二次根式教案

时间:2023-02-16 10:20:12 教案 投诉 投稿

二次根式教案15篇

  作为一无名无私奉献的教育工作者,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写才好呢?下面是小编整理的二次根式教案,仅供参考,大家一起来看看吧。

二次根式教案15篇

二次根式教案1

  课题:二次根式

  教学目标 1、知识与技能

  理解a(a≥0)是一个非负数, (a≥0)

  2、过程与方法

  (1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想

  方法

  (2) 问题解决:能够利用性质进行二次根式的化简计算,能够互助

  交流合作,分析问题,总结反思

  3、情感、态度与价值观

  体验成功的乐趣,锻炼克服困难的意志,培养严谨

  求实的科学态度

  教学重难点 教学重点:二次根式的概念

  教学难点:二次根式中根号下必须为非负数

  教学过程

  一、课前回顾

  (2分钟)

  学生与老师共同回顾上节课所学内容,温故而知新。 什么是二次根式?

  二次根式中字母的取值范围:

  ①被开方数大于等于零;

  ②分母中有字母时,要保证分母不为零。

  ③多个条件组合时,应用不等式组求解

  一、情境引入(3分钟)

  由生活中的实例引入投影的概念,引起学生的学习兴趣

  已知下列各正方形的面积,求其边长。

  二、探究1(10分钟)

  练习1:

  计算下列各式:

  三、探究2(10分钟)

  可以发现它们有如下规律:

  一般的.,二次根式有下列性质:

  练习2:

  典型例题 例1:计算:

  例2:计算:

  达标测试(5分钟)

  课堂测试,检验学习结果

  1、判断题

  2、若 ,则x的取值范围为 ( A )

  (A) x≤1 (B) x≥1

  (C) 0≤x≤1 (D)一切有理数

  3、计算

  4、化简

  5、已知a,b,c为△ABC的三边长,化简:

  这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

  应用提高(5分钟)

  能力提升,学有余力的同学可以仔细研究 如图,P是直角坐标系中一点。

  (1)用二次根式表示点P到原点O的距离;

  (2)如果 求点P到原点O的距离

  体验收获 今天我们学习了哪些知识

  二次根式的两条性质。

  布置作业 教材8页习题第3、4题。

二次根式教案2

  教学目标

  1、根据了解二次根式的概念:

  2、知道被开方数必须是非负数的理由;

  3、能运用二次根式的性质解决实际问题

  4新设计:我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。

  5、新设计:问题1平方根的概念,算术平方根的概念,平方根的性质。

  6、学情分析:本班40名学生,成绩参差不齐,程度差距很大,鉴于此,对于学生要分层教学。

  7、重点难点:1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点:运用二次根式的性质解决实际问题。

  8、教学过程6.1第一学时教学活动

  活动1【讲授】二次根式

  教学过程设计

  创设情境,提出问题

  引言

  我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的`有关知识。

  问题1平方根的概念,算术平方根的概念,平方根的性质。

  师生活动:给学生充分思考和讨论时间,让他们回忆有关平方根和算术平方根的有关知识,才能在此基础上再进一步研究二次根式概念。

  设计意图:回顾已学的数和式的运算,丛数和式运算的完整性角度提出要研究的问题,让学生了解本章将要学习的主要内容,起到先行组织者的作用。

  问题2请思考下列问题

  面积为3的正方形的边长为,面积为S的正方形边长为。

  一个长方形围栏,长是宽的2倍,面积为130㎡,则它的宽为m。

  一个物体从高处自由落下,落在地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t为。

  师生活动:学生思考并完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根的抽象。

  设计意图:为概括二次根式的概念提供具体例子,同时发展符号意识。

  抽象概括,形成概念

  问题3上面得到的式子有什么共同特征?

  师生活动:教师引导学生概括得出共同特征,并给出二次根式的定义。

  追问1中a的取值有要求吗?为什么?

  师生活动:教师引导学生讨论,分析共同特点,归纳得到二次根式的概念,并强调“被开方数非负”。

  追问2二次根式有什么样的特点?

  师生活动:给学生充分的思考和讨论时间,让学生总结二次根式的特点,教师归纳总结。

  设计意图:采用从具体到抽象的方式,通过归纳的出二次根式的概念。

  辨析概念,应用巩固

  例1下列各式是二次根式吗?

  师生活动:教师引导学生从二次根式的特征出发思考问题。

  例2求下列二次根式中字母的取值范围:

  师生活动:教师可以通过问题“观察各式被开方数是什么?你能根据二次根式的概念的带答案吗?”引导学生从概念出发思考问题。

  追问:求二次根式中字母的取值范围的基本依据:

  师生活动:给学生充分的思考和讨论时间,让学生总结回答,教师归纳总结。

  问题4 x取何值时,下列二次根式有意义?

  师生活动:学生抢答加分,调动学大亨的积极性。

  设计意图:让学生独立思考,再追问。

  问题5计算

  师生活动:通过简单计算让学生总结规律。

  例3计算

  师生活动:学生直接回答。

  设计意图:通过加分制调动学生的积极性,提高学生的注意力,通过练习巩固知识点。

  问题7计算

  师生活动:通过简单计算让学生总结规律。

  追问:

  师生活动:学生讨论回答,教师归纳总结。

  设计意图:通过简单计算学生自己归纳总结二次根式的性质,加深学生的印象。

  综合应用,深化提高

  练习1学生完成教科书第3页的练习。

  练习2若1<x<4,则化简

  设计意图:辨别二次根式的概念,确定二次根式有意的条件。利用二次根式的性质解题。

  小结

  教师与学生一起回顾本节课所学主要内容,并请学生回答下列问题:

  什么叫二次根式?二次根式有意义的条件是什么?二次根式的值的范围是什么?

  二次根式与算术平方根有什么联系与区别?

  我们以前学过整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?

  设计意图:共同回顾本节课学习的概念,再次练习算术平方根理解二次根式的概念,提出二次根式应该研究的问题。

  布置作业

  教科书习题16.1第1、2题。

  教学反思:

  1、在实际授课中,通过以下步骤让学生认识、理解、并掌握本节知识:

  (1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的两道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;

  (2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;

  (3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。

  2.在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。

  3.让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。

  4.在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。

  5.在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。

二次根式教案3

  教学目的:

  1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

  2、会求二次根式的代数的值;

  3、进一步提高学生的综合运算能力。

  教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

  教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值

  教学过程:

  一、二次根式的混合运算

  例1 计算:

  分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的'分母有理化,然后再进行二次根式的加减运算。

  (2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

  练习1:P206 / 8--① P207 / 1①②

  例2 计算

  问:计算思路是什么?

  答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。

  二、求代数式的值。 注意两点:

  (1)如果已知条件为含二次根式的式子,先把它化简;

  (2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

  例3 已知,求的值。

  分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

  例4 已知,求的值。

  观察代数式的特点,请说出求这个代数式的值的思路。

  答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

  三、小结

  1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

  2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。

  3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

  四、作业

  P206 / 7 P206 / 8---②③

二次根式教案4

  1.教学目标

  (1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;

  (2)会用公式化简二次根式.

  2.目标解析

  (1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;

  (2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.

  教学问题诊断分析

  本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.

  在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.

  本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.

  教学过程设计

  1.复习引入,探究新知

  我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.

  问题1 什么叫二次根式?二次根式有哪些性质?

  师生活动 学生回答。

  【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.

  问题2 教材第6页“探究”栏目,计算结果如何?有何规律?

  师生活动 学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.

  【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.

  2.观察比较,理解法则

  问题3 简单的根式运算.

  师生活动 学生动手操作,教师检验.

  问题4 二次根式的乘除成立的条件是什么?等式反过来有什么价值?

  师生活动 学生回答,给出正确答案后,教师给出积的算术平方根的性质.

  【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.

  3.例题示范,学会应用

  例1 化简:(1)二次根式的乘除; (2)二次根式的乘除.

  师生活动 提问:你是怎么理解例(1)的?

  如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的'效果?

  师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外.

  再提问:你能仿照第(1)题的解答,能自己解决(2)吗?

  【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.

  例2 计算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

  师生活动 学生计算,教师检验.

  (1)在被开方数相乘的时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;

  (2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;

  (3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外.

  【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.

  教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.

  4.巩固概念,学以致用

  练习:教科书第7页练习第1题. 第10页习题16.2第1题.

  【设计意图】巩固性练习,同时检验乘法法则的掌握情况.

  5.归纳小结,反思提高

  师生共同回顾本节课所学内容,并请学生回答以下问题:

  (1)你能说明二次根式的乘法法则是如何得出的吗?

  (2)你能说明乘法法则逆用的意义吗?

  (3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?

  6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.

  五、目标检测设计

  1.下列各式中,一定能成立的是( )

  A.二次根式的乘除 B.二次根式的乘除

  C.二次根式的乘除 D.二次根式的乘除

  【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.

  2.化简二次根式的乘除 ______________________________。

  【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式.

  3.已知二次根式的乘除,化简二次根式二次根式的乘除的结果是(  )

  A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

  【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式.

二次根式教案5

  【教学目标】

  1.运用法则

  进行二次根式的乘除运算;

  2.会用公式

  化简二次根式。

  【教学重点】

  运用

  进行化简或计算

  【教学难点】

  经历二次根式的乘除法则的'探究过程

  【教学过程】

  一、情境创设:

  1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

  2.计算:

  二、探索活动:

  1.学生计算;

  2.观察上式及其运算结果,看看其中有什么规律?

  3.概括:

  得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

  将上面的公式逆向运用可得:

  积的算术平方根,等于积中各因式的算术平方根的积。

  三、例题讲解:

  1.计算:

  2.化简:

  小结:如何化简二次根式?

  1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

  2.P62结果中,被开方数应不含能开得尽方的因数或因式。

  四、课堂练习:

  (一).P62 练习1、2

  其中2中(5)

  注意:

  不是积的形式,要因数分解为36×16=242.

  (二).P67 3 计算 (2)(4)

  补充练习:

  1.(x>0,y>0)

  2.拓展与提高:

  化简:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范围。

  ☆3.已知:,求的值。

  五、本课小结与作业:

  小结:二次根式的乘法法则

  作业:

  1).课课练P9-10

  2).补充习题

二次根式教案6

  一、案例背景:

  本节是九年级上学期数学的起始课。二次根式的学习,是对代数式的进一步学习。本节主要经历二次根式的发生过程及对二次根式的理解。掌握求二次根式的值和二次根式根号内字母的取值范围。为以后的运用二次根式的运算解决实际问题打好基础。

  二、案例描述:

  1、学习任务分析:

  通过对数和平方根、算术平方根的复习,鼓励学生经历观察、归纳、类比等方法理解二次根式的概念。在解决实际问题的时候,注意转化思想的渗透。体会分析问题、解决问题的方法,积累数学活动经验。比如求二次根式根号内的字母的取值范围,就是将问题转化为不等式来解决。注意学生数学书写格式的规范,为以后的学习打好基础。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用复习以前学过的知识导入新课。设计合作学习活动,引导学生操作、观察、探索、交流、发现、思维,解决实际问题的过程,真正把学生放到主体位置。

  2、学生的认知起点分析:

  学生已掌握数的平方根和算术平方根。这为经历二次根式概念的发生过程做好准备。另外,学生对数的'算术平方根的理解作为基础,经历跟此根式概念的发生过程,引导学生对二次根式概念的理解。

  案例反思:

  1.下列代数式若能作为二次根式的被开方数,则求出字母的取值范围?若不能,则说明理由。1-2a-2a2-1(2+a)2-(a-5)2

  以往对这类问题的回答都是全班回答,有些学生反面信息不能体现出来。采取的措施是全班举手势回答,可以做二次根式的被开方数举“布”,若不能举“拳头”。使班级能够全面参与,避免集体回答所体现不出的问题。

  2.合作活动:

  第一位同学——出题者:请你按表中的要求写完后,按顺时针方向交给下一位同学;

  第二位同学——解题者:请你按表中的要求解完后,按顺时针方向交给下一位同学;

  第三位同学——批改者:请你用蓝笔批改,若有错误,请与解题者商议并请其订正,完成交给你信任的同学用红笔复;

  第四位同学——复查者:请你一定要把好关哦!

  出题者姓名:

  解题者姓名:

  第一个二次根式:

  1. 要使式子的值为实数,求x的取值范围.

  2. 写出x的一个值,使式子的值为有理数,并求出这个有理数。

  3. 写出x的一个值,使式子的值为无理数,并求出这个无理数。

  第二个二次根式:

  1. 要使式子的值为实数,求x的取值范围。

  2. 写出x的一个值,使式子的值为有理数,并求出这个有理数。

  3. 写出x的一个值,使式子的值为无理数,并求出这个无理数。

  批改者姓名:

  复查者姓名:

  《课程标准》突出了学生在学习中的地位 -- 学生是学习的主人,同时,教师的地位、角色发生了变化,从 “ 主导 ” 变成了 “学生学习活动的组织者、引导者和合作者 ”。合作活动的安排就是对这一课程标准的体现。

二次根式教案7

  一、说教材

  首先谈一谈我对教材的理解。本节课选自人教版八年级下册,主要探究二次根式加减法的计算方法。此前学生在学习二次根式的性质和乘除法时都有过化简二次根式的经历,为本节课的学习做了良好的铺垫;本节课的学习为后续学习二次根式的混合运算打下基础。

  二、说学情

  再来谈谈学生的情况。这一阶段的学生已经具备了一定的发现问题、解决问题的能力,逻辑思维和计算能力也有了很大的'提升。因此教师在教学过程中,要针对学生的特点进行有针对的教学,以便于课程内容的有效展开。

  三、说教学目标

  基于以上分析,我制定了如下三维教学目标:

  (一)知识与技能

  掌握二次根式加减法的计算方法,并能用以解决简单问题。

  (二)过程与方法

  通过探究二次根式加减法的计算方法的过程,进一步感受由特殊到一般的思想,提升运算能力。

  (三)情感、态度与价值观

  感受数学和生活息息相关,提升学习数学的兴趣。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是二次根式加减法的计算方法,教学难点是二次根式加减法的计算方法的探究。

  五、说教法学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者。根据这一教学理念,本节课我将采用讲授法、练习法、小组合作探究等教学方法。

  六、说教学过程

  下面重点谈谈我对教学过程的设计。

  (一)导入新课

  此时我会请学生尝试总结二次根式加减法的计算方法。以学生的现有能力,能够说出其中的关键内容。我会在此基础上予以规范:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

  以上活动使得学生亲身经历了知识的形成过程,更容易理解和接受,同时能够提升分析问题、解决问题与类比迁移等诸多方面的能力。

  (三)课堂练习

  对于本节课而言,探究计算方法是其中一项目标,巩固练习也同样重要。我会选用教材上的例1和例2作为课堂练习题。

  例1的第(1)小题是两个具体的二次根式相减,相对简单,直接考查二次根式加减法的计算方法;第(2)小题二次根式的被开方数中含有字母,更加具有一般性,在一定程度上考验抽象思维。

  例2第(1)小题难度有所提升,不仅二次根式相对复杂,而且是加减混合运算;第(2)小题更是在加减混合运算的基础上出现了小括号,并且各括号内部无法合并,因此多了一个去括号的步骤。

  这样的练习题不仅进一步完善了二次根式加减法的计算方法,而且能让学生体会到二次根式的加减与整式的加减在流程上的一致性,从而建立新旧知识间的联系,完善知识体系。

  (四)小结作业

  最后,我会请学生自主总结本节课的收获,在锻炼学生的总结与表达能力的同时获得教学反馈。

  课后作业一方面是完成课后练习,再次巩固二次根式的加减法;另一方面是总结二次根式的概念、性质及运算法则,以便形成系统的认知。

二次根式教案8

  教学目标

  课标要求:学生要学会学习、自主学习,要为学生终生学习打下坚实的基础,根据教学大纲和新课标的要求,根据教材内容和学生的特点我确定了本节课的教学目标 1、了解二次根式的概念 2、了解二次根式的基本性质,经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力。 3、通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力。 4、学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣,并提高应用的意识。

  教学重点:二次根式的概念和基本性质

  教学难点:二次根式的基本性质的灵活运用

  教法和学法

  教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,本节课主要采用自主学习,合作探究,引领提升的方式展开教学。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到将二次根式化成最简二次根式等,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。

  教学过程

  活动一:根据学生已有知识探究二次根式的概念 1.探究二次根式概念 由四个实际问题(三个几何问题,一个物理问题)入手,设置问题情境,让学生感受到研究二次根式来源于生活又服务于生活。 思考:用带有根号的式子填空,看看写出的结果有什么特点? (1)要做一个两条直角边的长分别为7cm和4cm的三角尺,斜边的长应为 cm

  (2)面积为S的正方形的边长为

  (3)要修建一个面积为6.28m2的圆形喷水池,它的半径为m(∏取3.14)

  (4)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的.高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t= 学生发现所填结果都表示一个数的算术平方根,教师引导学生用一个式子表示这些有共同特点的式子。学生表示为,此时教师启发学生回忆已学平方根的性质让学生总结出a这一条件。在此基础上总结出二次根式的概念。 2.例题评析 例1:哪些为二次根式? 练习:x取何值时下列各式有意义,通过4小题的训练,让学生体会二次根式概念的初步应用。加深对二次根式定义的理解,并注重新旧知识间的联系,用转化的思想解决问题,总结出解题规律:求未知数的取值范围即转化为①被开方数大于等于0②分母不为0列不等式或不等式组解决问题。

  活动二:探究二次根式的性质1 1.探究(a)与0的关系 学生分类讨论探究出:(a)是一个非负数,此时归纳出二次根式的第一个性质:双重非负性。培养学生的分类讨论和概括能力。例2:,则变式:,

  活动三:探究二次根式的性质2 探究()2=a(a)由课本具体的正数和零入手来研究二次根式的第二个性质,首先让学生通过探究活动感受这条结论,然后再从算术平方根的意义出发,结合具体例子对这条结论进行分析,引导学生由具体到抽象,得出一般的结论,并发现开平方运算与平方运算的关系,培养学生由特殊到一般的思维方式,提高归纳、总结的能力。前两题学生口述教师板书,后面的两题由学生板演引导学生分析(2)(4)实质是积的乘方和分式的乘方 拓展:反之(a)如 为后面的化最简二次根式(简单的分母有理化)做好铺垫。 例4:在实数范围内分解因式

  活动四:探究二次根式的性质3 3.探究 在活动三的基础上出示课本第4页的探究: 引导学生比较活动三与活动四探究中两组题目的不同之处,活动三中的题目是对非负数先进行开平方运算,再进行平方运算;而活动四中的题目正好相反,是先进行平方运算,再进行开平方运算。再次由特殊到一般的让学生归纳出二次根式的又一个性质。培养学生观察、对比的能力和意识。 此时引导学生谈一谈对()2和的联系和区别 相同点:①都有平方和开平方运算 ②运算结果都是非负数 ③仅当a时,()2= 不同点:①从形式和运算顺序看:()2先开方后平方,先平方后开方 ②从a的取值范围看:()2(a),(a为任意数) ③从运算结果看:()2=a(a),(a为任意数

二次根式教案9

  教案

  教法:

  1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

  2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

  学法:

  1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

  2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

  3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

  4、练习法采用不同的`练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

  知识点

  上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。

  二、展示目标,自主学习:

  自学指导:认真阅读课本第3页——4页内容,完成下列任务:

  1、请比较与0的大小,你得到的结论是:________________________。

  2、完成3页“探究”中的填空,你得到的结论是____________________。

  3、看例2是怎样利用性质进行计算的。

  4、完成4页“探究”中的填空,你得到的结论是:____________________。

  5 、看懂例3,有困难可与同伴交流或问老师。

  课时作业

  教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)

二次根式教案10

  一、内容和内容解析

  1.内容

  二次根式的性质。

  2.内容解析

  本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

  对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

  二、目标和目标解析

  1.教学目标

  (1)经历探索二次根式的性质的过程,并理解其意义;

  (2)会运用二次根式的性质进行二次根式的化简;

  (3)了解代数式的概念.

  2.目标解析

  (1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

  (2)学生能灵活运用二次根式的性质进行二次根式的化简;

  (3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

  三、教学问题诊断分析

  二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

  本节课的教学难点为:二次根式性质的灵活运用.

  四、教学过程设计

  1.探究性质1

  问题1 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

  问题2 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的`依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

  问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

  例2 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质1,学会灵活运用.

  2.探究性质2

  问题4 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

  问题5 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

  问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

  例3 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质2,学会灵活运用.

  3.归纳代数式的概念

  问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?

  师生活动:学生概括式子的共同特征,得出代数式的概念.

  【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

  4.综合运用

  (1)算一算:

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

  (2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

  【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

  (3)谈一谈你对 与 的认识.

  【设计意图】加深学生对二次根式性质的理解.

  5.总结反思

  (1)你知道了二次根式的哪些性质?

  (2)运用二次根式性质进行化简需要注意什么?

  (3)请谈谈发现二次根式性质的思考过程?

  (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

  6.布置作业:教科书习题16.1第2,4题.

  五、目标检测设计

  1. ; ; .

  【设计意图】考查对二次根式性质的理解.

  2.下列运算正确的是( )

  A. B. C. D.

  【设计意图】考查学生运用二次根式的性质进行化简的能力.

  3.若 ,则 的取值范围是 .

  【设计意图】考查学生对一个数非负数的算术平方根的理解.

  4.计算: .

  【设计意图】考查二次根式性质的灵活运用.

二次根式教案11

  教学内容

  二次根式的加减

  教学目标

  知识与技能目标:理解和掌握二次根式加减的方法.

  过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.

  情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.

  重难点关键

  1.重点:二次根式化简为最简根式.

  2.难点关键:会判定是否是最简二次根式.

  教法:

  1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

  2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

  学法:

  1、类比的方法通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。

  2、阅读的'方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

  3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

  4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

  知识点

  自主检测、同伴互查

  1、师生共同解决“学法”问题与13页“练习1”;

  2、学生演板13页“练习2、3”。

  四、知识梳理、师生共议

  1、谈收获:

  (1)二次根式的加减法则是什么?有哪些运算步骤?

  (2)怎样合并被开方数相同的二次根式呢?

  (3)二次根式进行加减运算时应注意什么问题?

  2、说不足:。

  五、作业训练、巩固提高

  1、必做题:课本15页的“习题2、3”;

  课时练习

  1.揭示学法、自主学习

  认真阅读课本14页内容,完成下列任务:

  1、完成14页“例3、4”,先做再对照:

  (1)平方差公式__________,完全平方公式__________.

  (2)每步的运算依据是什么?应注意什么问题?

  (时间7分钟若有困难,与同伴讨论)

  三、自主检测、同伴互查

  1、师生共同解决“学法”问题;

  2、学生演板14页“练习1、2”。

  四、知识梳理、师生共议

  1、谈收获:

  (1)二次根式进行混合运算时运用了哪些知识?

  (2)二次根式进行混合运算时应注意哪些问题?

二次根式教案12

  目 标

  1. 熟练地运用二次根式的性质化简二次根式;

  2. 会运用二次根式解决简单的实际问题;

  3. 进一步体验二次根式及其运算的实际意义和应用价值。

  教学设想

  本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的`知识和综合运用,思路比较复杂。

  教 学 程序 与 策 略

  一、预习检测

  1.解决节前问题:

  如图,架在消防车上的云梯AB长为15m,AD:BD=1 :0.6,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?

  归纳:

  在日常生活和生产实际中,我们在解决一 些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。

  二、合作交流:

  1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到0.01米)

  让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?

  注意解题格式

  教 学 程 序 与 策 略

  三、巩固练习:

  完成课本P17、1,组长检查反馈;

  四、拓展提高:

  1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。

  师生共同分析解题思路,请学生写出解题过程。

  五、课堂小结:

  1.谈一谈:本节课你有什么收获?

  2.运用二次根式解决简单的实际问题时应注意的的问题

  六、堂堂清

  1: 作业本(2)

  2:课本P17页:第4、5题选做。

二次根式教案13

  一、复习引入

  学生活动:请同学们完成下列各题:

  1.计算

  (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

  整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

  例1.计算:

  (1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的.运算规律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

  (1)(+6)(3-)(2)(+)(-)

  分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、巩固练习

  课本P20练习1、2.

  四、应用拓展

  例3.已知=2-,其中a、b是实数,且a+b≠0,

  化简+,并求值.

  分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

二次根式教案14

  一、素质教育目标

  (一)知识教学点

  1.使学生了解最简二次根式的概念和同类二次根式的概念.

  2.能判断二次根式中的同类二次根式.

  3.会用同类二次根式进行二次根式的加减.

  (二)能力训练点

  通过本节的学习,培养学生的思维能力并提高学生的运算能力.

  (三)德育渗透点

  从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.

  (四)美育渗透点

  通过二次根式的加减,渗透二次根式化简合并后的形式简单美.

  二、学法引导

  1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.

  2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.

  三、重点·难点·疑点及解决办法

  1.教学重点二次根式的加减法运算.

  2.教学难点二次根式的化简.

  3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的.,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.

  四、课时安排

  2课时

  五、教具学具准备

  投影片

  六、师生互动活动设计

  1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.

  2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.

  3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.

  4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.

  七、教学步骤

  (一)明确目标

  学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.

  (二)整体感知

  同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.

二次根式教案15

  一、内容和内容解析

  1.内容

  二次根式的概念。

  2.内容解析

  本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

  教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

  本节课的教学重点是:了解二次根式的概念;

  二、目标和目标解析

  1、教学目标

  (1)体会研究二次根式是实际的需要.

  (2)了解二次根式的概念.

  2、教学目标解析

  (1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.

  (2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.

  三、教学问题诊断分析

  对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

  本节课的教学难点为:理解二次根式的双重非负性。

  四、教学过程设计

  1.创设情境,提出问题

  问题1你能用带有根号的的式子填空吗?

  (1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.

  (2)一个长方形围栏,长是宽的2倍,面积为130?,则它的宽为______.

  (3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系h =5t?,如果用含有h的式子表示t,则t= _____.

  师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。

  【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.

  问题2上面得到的式子,分别表示什么意义?它们有什么共同特征?

  师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.

  【设计意图】为概括二次根式的概念作铺垫.

  2.抽象概括,形成概念

  问题3你能用一个式子表示一个非负数的算术平方根吗?

  师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“ ”称为二次根号.

  【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.

  追问:在二次根式的概念中,为什么要强调“a≥0”?

  师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

  【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.

  3.辨析概念,应用巩固

  例1当时怎样的实数时,在实数范围内有意义?

  师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.

  例2当是怎样的实数时,在实数范围内有意义?呢?

  师生活动:先让学生独立思考,再追问.

  【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.

  问题4你能比较与0的大小吗?

  师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,

  【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。

  4.综合运用,巩固提高

  练习1完成教科书第3页的练习。

  练习2当x是什么实数时,下列各式有意义。

  (1);(2);(3);(4)。

  【设计意图】辨析二次根式的概念,确定二次根式有意义的条件。

  【设计意图】设计有一定综合性的'题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。

  5.总结反思

  教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。

  (1)本节课你学到了哪一类新的式子?

  (2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

  (3)二次根式与算术平方根有什么关系?

  师生活动:教师引导,学生小结。

  【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。

  6.布置作业:

  教科书习题16.1第1,3,5,7,10题.

  五、目标检测设计

  1、下列各式中,一定是二次根式的是()

  A. B. C. D.

  【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.

  2、当时,二次根式无意义.

  【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.

  3、当时,二次根式有最小值,其最小值是.

  【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.

  4、对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.

  【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.

【二次根式教案】相关文章:

二次根式教案02-15

二次根式的加减教案01-19

《二次根式的运算》的教案08-25

二次根式教案(15篇)02-27

二次根式教案7篇01-24

二次根式数学教案11-26

二次根式教案4篇02-05

精选二次根式教案三篇08-18

【精品】二次根式教案4篇10-24