既培养了它们观察问题、分析问题和总结问题的能力,又培养了它们勇于探索的精神,真正让学生体会到成功的喜悦和探索的快乐。第三,重视联系生活实际,为学生搭建欣赏对称美的平台。体验数学蕴含的“美”和无穷魅力,培养学生的审美情趣,同时让学生感悟到数学知识就在我们身边,数学广泛应用在我们的生活之中,进一步使学生感受到数学学习的乐趣和应用价值。

  当然,本节课也存在一些值得商榷和不足之处,主要表现在以下几个方面:一是小组没有分好,导致有些小组讨论不够积极;二是在教学过程中,对于轴对称图形和两个图形成轴对称的区别与联系没有做过多地解释,所以学生在做作业时,出现了较多的失误。所以在订正时我又进行了较详细地讲解。

《轴对称图形》教案4

  【预习指导】:

  1观察、思考:

  议一议:观察图片揭示轴对称概念:

  像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.

  2、动手操作:

  (1)演示操作

  (2)用一张正方形的纸片,

  折叠后,把下列图形剪出来,并与同学交流你的剪法.

  3、探索思考:

  观察图示轴对称图形概念:

  如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.

  自学情况在黑板上反馈出来。

  (每组4人上黑板)

  【典题选讲】:

  指出下列图形中的'轴对称图形,画出它们的对称轴.

  是轴对称图形的是 (填写序号).

  【学习体会】;

  1、讨论、交流:轴对称与轴对称图形的区别与联系.

  2、说说生活中的轴对称和轴对称图形,与同学讨论、交流,同小组互相补充.

  【课堂练习】:

  1、课本第8页练习:1、2、3

  2、判断题:

  (1).轴对称图形只有一条对称轴.………( )

  (2).两个图形成轴对称,这两个图形是全等图形.………………( )

  (3).全等的两个图形一定成轴对称. ……………( )

  (4).轴对称图形指一个图形,而轴对称是指两个图形而言………( )

《轴对称图形》教案5

  教学内容:苏教版义务教育课程标准实验教科书小学数学四年级下册第62~63页。

  教学目标:

  1.在操作活动中认识对称轴,使学生进一步认识轴对称图形的特征。

  2.感受不同的轴对称图形的对称轴条数可能是不一样的,掌握画一些简单轴对称图形的对称轴的方法。

  3.培养学生初步的观察能力、自主探究能力和动手操作能力,感受数学与生活的密切联系,陶冶学生的审美情操。

  学具准备:长方形、正方形纸片各一张,课本119页中的六个图形。

  教学过程:

  一、复习引入

  师:请同学们观察这几张漂亮的图片(出示蝴蝶、松树、花朵、五角星的图片),它们有什么相同的地方?

  生:它们都是轴对称图形。

  师:怎样判断一个图形是不是轴对称图形呢?

  生1:把一个图形对折后,如果两边能完全重合,那这个图形就是轴对称图形。

  师:这节课我们继续研究轴对称图形,进一步认识轴对称图形的特征。

  [评析:用几张漂亮的轴对称图片吸引学生的注意力,引起学生的审美情趣,自然而然地复习了轴对称图形的特征,从而有效地打开了学生的知识储备,使学生尽快地进入学习状态。]

  二、操作感知

  1.引导学生认识对称轴。

  师:长方形是轴对称图形吗?请大家拿出长方形的纸片折一折。

  生1:长方形是轴对称图形,因为对折后两边能完全重合。

  师:请大家打开对折后的长方形,发现长方形纸片上多了什么?

  生2:我发现纸片上多了一条折痕。

  师:这条折痕是怎么形成的?有什么特别的地方?

  生3:它是将长方形对折后形成的,折痕的两边一模一样。

  生4:折痕的两边是对称的。

  师:这样的折痕是轴对称图形中特有的,所以人们给它起了个形象简洁的名字,猜猜看,叫什么?

  生5:对称轴。

  生6:对称线。

  生7:对称中线。

  ……

  师:很多同学都猜对了!人们把这条折痕所在位置的直线叫做——对称轴。(板书:对称轴)

  2.指导学生画对称轴。

  师:对称轴的画法也很特殊,一般用点画线来表示。(教师示范用点画线画出一条对称轴)

  师:请同学们沿着长方形纸中的折痕画出对称轴。

  (学生沿着长方形纸中的折痕描画对称轴)

  师:长方形上还有其他的对称轴吗?折折看,如果有,再把它画出来。(生答略)

  师:通过折、画,你在长方形中找到几条对称轴?(生答略)

  师:刚才我们是通过对折找折痕,画出了长方形纸上的两条对称轴。

  3.教学“试一试”。

  师:请同学们拿出一张正方形的纸,先折一折,再画一画,看自己在这张正方形纸上最多能画出几条对称轴。

  师:你是怎样画的?画了几条?

  多媒体出示:

  师:为什么长方形对角线所在的直线不是长方形的对称轴,而正方形对角线所在的直线是正方形的对称轴呢?

  生1:因为沿长方形对角线对折后,两边不能完全重合,所以这条线不是长方形的对称轴;而正方形沿对角线对折后,两边能完全重合,所以这条线是正方形的对称轴。(学生边说边演示)

  生2:老师,我还知道为什么。因为长方形只是对边相等,邻边不相等,所以沿对角线对折后,两边不会完全重合;而正方形是四条边都相等,所以沿对角线对折后,两边能完全重合。

  师:你很善于观察与思考!正因为如此,正方形有4条对称轴,而长方形只有2条对称轴。

  [评析:让学生将长方形纸对折,打开后发现多了条折痕,然后以这条折痕为切入点认识对称轴,引导学生进行操作、猜想、比较、探究、交流等活动,使学生有效地认识了对称轴的特征,学会了对折后沿折痕画出对称轴的方法,从而感知到不同的轴对称图形中,对称轴的条数可能是不一样的。]

  三、探究提高

  1. 完成“想想做做”第1题。

  师:请同学们拿出事先准备好的图形(书上115页上的六个图形),折一折,看哪些是轴对称图形,哪些不是轴对称图形。是轴对称图形的,分别画出它的对称轴。

  (生答略)

  2. 探究在轴对称图形中画对称轴的方法。

  师:刚才我们是通过对折的方法找到对称轴的位置,然后沿着折痕描画出对称轴的。可是,很多轴对称图形是不好对折的,比如黑板上的这个长方形好对折吗?

  生:不好。

  师:那怎么准确地画出黑板上这个长方形的对称轴呢?

  生1:先用纸剪下与黑板同样大小的长方形,对折后按在黑板上画出来。

  师:是个办法,实在没有法子的时候可以这样去做。

  生2:估计一下对称轴的位置,然后画出来。

  师:这样行不行呢?

  生3:不行,这样画不够准确。

  师:有没有既准确又简洁的方法呢?

  生4:找中点。

  师:找中点?怎么找?请你上来找给大家看。

  (生4跑到黑板前,找出长方形一组对边的中点,然后画出了一条对称轴)

  师:你们认为他的方法怎么样?

  生5:这个方法好。因为通过两点就可以确定一条直线的位置,这样能又快又准地画出对称轴。

  师:只要找出一组对边的中点,就能很快地确定对称轴的位置,这确实是个好方法!如果再在这个长方形画出另外一条对称轴,需要找到哪些点?

  生6:再找另外一组对边的中点。

  生7:也可以将长方形的对角线相连,必定有一个交点,这个交点就是长方形的中心,然后只需要找到一边的中点,将长方形的中心与一边的中点相连就行了。

  师:好呀,方法越来越巧妙。

  3. 完成“想想做做”的第2题:下面的图形都是轴对称图形吗?是轴对称图形的各有几条对称轴?试着把它们画出来。

  (学生各自判断,并画出轴对称图形的对称轴)

  师:哪些图案是轴对称图形?(生答略)

  师:你在画对称轴时是怎么确定关键的两个点的?每个轴对称图形上分别有几条对称轴?

  (分别让学生点出关键的两个点,再画出对称轴)

  4. 完成“想想做做”第3题:画出下面每个图形的另一半,使它成为轴对称图形。

  师:要画出每个图形的另一半,使它成为一个轴对称图形,有没有什么好的方法?

  生1:有,找关键的点!

  师:关键的点在哪?怎么找?

  (学生讨论交流)

  师:谁上来点出来给大家看?

  师:这些点有什么特别的地方吗?

  生2:都是与原来图形中的关键点相对称。

  师:对,只要找到原来图形中关键点的对称点,就能很快画出来了。

  5. 完成“想想做做”第4题:先画出下面每个图形的对称轴,再在小组里交流。

  师:请大家画出每个图形的对称轴,注意:能画几条就画几条。

  师:每个图形各画出了几条对称轴?分别是怎么画出来的?你发现了什么?

  生1 :我发现每个图形中每条边的长度都相等。

  师:对,它们分别是正三角形、正方形、正五边形、正六边形。

  生2:我发现是正几边形,就有几条对称轴。

  师:按照这样推断,那正八边形会有几条对称轴?

  生:8条。

  师:这个推断是否正确呢?大家课后可以动手探究一下。

  生3:我还发现一个图形中所有的对称轴都相交于图形的中心。

  师:你观察得真仔细!利用这个发现,我们就能又快又准地画出轴对称图形中的多条对称轴了。

  [评析:教师大胆放手,让学生通过不同梯度的探究练习,加深学生对轴对称图形的认识,引导学生通过找关键点来画轴对称图形或轴对称图形中的对称轴。在探究过程中,教师注意提供给学生充足的'探究时间与空间,重视培养学生解决问题的策略意识,并尊重学生自主选择的权利。在多次充分的交流中,学生的思维发生碰撞;在策略的比较中,促进了学生认知能力的提高。]

  四、总结反思

  师:这节课我们继续认识了轴对称图形,你有什么新的收获?(生答略)

  师:现在看看课始的这几个漂亮的轴对称图形,你能很快判断出它们各有几条对称轴吗?

  (蝴蝶图片1条,松树图片1条,花朵图片2条,五角星图片5条)

  师:我们身边哪些物体的面是轴对称图形,它们各有几条对称轴?

  [评析:通过总结,使学生对学习内容回味无穷。教师让学生说出课始的几张漂亮的轴对称图形中对称轴的条数,并引申到找生活中的轴对称图形及说出这个轴对称图形中对称轴的条数,使学生的学习活动升华到了更高的境界。]

  五、创新设计

  师:在方格纸上设计一个轴对称图形,并画出它的对称轴。

  (生设计,师巡视指导)

  师:请设计好的同学将你的作品在小组中交流一下,并比一比,看谁设计的最美观而且有创意。

  师:谁愿意上来展示一下自己的作品?

  (引导学生欣赏、评价同学的作品)

  [评析:“有效的数学学习活动不能单纯地依赖模仿和记忆,只有放手让学生动手操作、自主探索与合作交流,才能有效地提高学生发现问题、分析问题和解决问题的能力。”细节决定成败,本节课的最大特色是教师始终注意放手让学生去探究。尤其是对一些细节上的探究,如找“折痕”、猜“折痕”的名称、找关键点确定对称轴的准确位置……课堂上,学生积极主动,发言踊跃,争论激烈,不断有新的发现。在探究解决问题的过程中,使学生掌握了知识,学会了方法,发展了思维,提高了能力。最后,让学生自主设计一个轴对称图形,并画出它的对称轴,激发了学生的创新意识,学生兴致颇高。下课铃声在欣赏、交流、评议中响起了,然而学生久久不愿离去……]

《轴对称图形》教案6

  教学内容:

  北师大版三年级数学课本23-24页的相关内容。

  教学目标:

  1、知识与技能:通过观察和操作活动,初步认识轴对称图形。会直观判断轴对称图形,能用对折的方法找出轴对称图形的对称轴。

  2、过程与方法:通过学生动手操作等实践活动,培养学生的观察能力和想象能力。

  3、情感态度与价值观:在学生的学习活动中,让学生学会欣赏数学之美。

  教学重点:

  认识轴对称图形的基本特征,能画出轴对称图形的对称轴。

  教学难点:

  能直观判断出轴对称图形,能用折纸的方法找出对称轴;

  教学准备:

  课件、一些轴对称图形图片、纸和剪刀、长方形、正方形、圆形纸等。

  教学过程:

  一、巧设情境,激发好奇心。

  花园里有只可爱的蝴蝶在翩翩起舞。一天她遇见了小蜻蜓,对小蜻蜓说:我们是一家人。小蜻蜓就奇怪了,我是小蜻蜓,你是蝴蝶,怎么是一家人了。蝴蝶笑了笑说,在大自然里还有很多物体和我们是一家呢。

  二、欣赏图片,建立表象。

  1、这不,你瞧。蝴蝶找来了什么?

  课件出示:蝴蝶、枫树叶、七星瓢虫、蜻蜓、脸谱、交通标志、数字8、飞机、天平、一些字母等。这些图形漂亮吗?学生欣赏各种对称图形。

  2、引导观察图形,交流汇报

  刚才同学看到的这些图形在日常生活中还有很多很多,那么这些图形中你发现都有什么特征呢?把你的发现在小组内说一说。

  师:你发现了什么数学问题?

  生1:我发现他们都很美。

  生2:左右一样。上下?

  生3:我发现它们是对称的'。

  师:你是怎么理解对称的?

  生3:对称就是左右两边是完全一样的。

  3、教学板书对称

  (1)课题导入

  师:是啊,刚才我们看到的其实是生活中的轴对称图形的现象。今天老师和大家一起来研究数学上的轴对称图形。(板书课题) 刘元平三下《轴对称图形》教学设计 刘元平三下《轴对称图形》教学设计

  (2)结合剪纸作品,抽象概念

  师:谁能在最快的时间内剪出一个葫芦吗?

  学生自己操作创作。(先把纸对折后再剪)

《轴对称图形》教案7

  本单元初步教学对称现象和轴对称图形。学生认识轴对称图形后,能以新的视角去观察物体,研究图形,体验它们的对称美。本套教材两次安排轴对称图形的教学,本单元是第一次。教学要求是: 使学生初步认识生活中的对称现象,初步认识轴对称图形;能用简便的方法制作轴对称图形。至于轴对称图形的对称轴,仅仅知道就可以了。全单元编写了两道例题、一次试一试、一次想想做做和一次实践活动。在你知道吗里介绍了自然界里的对称现象以及对称在建筑中的应用。

  第一道例题的编写线索是生活中的对称现象简单的轴对称图形,大致分成两段: 第一段是观察天安门、飞机、奖杯等物体,发现这些物体的左右两边或上下两边的形状和大小都是相同的,它们都是对称的。并由此联想生活中还有一些物体也具有这种对称特征,即生活中经常能看到对称现象。第二段是把天安门、飞机、奖杯都画下来,从观察物体到研究图形。把这些图形剪下来并对折,发现折痕两边的部分能完全重合,教材告诉学生这些图形都是轴对称图形,让他们初步建立轴对称图形的概念。在形成轴对称图形概念的过程中,学生经历操作、观察、概括等学习活动,教材中的文字叙述是和学生一起进行概括,引导他们正确理解知识,不是把知识灌输给学生。

  教学这道例题时,不能把物体的对称特点与轴对称图形这两个概念混为一谈。对称性是某些物体的特征,轴对称是部分平面图形的特征。正如天安门是对称的物体,画下来的天安门图形才是轴对称图形,天安门这个物体不是轴对称图形。

  试一试要求学生利用初步的概念进行判断,通过判断哪些图形是轴对称图形,哪些图形不是轴对称图形,加强对概念的.理解。学生进行判断,要依据轴对称图形的特点对折后折痕两边的部分能完全重合,先操作再下结论。由于教材里的图形不便于对折,所以课前应做好相应的准备,为每一名学生都准备四个与教材相同的图形。这里只对图形个案,即只对这个三角形、这个梯形、这个平行四边形和这个五边形进行判断,不对一类图形的整体进行判断。所以,教学时要注意语言的准确。学生还没有认识梯形,现在只能把梯形称作四边形,他们对三角形和平行四边形的认识还很初步,教学时要说这个三角形是(或不是)轴对称图形,这个四边形是(或不是)轴对称图形。不要随意说成三角形是轴对称图形,因为并不是所有的三角形都具有轴对称特征的。

  第二道例题让学生动手制作轴对称图形,通过制作进一步体会轴对称图形的对称轴两边能完全重合。学生制作的兴趣肯定很高,而且方法是多样的,画、剪、围、拼都可以,教材中仅交流了其中的一部分。制作方法虽然不同,原理都是相同的,都在制作对称轴两边完全重合的图形。要引导学生一边制作一边体会,相互说说是怎样做的、怎样想的,为什么说做成的图形是轴对称图形,以达到制作的目的。

  想想做做第1、2、5、6题寻找了一些生活中常见的图形、一些英语字母、一些国家的国旗、一些交通标志,判断哪些是轴对称图形。选择这些素材有三个目的: 一是激发学习兴趣,再次体验轴对称图形是很多的,只要注意观察,经常能看到。二是通过一些国旗和交通标志,丰富学生的社会知识。三是体会对称美,体会生活中为什么经常有对称的物体、轴对称的图形,培养对数学的情感。这些目的,都需要在教学中认真落实。第3、4题是制作轴对称图形,第4题稍难一些,可以让学生先把上行中的四个图形对折(想像中对折),再与下行对照;也可以先把下行中的四个图形的另一半画出来,再与上行对照。

  《奇妙的剪纸》是一次操作型实践活动。教材分两段编写: 第一段先让学生欣赏一些漂亮的剪纸作品,了解剪纸是我国的民间艺术,历史悠久,流传广泛,在世界上享有盛誉,引起学生对剪纸的喜爱。更仔细观察这些剪纸中哪些是轴对称图形,从而得到启发,可以运用制作轴对称图形的方法剪纸。第二段指导学生利用正方形、长方形的纸剪出自己喜欢的作品。教材先作具体的示范,图示怎样折纸、怎样画、怎样剪,并鼓励学生创作。教学时可以让学生自己去看懂教材的图示,先模仿、再创造。

《轴对称图形》教案8

  《数学课程标准》指出:有效的学习活动不能单纯地依赖模仿与记忆。动手实践、自主探究与合作交流是学生学习数学的重要方式。自主学习是时代赋予数学教学活动的要求。所以教师必须为学生创造自主学习、自主活动、自主发展的条件,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验。树立学好数学的自信心。《轴对称图形的初步认识》本节课重点让学生认识轴对称图形,了解轴对称图形的含义,能够找出轴对称图形的对称轴。难点是能根据轴对称图形的概念进行判断轴对称图形,并画出对称轴。本节课通过折一折、辨一辨、试一试、议一议、比一比等操作,实现对轴对称图形的理解,突破难点、突出重点,激发爱学、善学、乐学的习惯。

  一、激发自主学习的动机 动机是激励学生学习的内部动力。自主学习需要一种内在激励的'力量。在导入新知识时,直观、巧妙、激趣、贴近生活。如,上课伊始、教师拿一个用纸剪的圆,让学生动手折一折找圆的方法渗透图形的对称美,引发学生浓厚的学习兴趣,使其产生强烈的探究原望,变被动学习为主动求知。

  二、创设自主学习的条件 苏霍姆林斯基认为:“教师是思考力的培育者,不足知识的注入者。”教师在课堂上应把“玩”的权利还给学生,把“创”的使命交给学生,使课堂教学民主化,让学生在课堂上乐于学数学、做数学、用数学。例如,理解对称轴的概念,利用学生手中的一张纸对折在折好的一个侧面,任意画上你喜欢的圆,用剪刀剪下来,在结合教科书,让学生自主学习、自主发现,突破本

  本节课的难点。这种尊重学生的学习方式,使学生自主地获得了数学知识。

  三、重视自主学习的过程 教师要尝试让学生自主学习的过程,优化课堂教学中的反馈与评价。通过评价,可以激发学生的求知欲,坚定学生学习的自信心,交流师生的感情。

  总之,先进的教学理念,精心的教学设计,充分的课前准备、优质的课堂教学,使这节课顺利完成,学生的能力在本节课有了提高和发展,教学效果很好。

《轴对称图形》教案9

  一、教材分析

  对称分为轴对称和中心对称,本教材教学的是“轴对称”的知识。在自然界和日常生活中具有轴对称性质的事物很多。教材主要借助生活中实例和学生操作活动判断哪些物体、哪些图形是对称的,并找出对称轴,让学生在实践活动中认识图形的特征,理解有关概念的含义,帮助学生建立空间观念,培养空间想象能力。

  二、学生分析

  学生对于自然界和日常生活中具有对称性质的事物并不陌生,他们具备一定的判断能力及语言表达能力。小学高年级学生个性仍趋活泼,对“美”的事物充满好奇,学习“轴对称”知识的积极性较高。

  三、教学策略

  《数学课程标准》指出:教师应“向学生提供充分从事数学活动的机会”,“学生的数学学习活动应当是一个生动活泼的、主动的、富有个性的过程……”

  因此,本课教学通过让学生动手画、折、剪、撕、量、比等活动,引导学生主动探索,从已有知识经验的实际状态出发,在猜测、想象、探索、交流中学习。同时,借助多媒体信息技术的动态演示,创设声像并茂、贴近生活的情境,达到生活材料数学化,数学教学生活化,让学生学有活力、活生生的数学。

  四、教学目标

  1、通过观察操作,认识轴对称图形的特点,并能正确判断哪些事物是轴对称图形,能正确地找到轴对称图形的对称轴。

  2、通过动手操作等实践活动,培养观察、分析、综合、抽象能力,以及空间想象能力。

  3、通过对实物及相关图片的欣赏,感受数学与生活的密切联系,感受对称美,渗透美育。

  五、教学准备:

  各种平面图形、葫芦形图片、飞机、天安门及奖杯平面图,彩纸、剪刀、彩笔,多媒体课件。

  六、教学过程

  (一) 创设情境 激趣蕴思

  1、播放“千手观音”,体会对称美

  师:同学们,生活中处处有数学,数学里又处处存在美,这节课,老师想和大家一起去领略数学中的美。请欣赏一段舞蹈。(电脑播放“千手观音”舞蹈片段)

  师:这是中央电视台春节联欢晚会上的一个著名舞蹈节目,名叫“千手观音”,她的动作造型美吗?(生:美)对呀,这些动作造型体现出一种艺术的对称美。看到她们的'表演,老师也想表演一个小魔术,想看吗?

  2、 表演魔术,激趣蕴思

  师手持一个葫芦形图片,快速变成两个

  完全一样的葫芦,让学生观察它们的特

  点:完全重合。

  3、撕纸游戏,激趣蕴思

  师:下面,我们来玩个撕纸游戏,先看老师撕。

  师将一张长方形纸对折后撕成圣诞树的

  一半,再展开成一棵圣诞树。

  学生试着玩撕纸游戏,然后展示几件作品,让学生观察它们的特点:对折后两侧完全重合。

  (二) 实践探索,感悟特征

  1、 电脑出示天安门、飞机、奖杯等画面

  师:看大家玩得开心,老师想让同学们欣赏几个画面。请看屏幕:(国歌声中屏幕上出现了雄伟的天安门;蔚蓝的天空中轰轰而过一架飞机;热烈的颁奖场面呈现高高举起的奖杯)

  2、 折一折,认识对称图形

  师:老师把这些物体画成了平面图形送给了大家,请你拿出这三个图形,这些图形有什么特点呢?让我们一起来研究一下,自己动手折一折、比一比,看看你能发现什么?

  3、学生汇报,课件演示对折图形

  师:对折后,折痕两边怎样?(生:完全重合)像这样的图形,猜一猜叫什么名字?(生:轴对称图形)

  师:对,像这样对折后两侧完全重合的图形叫轴对称图形,折痕所在的这条直线叫对称轴。如:(课件演示画对称轴)

  (三)参与探索,体悟特征

  1 判断下面平面图形哪些是轴对称图形。

  电脑出示:结合轴对称图形的特征,判断下面图形哪些是轴对称图形,并在小组里交流意见。

  1 2 3 4 5

  6 7 8 9

  师:请同学们先猜想一下,哪些是轴对称图形?然后利用手中的图形纸片,小组合作,共同验证猜想。

  (1)学生在小组里交流意见,并合作验证。

  (2)指几名学生汇报。(电脑演示:用不同颜色闪现是轴对称图形的几何图形,引导学生说清判断依据)

  (3)找对称轴:大家能找出这些对称图形的对称轴吗?(请几名学生上讲台指出来)

  2 判断下面图案哪些是轴对称图形。

  (1) 师:下面老师给大家带来两组我们很很熟悉的图案,看看其中有没有轴对称图形。

  电脑出示:

  中国 加拿大 俄罗斯 美国

  (2) 指名说说自己的判断和理由。

  3、猜一猜,加深认识

  师:最后,老师给大家带来的也是一组轴对称图形,这是一些国内外著名的标志,但只沿着对称轴画出一半,请大家猜猜它们分别是什么标志。

  中国联通 中国银行 奔驰汽车 奥运五环

  (四)实践制作,深化认识

  1、画一画。(画出下面每个图形的另一半,使它成为一个轴对称图形)

  2、制作一个轴对称图形。

  ⑴ 电脑出示:请结合轴对称图形的特征,动手剪一剪、画一画、折一折,创造一个轴对称图形。

  (2)电脑播放轻音乐,学生进行创作。

  (3)展示学生作品。

  (五)身体游戏,升华认识

  1、师;其实我们每个人不用借助别的任何东西,只要用自己的身体就能创造出很多对称的造型,同学们有兴趣一起来玩玩吗?

  2、电脑播放迪斯科音乐,师先示范,再请全体学生起立摆出各种不同的身体造型。

  3、请几名学生上讲台配乐表演。

  (六)欣赏对称美,总结全课

  1 师:下面,我们一起来欣赏一下生活中的对称美吧。

  (电脑出示:优美动听的古筝演奏声中呈现美丽的民间剪纸艺术、宏伟的典型建筑、漂亮的各式服装)

  2、总结:对称是一种美,是数学美在生活中的具体体现,希望大家能运用今天所学知识把我们的生活装扮得更美丽、更精彩!

  (七)作业设计:用我们今天学习的知识设计(或搜集)一些对称图形并把它们拼成一个美丽的图案,把它们贴在学习园地上,和同学们一起欣赏!

  七、 教学反思

  反思本课教学,成功之处在于教师留给了学生充裕的学习时间和广阔的学习空间,力图让学生用自己的思维方式自由、开放地去探索、去发现、去再创造,学生在看、撕、折、比、画、剪、猜、议、做等一系列活动中,张扬了个性,培养了动手操作能力及合作意识。使学生在整个学习过程中,进一步体会到对称图形的形成,感受到对称图形的内在美。在欣赏漂亮图案的同时与同伴分享“创造美的愉悦”,体会到数学和创造的美。

  板书设计:

  轴 对 称 图 形

  两侧完全重合 轴对称图形

  对折

  折 痕 对 称 轴

《轴对称图形》教案10

  知识目标:

  (1)使学生理解轴对称的概念;

  (2)了解轴对称的性质及其应用;

  (3)知道轴对称图形与轴对称的区别.

  能力目标:

  (1)通过轴对称和轴对称图形的学习,提高学生的观察辨析图形的能力和画图能力;

  (2)通过实际问题的练习,提高学生解决实际问题的能力.

  情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过轴对称图形的学习,体现数学中的美,感受数学中的美.

  教学重点

  轴对称和轴对称图形的概念,轴对称的性质及判定

  教学难点

  区分轴对称和轴对称图形的概念

  教学用具:直尺,微机

  教学方法:观察实验

  教学过程

  1、概念:(阅读教材,回答问题)

  (1)对称轴

  (2)轴对称

  (3)轴对称图形

  学生动手实验,说明上述概念.最后总结轴对称及轴对称图形这两个概念的区别:

  轴对称涉及两个图形,是两个图形的位置关系.轴对称图形只是针对一个图形而言.

  轴对称和轴对称图形都有对称轴,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线对称.

  2、定理的获得

  (投影):观察轴对称的两个图形是否为全等形

  定理1:关于某条直线对称的两个图形是全等形

  由此得出:

  定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线.

  启发学生,写出此定理的逆命题,并判断是否为真命题?由此得到:

  逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.

  学生继续观察得到

  定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.

  说明:上述定理2可以看成是轴对称图形的性质定理,逆定理则是判定定理.

  上述问题的获得,都是由定理1引发、变换、延伸得到的.教师应充分抓住这次机会,培养学生变式问题的研究.

  2、常见的轴对称图形

  图形

  对称轴

  点A

  过点A的任意直线

  直线m

  直线m,m的垂线

  线段AB

  直线AB,线段AB的中垂线

  角

  角平分线所在的直线

  等腰三角形

  底边上的中线

  3、应用

  例1如图,已知:△ABC,直线MN,求作△A1B1C1,使△A1B1C1与△ABC关于MN对称.

  分析:按照轴对称的.概念,只要分别过A、B、C向直线MN作垂线,并将垂线段延长一倍即可得到点A、B、C关于直线MN的对称点,连结所得到的这三个点.

  作法:(1)作AD⊥MN于D,延长AD至A1使A1D=AD,

  得点A的对称点A1

  (2)同法作点B、C关于MN的对称点B1、、C1

  (3)顺次连结A1、B1、C1

  ∴△A1B1C1即为所求

  例2如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,

  且AC=BD,若A到河岸CD的中点的距离为500cm.问:

  (1)牧童从A处牧牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?

  (2)最短路程是多少?

  解:问题可转化为已知直线CD和CD同侧两点A、B,

  在CD上作一点M,使AM+BM最小,

  先作点A关于CD的对称点A1,

  再连结A1B,交CD于点M,

  则点M为所求的点.

  证明:(1)在CD上任取一点M1,连结A1 M1、A M1

  B M1、AM

  ∵直线CD是A、A1的对称轴,M、M1在CD上

  ∴AM=A1M,AM1=A1M1

  ∴AM+BM=AM1+BM=A1B

  在△A1 M1B中

  ∵A1 M1+BM1>AM+BN即AM+BM最小

  (2)由(1)可得AM=AM1,A1C=AC=BD

  ∴△A1CM≌△BDM

  ∴A1M=BM,CM=DM

  即M为CD中点,且A1B=2AM

  ∵AM=500m

  ∴最简路程A1B=AM+BM=2AM=1000m

  例3已知:如图,△ABC是等边三角形,延长BC至D,延长BA到E,使AE=BD,连结CE、DE

  求证:CE=DE

  证明:延长BD至F,使DF=BC,连结EF

  ∵AE=BD,△ABC为等边三角形

  ∴BF=BE,∠B=

  ∴△BEF为等边三角形

  ∴△BEC≌△FED

  ∴CE=DE

  5、课堂小结:

  (1)轴对称和轴对称图形的区别和联系

  区别:轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;轴对称涉及两个图形,轴对称图形只对一个图形而言

  联系:这两个定义中都涉及一条直线,都沿其折叠而能够重合;二者都具有相对性:即若把轴对称图形沿轴一分为二,则这两个图形就关于原轴成轴对称,反之,把两个成轴对称的图形全二为一,则它就是一个轴对称图形.

  (2)解题方法:一是如何画关于某条直线的对称图形(找对称点)

  二是关于实际应用问题“求最短路程”.

  6、布置作业:

  书面作业P120#6、8、9

  板书设计

  探究活动

  两个全等的三角板,可以拼出各种不同的图形,如图已画出其中一个三角形,请你分别补出另一个与其全等的三角形,使每个图形分成不同的轴对称图形(所画三角形可与原三角形有重叠部分)

  解:

《轴对称图形》教案11

  教学目标:

  1、通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;

  2、掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴

  3、培养和发展学生的实验操作能力,发现美和创造美的能力。

  重点难点:

  会利用轴对称的知识画对称图形。

  教学方法:

  1、创设情景,引发思维。

  2、组织讨论,深化思维。

  3、加强练习,发展思维。

  预习作业:

  1、欣赏P1的图片,你发现了这些图形有什么相同点和不同点?

  2、同桌互相说说什么样的图形叫作轴对称图形?

  3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?

  4、试着在例2的格子图片上画一画

  5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?

  教学过程:

  一、复习引入

  1、轴对称图形的'概念

  如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

  2、通过例题探究轴对称图形的性质

  二、例题1

  你能发现什么规律。

  三、交流

  教师:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

  四、教学画对称图形。

  例题2

  1、 在研究的基础上,让学生用铅笔试画。

  2、 通过课件演示画的全过程,帮助学生纠正不足。

  五、练习

  1、欣赏下面的图形,并找出各个图形的对称轴。

  2、学生相互交流

  你们还见过哪些轴对称图形?

  用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,

  (1)思考

  A、怎样画?先画什么?再画什么?

  B、每条线段都应该画多长?

  3、课内练习一 ——第1、2题。

  4、课外作业: 通过丰富的轴对称图形与轴对称的实例,让学生欣赏并体会轴对称,发展学生的审美能力、鉴赏能力,更激发了学习数学的兴趣

  5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数

  学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。

  板书设计:

  轴 对 称

  如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

《轴对称图形》教案12

  教学目标:

  1、使学生初步认识生活中得对称现象,认识轴对称图形和对称轴;知道轴对称图形得含义,能判断一个图形是否是轴对称图形。

  2、会根据轴对称图形得特点,找出相应得对称轴。

  3、让学生体会理论来源于实践,又在实践中广泛运用这一道理。

  4、培养学生得观察能力和动手操作能力。

  教学重点:

  掌握轴对称图形得特点,能判断一个图形是否是轴对称图形。

  教学难点:

  会找出轴对称图形得对称轴。

  教学准备:

  多媒体课件,剪纸

  学具准备:

  长方形纸一张、剪刀、

  教学过程:

  一.情景欣赏:

  师:同学们,老师今天给大家带来了一些得图片,请大家欣赏,在欣赏得同时观察这些图片有什么特点。

  1.屏幕出现图片

  (1)自然景观图片

  师:这景色美吗?

  生:美

  师:大自然得景色很美,而且还很有特点,聪明得设计师和能工巧匠利用大自然得特点设计和建造了一些美丽得建筑。

  (2)轴对称建筑图片

  师:你看到得图形有什么特点?

  生:有,有得左右一样,有得上下一样。两边一样…

  师:我们得生活中经常也可以看到具有这种特点得物体和图形。

  (3)生活中得轴对称图片

  师:剪纸是我国得民间艺术,历史悠久,流传广泛,它最能体现这种特点。

  (4)剪纸图片

  2、对图形进行概括:

  师:你们所看到得这些图形都有什么特点?

  生:有得左右一样,有得上下一样。两边一样,有一种对称美。

  师:上面这些图形给我们一种对称美,这些图形都是轴对称图形。(板书课题 :轴对称图形 )轴对称这种特点在我们日常生活中,应用很广泛,到底什么样得图形是轴对称图形呢?这就是我们今天要研究得问题。

  二.动手操作发现新知:

  1、师:我们来做个实验,先看大屏幕老师怎么做

  (演示课件。折纸------画图-----剪纸-----打开)

  师:现在请大家拿出你手中得长方形纸和剪刀,向老师这样也剪出一个简单得图形。

  2、学生操作(教师巡视指导)

  师:通过剪纸,你发现了什么?

  生:我发现了我这个图形得两边一样,中间还有一条折痕,

  师:那你知道它是什么图形吗?

  生:轴对称图形。

  师:能用你得话说一说什么是轴对称图形?

  3、揭示特征。

  师:老师给大家再演示一下

  演示课件,概括轴对称图形得概念。

  如果一个图形沿着一条直线对折,两侧得图形能够完全重合,这个图形就是轴对称图形。 折痕所在得这条直线叫做对称轴

  4、举例:

  师:你能说一说生活中你见过哪些轴对称图形?

  生:举例,师点评

  师:同学们对什么是轴对称图形理解得非常好,现在我们在来研究一下我们学过得一些图形,看他们是不是轴对称图形。

  三. 合作研讨探究(轴对称图形得探索与提高)(四人小组)

  1.、把下面得图形剪下来折一折,看一看那些是轴对称图形?并画出他们得对称轴。

  2,结论:课件演示

  通过刚才剪一剪 ,折一折,画一画,你们又发现了什么?

  师:通过合作研究,我们知道了这些图形中有得是轴对称图形,有得不是;有得轴对称图形只有一条对称轴,有得有两条,三条,四条,还有得有无数条对称轴。

  四.巩固练习。

  1、考考你得眼力

  (1)下面得图形那些是轴对称图形?找出它们得对称轴。

  师:不光这些几何图形是轴对称图形,我们学过得字母、数字、汉字有些也是轴对称图形。

  (2)下面得字母。数字,汉字那些是轴对称图形?它们各有几条对称轴?

  A C D E F T G H U

  1 2 3 4 5 6 7 8 9

  王 上 田 大 中 日 人 朋 两

  2、.填一填

  (1)、如果一个图形沿着( )对折,两侧得图形能够( )这个图形就是轴对称图形。折痕所在得这条直线叫做( )。

  (2)、圆是( )图形,在同一圆里任何一条( )都是圆得对称轴。

  (3)、等边三角形有( )条对称轴

  3.判断

  (1)扇形也是轴对称图形,它和圆一样也有无数条对称轴。 ( )

  (2)平行四边形可分成两个完全一样得三角形,所以,平行四边形也有两条对称轴。( )

  (3)圆上任意两点间得线段都是圆得对称轴。( )

  (4)有两条对称轴得图形只有长方形。( )

  5. 画出下面每组图形得对称轴.各能画几条?

  五. 课堂小结:

  1.通过这节课得学习你有什么收获?

  2、结束语:

  师:对称是一种美,是数学美在生活中得具体体现,希望大家能运用今天所学知识把我们生活装扮得更美丽、更精彩。谢谢同学们得合作,再见。

《轴对称图形》教案13

  教学目标

  知道轴对称物体及轴对称图形,明了轴对称图形的概念。

  能判断已知图形是否是轴对称图形,会判断常用的平面图形是不是轴对称图形,并能找出有几条对称轴。

  通过操作,培养学生的动手操作能力,向学生渗透美的教育。

  教学重点

  轴对称图形的意义及会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。

  教学难点

  会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。

  教学方法

  课前准备

  自主学习式;小黑板、投影片

  教学设计

  思 路

  一、实物导入

  由轴对称物体向轴对称图形过渡。

  举例:生活中的轴对称物体和常见的`轴对称图形。

  揭示轴对称图形的概念,特点及判断方法。

  二、寻找对称轴

  1、出示一组图形,判断是否是轴对称图形。通过操作寻找对称轴。

  2、学生动手操作,寻找常用平面图形的对称轴。

  三、巩固练习

  出示图形进行判断,并找对称轴。

《轴对称图形》教案14

  【教学内容】

  人教版义务教育课程标准实验教科书二年级上册P68。

  【教学目标】

  1、了解生活中的对称现象,认识轴对称图形的一正些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。

  2、通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新能力。

  3、在认识、制作和欣赏轴对称图形的过程中感受物体或图形的对称美。

  【教学重点】

  认识轴对称图形的基本特征。

  【教学难点】

  设计制作轴对称图形。

  【教具、学具准备】

  教师准备课件、一个蝴蝶图形;学生彩纸、剪刀、直尺及若干对称图形和不对称图形。

  【教学过程】

  一、创设情境,感受对称

  1、认识生活中的对称现象。眼镜导入新课。

  二、小组合作,探讨轴对称图形的特征

  1、认识对称图形

  师:看,老师还给大家带来了几张美丽的图片。

  生:蜻蜓、树叶、蝴蝶、脸谱的图片

  师:请孩子们仔细观察这些图形,你能发现它们共同的特征吗?

  生1:它们的两边一样的。

  生2:它们是对称的。

  师:你是怎样理解对称的?

  生2:它们的两边是一样的。

  师:这些图形真像你们说的那样,左右两边完全一样吗?

  生:是。

  师:谁能想个办法来验证这些图形左右两边完全一样呢?

  生:对折。

  师:对折,这个方法听起来倒挺不错的,(板书:对折)到底怎样对折,你能折给大家看一看吗?

  生:上台演示折蝴蝶图形

  师:刚才这位孩子用对折的.方法证明了这个蝴蝶图形的左右两边是完全一样的。那大家也来试一试,好吗?

  生齐:好。

  师:那先听清楚要求:请小组长拿出1号信封里的4张图片,小组里的每个同学,把其中一个图形对折一下,看看这些图形的两边是一样的吗?开始吧。

  生:动手操作

  师:谁来说说你验证的结果?

  生1:我折的是脸谱图形,对折后它的两边是一样的。

  生2:我折的是蜻蜓图形,它对折后,两边是一样的。

  生3:我折的是蝴蝶图形,对折后它的两边是完全一样的。

  生4:我折的是树叶图形,对折后,它的两边也是完全一样的。

  师:孩子们刚才折这些图形,对折后,它们的两边都是完全一样的,我们就说它们对折后,它们的两边重合了。

  师:老师这里还有一个图形,是什么?

  生:桃子图形。

  师:想折吗?

  生齐:想。

  师:这个图形就在你们的3号信封里,小组长拿出来分给同学们折一折,说说你发现了什么?

  生1:我发现了桃子图形一边大,一边小。

  生2:它没有重合。

  师:一点都没有吗?

  生齐:有一点。

  师:蝴蝶图形呢?

  生齐:全部重合了。

  师:像蝴蝶图形这样对折后两边全部重合我们就称为完全重合。

  师:孩子们看大屏幕(课件演示蜻蜓、树叶、蝴蝶、脸谱四个图形对折后左右两完全重合的画面)

  教师小结:像这样对折后,两边完全重合的图形,我们就把它叫做“对称图形”。(板书:对称)

  2、认识对称轴

  师:请大家打开对折后的对称图形,看一看,你又有什么新的发现?(把图贴在黑板上)

  生:有一条线。

  师:这一条线就是我们刚才折的折痕。

  师:这条折痕是怎么形成的?有什么特别的地方?

  生1:是对称图形对折后形成的。

  生2:折痕的两边是完全一样的。

  师:这样的折痕是对称图形中特有的,所以人们把这条折痕所在位置的直线,给它起了个形象简洁的名字,叫对称轴。(板书:对称轴)

  师:我们通常用虚线来表示对称轴。(板书:画对称轴)

  师:像这样,对折后,对称轴两边完全重合的图形我们就叫做“轴对称图形”。 (板书:轴)

  三、应用拓展、巩固新知

  1、判断轴对称图形

  师:刚才我们认识了轴对称图形,那给你一些图形,你能找出轴对称图形吗?(课件出示:P68的做一做)

  2、猜一猜

  师:老师给你们看几张轴对称图形,不过我只给你们看它的一半,你们能猜出它们是我们所学过的哪些汉字、数字或英文字母吗?

  3、找对称轴

  师:今天,老师还给你们带来了几个图形老朋友,打个招呼吧!

  (课件依次出示:长方形、正方形、圆形)

  师:这几个图形各有几条对称轴呢,请你折一折。(边说边点课件出示)

  四、师生共结

  师:孩子们真会观察生活,对称的物体真是无处不在,只要孩子们留心观察,我相信你们还会找到更多更美的对称。

《轴对称图形》教案15

  教学内容:教材62-63页。

  教学目标:

  1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。

  2、让学生在学习活动中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。

  教学重点:经历发现长方形、正方形对称轴条数的过程。

  教学难点:画平面图形的对称轴。

  教学准备:多媒体课件、实物投影仪、一张彩色版花鸟图、尺、学具(长方形纸张、正方形纸张、尺。)

  教学过程:

  课前热身:

  动手比划平移(拉开抽屉、举重)、顺时针旋转、逆时针旋转(左右手各两遍)。

  一、复习导入。

  出示泰国寺庙图、蝴蝶图、脸谱、剪纸。提问:这四幅图有什么共同的特征?(都是轴对称图形)

  指着剪纸提问:你怎么知道它是轴对称图形?(指名说,师相机出示轴对称图形的概念。)

  把剪纸图贴在黑板上,提问:谁能上来用手比划出这幅图的对称轴?(指名板演,教师用点段相间的线画出对称轴)

  出示以上四幅图的对称轴及对称轴的概念。

  谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(板课题:轴对称图形的对称轴)齐读课题。

  二、教学例题。

  1、谈话:首先我们研究长方形的对称轴。请同学们拿出一张长方形纸对折,并用尺画出它的对称轴。

  学生折纸画图,教师巡视,发现不同的折法。

  2、指名到投影仪前展示自己的折法和画法。

  提问:你能告诉同学们折纸时应该注意什么?画对称轴时应该怎么画?

  对他的发言有没有不同的意见?

  谁还有不同的折法吗?也来展示一下。(指名展示)

  提问:为什么这条线(指着学生画出的对称轴)也是这张长方形纸的.对称轴?

  3、谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。(板书长方形)(指名回答)

  师小结:通过操作我们发现长方形只有两条对称轴。

  4、指着黑板上画好长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。

  假设学生有如下几点办法:

  1、用和黑板上长方形一样大小的纸对折,找到对称轴后再在黑板上描画。师指出这样也是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?

  2、用量长方形对边中点再边线,画出对称轴的方法。师对这种方法予以表扬,并提问:你能说一说是怎样想到先找到对边中点的吗?

  师拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么位置?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画长方形的对称轴?

  指名到黑板上量长方形的边,取中点。学生说怎样画对称轴,教师画,画成如右形状,并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。我们归纳一下画对称轴的方法。(板:方法:1、量取图形对边的中点。2、尺对齐两个中点划虚线。)

  5、让学生各自在课本62页画出长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?

  三、教学“试一试”。

  谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸,再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。

  先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗?

  再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。

  提问:正方形有几条对称轴?

  四、教学“想想做做”

  1、做第1题。

  (1)指名读题.。提问:这道题让我们做什么?再做什么,最后做什么?(由于时间较紧的关系,以及学具的准备有限,就不剪不折,只让学生画对称轴。课后,再剪、折来验证学生的估算是否正确。)

  (2)让学生各自画对称轴或划X。

  (3)指名展示。

  (可补充说明:四条边相等的四边形是菱形,它有2条对称轴。)

  2、做第2题。

  (1)让学生自己读题。

  (2)提问:题中的图形都是轴对称图形吗?第几个图形不是轴对称图形,为什么?

  (3)看一看每个轴对称图形有几条对称轴,在书上画出来。

  (4)展示部分学生的答案,共同评议。(从左往右三个图的对称轴分别有3、4、5条。)

  五、拓展练习。

  1、出示:数字也可以写成轴对称图形。

  (1)学生各自观察,并指名板演出是轴对称图形的对称轴。

  (2)指名回答,师生评议。

  2、出示:文字也可以写成轴对称图形。

  (1)学生各自观察,并用手比划出对称轴。

  (2)指名回答,师生评议。

  六、拓展延伸。

  生活中的很多事物都可以看作轴对称图形,[一一出示:生活中的轴对称(2幅)]小到杯子、打开的书,大到飞机、军舰。生活中还有许许多多的轴对称图形,同学们平时要多观察就可以发现。

  七、课后作业。

  教材63页第3、4题。

  八、全课总结。

  提问:这节课你学习了哪些知识?还有什么收获?

  九、板书:

  8轴对称图形的对称轴

  方法:

  1、量取图形对边中点。

  2、用尺对齐两个中点划虚线。

【《轴对称图形》教案】相关文章:

《轴对称图形》的教案04-26

《轴对称图形》教案04-26

轴对称图形教案04-24

《轴对称图形》的教案01-15

《轴对称图形》教案06-11

关于《轴对称图形》的教案05-06

数学《轴对称图形》教案04-30

关于《轴对称图形》教案04-26

《轴对称图形》教案范文03-07

《轴对称图形》的教案范文04-26