《分数的意义》教案

时间:2023-02-18 15:26:04 教案 投诉 投稿

《分数的意义》教案集合15篇

  作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《分数的意义》教案,欢迎阅读与收藏。

《分数的意义》教案集合15篇

《分数的意义》教案1

  教学内容:

  苏教版《义务教育教科书·数学》五年级下册第52页例1及相应的练习。

  教学目标:

  1.学生初步理解单位“1”和分数单位的含义,能结合单位“1”描述具体分数的意义。

  2.学生经历分数意义的概括过程,进一步理解分数的意义,培养学生初步的观察、比较、分析、综合、抽象、概括等能力。

  3.学生在用分数描述和解释生活现象的过程中,体会分数与生活的密切联系,增强合作交流的意识以及学好数学的信心。

  教学重点:

  理解单位“1”的含义,概括分数的意义。

  教学难点:

  结合具体情境理解分数的意义。

  教学过程:

  一、联系生活情境,建立单位“1”概念

  1.同学们,数学课当然离不开数,看这个数认识吗?(幻灯片出示1)

  2.这可是大名鼎鼎的1,它能表示生活中的许多事物。

  3.瞧!一个苹果,一张桌子,一个正方形,一把尺子…

  4.你会用1表示生活中的事物吗?

  5.学生一一列举。

  6.能说完吗?是呀,说也说不完!的确1是万能的,不过听大家刚才说的,一个,一个,好像小朋友们也能说得出来,谁能说点高级点的1,像我们五年级的水平。

  7.学生一一列举,适时点评,他说得与刚才同学说得有什么不同?

  8.是呀!刚才大家说的是一个物体或一个计量单位,他说得是由许多物体组成的一个整体。1的内涵更加丰富了。

  9.谁还能接着说,能说完吗?同样也说不完。

  :同学们,看来自然数1不仅可以表示一个物体,一个计量单位,还可以表示由许多个物体组成的整体。其实这个1在我们数学上还有一个更加专业的名字:单位“1”。

  设计意图从学生最熟悉的自然数1入手,体会数字1在现实生活情境中的应用,通过用数字1描述生活中事物的活动,让学生体会到数字1的应用范围,一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,从而揭示这其实就是数学中的单位“1”,每一种新事物、新名称的学习我们都要借助学生已有的生活经验,从学生已有的数学经验中自然地引出单位“1”,水到渠成。

  二、借助数学活动,深刻理解单位1

  1.大家来看,中秋佳节刚过,品尝月饼没?赵老师带来了…,个月饼,既然1能表示许多的事物,那么这4个月饼能看成单位“1”吗?

  2.明明这是4个月饼,你怎么用1来表示呢?有什么办法让大家一眼看起来就是1.

  3.如果我们把4个月饼看做单位“1”,以它为标准,那么…

  ………( )

  ………( )

  ……( )

  ……( )

  :数学这门学科就是这样,不仅要认真观察,还要灵活思考,才能得出正确的结论。

  4.刚才我们把4个月饼看做单位“1”,理解了4个月饼的,继续看大屏幕,这些能看做单位“1”吗?请你表示出这单位“1”的,请在活动单上分一分、涂一涂。

  5.纠错、展示学生作品

  (1) (2)

  (3) (4)

  6.抽象本质。同学们,观察大家表示出的,你有什么发现呢?

  预设:

  (1)只要把单位“1”平均分成4份,表示其中的3份,就可以用分数来表示。

  (2)与分的东西没有关系,分的形状也没有关系!

  7.看来表示单位“1”的,与什么有关?与什么无关呢?

  8.同学们,这就是分数的意义本质所在,通过刚才一段时间的学习,谁来说说什么是分数呢?

  揭示分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

  9.既然与分的东西无关,那么我们可以把一条线段看做单位“1”吗?你能在这个单位“1”里表示出吗?

  10.展示学生两种想法

  (1)当成线段(2)看成数轴

  第二种进行:这位同学不仅找到了,关键是它没有把单位“1”看成是一条普普通通的线段,而是把它想成了数学中的数轴,真了不起!

  11. 在哪里呢?这里是多少?这里是?,怎么写的是1,=1吗?1如果看成数轴,你觉得1后面还有数吗?2在哪里?3呢?1和2的中间呢?1和2的这里呢?

  12. 里面有4个,也就是单位“1”里有4个,刚才的单位1里有几个呢?借助刚才的示意图逐一进行验证!

  13.揭示分数单位:

  :同学们,像这样,把单位“1”平均分成若干份,表示其中一份的数就叫做分数单位,所以就是这些分数的分数单位。

  设计意图 这一环节分两步进行,分数的意义必须建立在学生深刻认识的基础上,通过关注让学生发现分数存在的规律现象,抽象出分数的基本特征,提取概念的本质属性,让学生试着说说什么样的数叫做分数,是抽象基础上的概括。在不断认识中建立分数意义的模型,通过观察验证,发现只要平均分成4份,其分数单位就是,理清分数单位与平均分之间的关系,从而更好地理解分数单位。

  三、深刻认识分数单位,完成巩固练习

  1. 的分数单位?的`分数单位?的分数单位?

  2.你们怎么回答的这么快?我还没有说出分子呢?你们怎么就知道分数单位了?

  3.:看来,我们学习数学,能出表面现象中发现问题的本质,就可能处出现事半功倍的效果。你们的思维真好!

  4.来快速完成一组练习吧!看谁有对又快!

  5.巩固练习

  用分数表示各图中的涂色部分,并写出每个分数的分数单位,以及有几个这样的分数单位。

  设计意图任何一节数学课,脱离不了基础行的练习,练习是对已学知识的巩固提升,通过一组题目的练习,增强学生对分数意义以及分数单位的理解,同时把单位“1”里面有几个分数单位凸现出来,为随后的带分数学习做好铺垫。

  四、深化对分数意义的理解

  (1)黄山风景区面积约占黄山山脉的

  (2)黄山年均雨日大约是全年的

  怪不得!这大概就是红树铺燕云、黄山云成海的奇观缘由吧!

  设计意图从数学中回到现实生活中,学生从不同角度丰富对单位“1”的理解,有助于提升对分数意义的认识水平,促进认知结构的建立和完善。

  五、反思

  同学们,你们活跃的思维使得数学课堂熠熠生辉,相信大家,在每一节数学课中,无论从知识上、还是数学方法上,或是学习态度上都会有新的收获与发现,那么,这节课呢?有没有新的思考。

  出示思考问题:

  在刚才的学习过程中

  1.哪个知识点的学习让你记忆犹新?

  2.你有没有领悟到一些不错的数学学习方法?

  3.学习数学重要的一些品质有所体会吗?

  4.或许,你还有别的……

  我相信,这些都来自于你们最真实的想法,无论学习还是生活,学会思考,终究成功!出示:学习知识要善于思考,思考,再思考。——爱因斯坦

  设计意图如果在日常的教学中,能时常带领孩子们从知识、思考方法、学习态度等方面进行有效的反思,这将是对孩子的成长非常有益的,因此,不让学生进行盲目的反思,而是根据问题进行针对性的思考,这样更有助学生对于学习过程进行深度思考。

《分数的意义》教案2

  第一课时

  教学内容:

  分数的意义(教材第45—46页)

  教学目标:

  1、了解分数的产生,理解分数的意义。

  2、理解单位“1”和分数单位的意义。

  教学重点:

  理解并掌握分数的意义。

  教学难点:

  理解单位“1“和分数单位的意义。

  教学准备:

  多媒体课件,正方形纸

  教学过程:

  一、复习导入

  1、提问:

  (1)把6个苹果平均分给2个小朋友,每人分的几个?(3个)

  (2)把1个苹果平均分给2个小朋友,每人分的几个?(每人分得这个苹果的2/1)

  2、以2/1为例,说说分数各部分的名称。

  3、揭示课题:在实际生活中,人们在测量、分物或计算时,往往不能得整数的结果,这时常用分数来表示。这节课我们就来学习“分数的产生及意义”(板书课题)

  二、探究新知

  1、引导学生预习新知。让学生自学教材第45—46页的相关内容,学完后完成“自主学习”相关习题,并记录疑问。习题如下:

  (1)7/1、9/2、5/3各表示什么意思

  (2)填空

  ①小陈的妈妈买了5个苹果,每个苹果是苹果总数的()

  ②小青的妈妈买了一盒饼干,里面有12块,每块是这盒饼干的()

  ③127的分数单位是(),它有()个这样的分数单位。

  2、自我检测。组织学生互相检查,并交流问题。

  3、引导学生寻疑质疑。教师巡视,参与学生讨论,并适当进行点拨,收集学生比较集中的问题,然后解答。

  三、组织学生合作探究并展示探究结果。

  1、教师出示知识点对应的'练习,强调独立完成。习题如下:

  (1)填空。

  ①把15个草莓平均分成4份,每份是这些草莓的(),其中3份是这些草莓的()。

  ②72里面有()个71、154里面有()个151。

  (2)小佳计划7天看完《米老鼠学数学》这本书,平均每天要看全书的几分之几?5天能看全书的几分之几?

  2、组内交流自己的结论。

  3、教师抽查2—3个小组发言并评价。

  4、教师归纳总结:把单位“1”平均分成若干份,表示这样的一份或几分的数叫分数,表示其中的一份的数叫分数单位。

  四、课堂基础过关训练。

  独立完成教材第47页练习十一的第3、4、5、6、7题。集体订正。

  五、课堂小结。

  通过本节课的学习,你有哪些收获?

  板书设计:分数的产生及意义

  一个物体

  一个计量单位

  一个整体→单位“1”

  一些物体

  把单位“1”平均分成若干份,表示这样的一份或几分的数叫分数,表示其中的一份的数叫分数单位。

《分数的意义》教案3

  教学内容:教科书第36页例1、“试一试”“练一练”,练习六第1-5题。

  教学目标:

  1.使同学初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。

  2.使同学在说明所表示的意义的过程中,进一步培养分析、综合与笼统、概括的能力,感受分数与生活的联系,增强数学学习的信心。

  教学重点:正确理解分数的意义和单位“1”的含义。

  教学难点:引导同学自主概括出分数的意义。

  教学对策:通过创设互相协作、积极探索的学习情境,组织同学动手操作、动脑考虑,自主探索,教师适时点拨,引导和启迪同学考虑。

  教学准备:教学光盘

  教学过程:

  一、揭题。

  二、新授。

  1.教学例1

  出示例1中的一组图

  请大家根据每幅图的意思,用分数表示每个图中的涂色局部。写出分数后,再想一想:每个分数各表示什么?在小组内交流。

  同学汇报所填写的分数,你认为这些图中分别是把什么平均分的?

  一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。

  左起第四个图形与前三个图形有什么不同?

  一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

  (1)在这几个图形中,分别把什么看成单位“1”的?

  (2)分别把单位“1”平均分成了几份?用分数表示这样的几份?

  (3)从这些例子看,怎样的数叫作分数?

  拿12根小棒自已发明一个分数

  说说你是怎么做的`?

  假如老师要表示6根小棒可以用什么分数表示?

  2. 教学“试一试”

  同学在小组内说说上面每个分数的分数单位,以和各有多少个这样的分数单位。

  反馈交流时,教师请同学同桌两人合作回答,一人说分数,另一人说分数单位。

  3.完成“练一练”

  各图中的涂色局部怎样用分数表示?请大家在书上填空。说说是怎样想的。

  每个分数的分数单位是多少?各有几个这样的分数单位?

  三、巩固

  1.做练习六的第1题

  每个分数的分母与分数单位有什么联系?

  2.做练习六的第2题

  先让同学在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。

  同样是三分之二,为什么涂色桃子的个数不同?

  3.做练习六的第3题

  照样子说说题中每个分数的意义。

  在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1

  4. 做练习六的第4题

  先让同学看图指一指直线上从几到几的这一段可以表示单位“1”。再让同学中直线上的点表示各分数。然后让同学说说各是怎样想的。

  5. 做练习六的第5题

  同学独立完成后,说说所填写的两个分数有什么不同。

  这两个分数都是把12枝铅笔看作单位“1”平均分后得到的;第一个分数要把单位1平均分成12份,第二个分数要把单位1平均分成2份。

  四、总结。这节课学习了哪些内容?

  教学反思:分数意义的归纳鼓励同学用自身的语言说出,切实做到了淡化概念,注重实质。使同学建构的过程得以凸显,内化的知识得到外显。特别是“若干”一词,扣得很有价值,让同学做到了真正理解,使同学在新情景中实现迁移,举一反三。

  授后小记

  早在三年级的时候同学已经初步认识了分数的意义,本课主要让同学弄清“单位‘1’”和分数单位的意义。

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以看作单位“1”。

  2、将单位“1”平均分成若干份,表示这样一份的数叫做分数单位。

  同学的练习中,“‘一节课的时间是2/3小时’的分数意义”一题中把什么看作单位“1“个别同学仍有一定困难。

《分数的意义》教案4

  一、说教材

  教材地位:

  分数的意义和性质这部分内容是在学生对分数已经有了初步的认识、掌握了约数和倍数、最大公约数、最小公倍数等知识的基础上进行教学的。关于分数的意义,学生在四年级时,已借助操作,直观初步认识了分数的基础上教学的。要通过教学使学生从感性上升到理性认识。根据出分数的意义,理解单位“1”和分数单位,这是学生系统学习分数的开始,是本单元的重点,它是解答分数四则运算和应用题的重要基础。

  教学目标:

  (1)通过直观教学和操作等活动引导学生经历探究分数意义的过程,理解单位“1”的含义,初步掌握分数的概念

  (2)在活动中培养学生分析、综合、比较、抽象、根据等初步的逻辑思维能力

  (3)体验学习数学的成功和愉悦,培养学生学习数学的积极情感

  教学重点:

  分数意义的归纳与单位“1”的理解

  教学难点:

  把多个物体组成的一个整体看作单位“1”

  教学准备:

  每小组一张圆形纸片,一条一分米长的线段,6个正方体,8个苹果图

  二、说教法学法

  1、教法

  “分数的意义”一课,是小学数学概念教学比较抽象,学生较难理解的特点,为能使学生较好地理解掌握这一内容,采用启发式教学。教学中充分利用直观演示,遵循概念教学的原则,启发引导学生由感性认识到理解认识,由具体到抽象,充分调动学生学习的积极性、主动性、发展学生的思维能力。

  2、学法

  古人云:“授人一鱼,仅供一饭之需,授人一渔,则终身受用无穷”。现代教学认为教学的任务不仅是传授知识,而重要的是教给学生获取知识的方法。因此,在教学中特别注重加强对学生学法指导。

  (1)通过教学使学生掌握从具体直观到抽象概括的思维方法,为了使学生建立清晰的分数意义概念,为学生提供了丰富的感性材料。

  (2)引导多种感官参与学习,培养学生良好的观察能力、分析能力。

  三、说教学程序

  (一)谈话导入,由旧引新

  首先,通过激趣谈话问学生:把蛋糕分给4个学生,怎样分大家才满意?根据学生的已有经验,很快回答是14,然后出示一个不平均分的蛋糕图,问:这样的一份能用14表示吗?两幅图进行比较,得出:分数是建立在平均分的基础上。

  (二)探究新知,建构概念分4个环节来探究

  1、独立动手做分数

  如果用图表示14,100个人会有100种表示方法,老师为你们每组提供了一些材料,你们能分别表示出它的14吗?

  本环节充分利用“分数初步认识”中学到的知识,通过对具体、形象的'实物图片的观察,学生亲自动手操作,参与获得知识的过程。

  2、动手操作,感知意义

  学生分五人一组,每组有一套学具,然后让学生选一种材料自己动手创造分数,并提出学习要求。学生操作,汇报交流展示学生把不同物体看做一个整体所创造的分数。

  本环节在大量感性认识基础上,充分调动学生眼、口、脑、手等多种感官参与认识活动。

  3、观察比较、抽象单位“1”

  思考:你们能给平均分的对象分分类吗?

  引导生归纳:一个物体,一个计量单位,一个整体都中可以用自然数“1”来表示,通常叫做单位“1”。

  讨论:单位“1”为什么要加引号?它同自然数1的意义一样吗?

  你能举例说说我们生活中哪些可以看作单位“1”。

  本环节,通过小组讨论比较异同,全班交流,全面具体地感知单位“1”,这是理解分数意义的关键。

  4、抽象概括、归纳分数的意义

  (1)学生尝试自己归纳分数的意义。

  (2)理解“若干”一词的意义。

  (3)结合学生发言,板书分数的意义。

  本环节引导学生由感性认识到理性认识,由具体到抽象,逐步深化,理解分数的意义。

  三、分层练习,巩固深化。

  为巩固所学新知识,设计了基础练习和拓展练习,贯穿“讲练结合,练为主线”的教学原则,通过巩固学生对新知识理解掌握,发展学生的思维能力。

  四、引导反思,全课小结

  今天这节课你有哪些收获?对自己的学习满意吗?请说说自己的感受和体验。

  总之本课教学设计,根据学生认知规律,由直观形象思维向抽象思维过渡特点进行教学,旨在使学生在初步认识分数的基础上,建立明确分数意义概念。教学重点放在把一个整体看作单位“1”上,让学生通过大量实例感知分数意义的基本内涵,培养学生归纳概括能力。在教学中让学生动手、动口、动脑,让学生积极主动地参与学习,使学生对分数意义有较深刻认识。

《分数的意义》教案5

  教学目标:

  使学生能比较熟练地把低级单位的名数聚成高级单位的名数,正确地解答求一个数是另一个数的几分之几的应用题。能比较熟练地比较两个分数的大小。

  教学过程:

  一、基本练习

  1.复习有关单位的进率。(长度、面积、体积、质量等)

  2.P80,1

  3.说一说比较两个或三个分数的.大小的方法。

  4.P80,2,3看清要求,分清大小。

  二、应用练习

  1.怎样求一个数是另一个数的几分之几?要注意什么?和求一个数是另一个数的几倍有什么相同和不同的地方?

  2.P81,4—6

  三、巩固提高

  1.选条件编应用题:苹果有5箱,梨有10箱,桃有20箱。

  2.根据自己的实际编一道求一个数是另一个数的几分之几的应用题。

  3.小结。

《分数的意义》教案6

  学习内容:

  课本第76页例2及“做一做”第2题。

  学习目标:

  1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。

  2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。

  学习重难点:

  我能应用分数的基本性质解决简单的`实际问题。

  学习过程:

  一、导入新课

  二、合作探究、检查独学

  1.自学教科书76页例2: 把和化成分母是12而大小不变的分数。

  (1)思考:① 要把2/3化成分母是12的分数,我们就要把分母( )乘( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该( )。最后分子分母都乘了个( ),就把2/3化成了分母是12的分数( )。

  ② 要把10/24化成分母是12的分数,我们就要把分母( )除以( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该( )。最后分子分母都除以了个( ),就把10/24化成了分母是12的分数( )。

  (2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。

  2.小组代表展示、汇报

  3.总结升华

  4.我能行: 完成课本第76页“做一做”第2题。

《分数的意义》教案7

  教学目标:

  1、通过教学使学生理解单位“1”不仅是一个物体,也可以是一些物体。

  2、学生能掌握单位“1”平均分成若干份,表示其中一份或几份的数叫分数。

  3、学生知道单位“1”的几分之几是多少,某一个量是整体的几分之几。

  4、理解并掌握分数单位。

  教学重点难点:

  认识单位“1”,知道一些物体也可以看成是一个整体。

  教学流程预设:

  一、复习引入

  1、出示3/4,“认识它吗?”

  2、介绍分数的出现:当人们在测量、分物或计算中不能刚好得到整数结果时,常常用分数来表示.

  3、分数相关知识回顾:大家都了解分数的哪些知识?

  (1)、怎样读分数

  (2)、分数各部分名称(分子、分母、分数线)

  (3)、怎样写分数:请同学们在草稿纸上写一个你喜欢的分数,写完后同桌间互相读一读,并说说其各部分的名称。

  师:今天,我们继续来深入的了解分数。

  二、新授

  (一)、探索分数的'意义

  师:首先,让我们来创造几个分数吧!请你用课前准备好的材料来表示一个分数,独立完成后组内成员互相说一说(每个人都必须说):

  (1)、你创造了哪个分数?(2)、这个分数表示什么含义?

  (学生交流,教师参与)

  1、班内讨论交流

  师:谁愿意来介绍你所创造的分数?

  生:若干,介绍。

  (教师提问:一个物体:

  ①你创造了哪个分数?表示什么含义?<建立模板>

  ②分子、分母分别表示什么含义?

  ③空白部分可以用什么分数来表示?

  一些物体:

  ①同“一个物体”的3个问题

  ②取其中的5份可以用什么分数表示?5/6是几枚扣子?

  ③3枚扣子可以用哪些分数来表示,分别说说它们的意义。)

  <用彩笔表示你是怎么分这些物品的,渗透“整体”概念>

  2、例子分类,总结

  师:大家说的都很不错。刚才我们创造了很多分数,下面我们来给这些物品分分类。

  生:一个物体;一些物体。(教师引导:老师是这么分的,谁能看出我分类的依据?)

  师:刚才大家在展示的时候,很多同学在用到一些物体的时候,用彩笔把所有物体都圈起来了,那为什么只有一个物体的时候我们一般都不圈呢?

  生:把它们看作是一个整体。

  师:我们发现,无论是一个物体或一些物体,都可以看成是一个整体。把这个整体平均分成若干份,其中的一份或几份就可以用分数来表示。

  (教师慢慢出示,考虑到学生的接受能力)

  这就是分数的意义,也是这节课重点要学习的内容。

  (揭题,全班齐读)

  师:一个整体可以用自然数“1”表示,通常叫做单位“1”。因此,分数的意义也可以表示成“把单位“1”平均分成若干份,其中的一份或几份就可以用分数来表示。”

  师:我们思考一下,刚才同学们举的这些例子,分别都把什么看作单位“1”?

  生:......

  师:在我们身边的一些物品中,可以把什么看作是单位“1”?

  生:......

  师:所以说,单位“1”可以是一个物体,也可以是一些物体。

  3、练习

  课本P62做一做(本题把什么看作是单位“1”?)

  (二)、分数单位

  1、阅读“课本P62做一做”下面一段话,并回答其提出的问题。

  2、什么叫分数单位。

  3、“课本P62做一做”中所出现分数的分数单位,其包含了几个这样的分数单位。

  4、同桌间互相说说上课一开始所写分数的分数单位,以及其包含了几个这样的分数单位。

  三、练习巩固

  课本P631、2、3

  (1、说说这个分数的意义?

  (2、把什么看作单位“1”?

  (3、分数单位是什么,其包含了几个这样的分数单位?

  (4、3/8表示几个月饼?4个月饼可以用什么分数来表示?

  四、课堂小结

  师:今天我们又学习了关于分数的哪些知识?

  生:......

  板书:分数的意义

  把一个整体(单位“1”)平均分成若干份,其中的一份或几份,用分数表示。

  一个长方形433/4

  一个圆211/2

  5支铅笔522/5

  12枚回形针622/6(1/3)

  6枚扣子655/6

  把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

《分数的意义》教案8

  教学目的:

  1、拓宽学生学习的渠道,让学生通过到图书馆查资料,初步了解分数产生的条件、背景和发展史。

  2、让学生在玩学具的过程中理解单位"1",感受什么是分数,归纳出分数的意义,培养学生实际操作和抽象概括能力。

  3、让学生在轻松和谐的氛围中学习数学,体验学习数学的成功和愉悦,培养学生对数学的情感。

  教学重点:

  单位和分数的意义的教学。

  教学难点:

  突破一个整体的教学。

  教具、学具:

  苹果、一分米、方块、小棒、小旗、小刀、水彩笔。

  教学过程:

  一、介绍分数的产生

  师:课前,老师让大家回去查阅资料,谁能结合你的资料来说说分数是怎样产生的事?(学生举手)

  师:(指手里拿着一本书的女生)你来说说。

  (女生拿着自己查的资料走到讲台前,把自己的资料放在实物投影下)

  生说:我是从《中国少年儿童百科全书》上查到的。分数起源于分。在原始社会,人们集体劳动要平均分配果实和猎物,逐渐有了分数的概念。以后在土地计算、土木建筑、水利工程等测量过程中,当所用的长度单位不能量尽所量线段时,便产生了分数。

  师:您查的挺好的。通过她查的资料我们可以知道分数起源于分。

  师:(看到有学生举手,指其中一男生)你来说说。

  男生:(拿着资料来到讲台上的实物投影前,指着资料书)我是从《新编小学生数学词典》上查到的。人类在生产劳动的长期实践活动中产生了分数,起初是使用具体的分数,如二分之一用"一半"来表示,四分之一是用"一半的一半"来表示,经过了相当长的一段时间后,才出现了诸如二分之一、三分之二等分数。

  师:嗯,好,请回。通过他查的资料,我们可以知道最初的分数表现形式和现在的表现形式一样吗?(学生齐说不一样)1/2是用"一半"来表示1/4是用"一半的一半"来表示,那么,照此推算1/8就是(学生齐说一半的一半的一半。)

  师:看来同学们是真理解了,那谁还有别的资料吗?

  (学生举手)

  师:(指一女生)好,你来。

  女生:(拿着资料走到实物投影前展示)我是从资料书上查到的,我把它摘抄到我的笔记本上。分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。

  师:很好,看来,同学们的资料查的不错。今天我们就不一一交流了,建议课后大家再把查到的资料互相交流一下。通过这几个同学查的资料,我们可以知道分数实际上是由人们的生产生活的需要而产生的。

  二、探索分数的意义

  1、小组探究,共同参与。

  师:我们三年级时对分数已经有了初步的认识,你能说出几个具体的分数吗?

  (学生举手)

  甲生:3/4,1/2,1/20,88/100

  师:嗯,说的还挺多。

  乙生:1/10,1/100,1/50,1/60

  师:你也知道很多分数。

  丙生:2/4、2/8、5/10、20/100

  师:同学们已经知道了很多的分数,那要是给大家几种材料,你们能动手分一分,并且用分数来表示吗?

  (学生说能)好,拿出老师给大家准备的材料,小组讨论一下。

  (学生活动,小组讨论五分钟左右。教师巡视,参与小组活动,了解情况。)

  2、汇报交流,力求创新。

  师:大家得到分数了吗?哪个小组来说你们是怎样得到的?

  (学生举手)

  师:(指甲组)你们来说说。

  (一个学生代表甲组,拿着一个苹果走到实物投影前)

  甲组:我先把这个苹果平均分成了两份,取其中的一份就是二分之一。

  (教师板书:平均分分数1/2)

  甲组:我又把这个苹果平均分成了四份,取其中的一份就是四分之一。

  (教师板书:1/4)

  甲组:我又把这个苹果平均分成了八份,取其中的一份就是八分之一。

  (教师板书:1/8)

  甲组:这样,依次类推,可以分成许多份,得到许多分数。

  师:行不行啊,老师感觉他里面有句话说的非常好,谁来说说。

  生说:依次类推。

  师:那你明白依次类推是什么,意思吗?

  生说:懂,就是一个一个往下类推。

  师:也就是说还可以再接着分,看来这个小组已经想的很透彻了,谁还有别的材料需要展示的`吗?

  (学生举手)

  师:(指乙组)你们来说说。

  (一学生代表乙组,拿着一分米的纸上来展示)

  乙组:我们小组是把一分米平均分成了10份,其中的1份就是十分之→。如果把;2平均分成2份,其中的一份就是二分之一。如果把它平均分成5份F飞其中的一份就是五分之一c

  (教师板书:1分米1/10)

  师:他刚才说了很多分数。咱就按照这个同学刚才说的,把1分米平均分成10份,除了十分之一,我们还能得到别的分数吗

  一生:把这1分米平均分成10份,取其中的→份,就是十分之一取其中的两份,就是十分之二,取其中的三份就是十分之三,这样,依次推下来,就可以得到十分之几。

  师:也就是表示其中几份就是它的十分之几,你们同意吗?

  (学生齐说:同意)

  师:谁还有别的材料需要展示吗?

  (学生举手)

  师:(指丙组)你们来说说。

  (两个学生代表丙组,拿着八个方块到前面来展示)

  丙组:我们把八个方块平均分成两份,取其中的一份,就是二分之

  (教师板书:八个 1/2 )

  丙组:把八个方块平均分成四份,取其中的一份就是四分之一,两份就是四分之二,三份就是四分之三。

  (教师板书:1/4、2/4、3/4)

  (教师看到下面同学有很多急着举手的)

  师:你们有问题吗?

  一女生:他把它平均分成4份,一份是两个方块,他为什么说是四分之一呢?展示的丙组男生回答:把这八个方块平均分成4份,其中的一份就是四分之一。

  女生质疑:这其中的一份是两个方块,为什么说是1/4,我还不明白。

  丙组男生:因为这两个方块组成一份。

  师:你满意吗?

  女生:不满意。师:不算很满意,那你们能再来解释解释吗?

  丙组女生很急切的解释:因为它要分成4份的话,这两个方块,并不是论块,而是论份,这两个方块组成了一份,是四份中的一份,所以是四分之一。

  师:你说的很有特点,看来这是一个难点。刚才同学们提的问题很有价值,我们要想得到一个分数,必须要把八个方块看成一个整体,这两个方块或者四个方块只是这个整体的一部分,我们就可以用分数来表示。

  师:那谁还有别的材料需要展示。

  (学生举手)

  师:(指丁组)你们来说说

  (一生代表了组,拿着10根小棒走到前面展示)

  丁组:我这里有10根小棒,我把它平均分成10份,其中的这一份,就是十分之一,然后,再把它平均分成5份,其中的一份就是五分之一。再把它平均份成两分,其中的一份就是二分之一。

  (教师板书:10根小棒1/10、1/5、1/2)

  师:我想问你一个问题,我把10根小棒看成一个整体,平均分成两份,其中的一份是二分之一,那这一份是几根小棒?

  生:是5根小棒。师:很好,请回,(指举手的同学)你想展示?

  生:我这有6面红旗,我首先平均拿走一面红旗就是六分之一。拿掉两面红旗就是六分之二,依次类推,把六个红旗都拿完了,就是六分之六。

  师:平均拿走一面红旗是什么意思?

  生补充:我想换一种说法,就是把这六面红旗平均分成六份,拿走其中的一份就是六分之一。

  师:你说的真好。我们要想得到几分之几时,必须要先把它平均分成几份。

  (教师板书:6面小旗1/6)

  3、抽象概括,构建新知。

  师:我们刚才得到了很多的分数,(指黑板)以前我们研究过了分一个物体,(板书:一个物体)分一个计量单位。(板书:一个计量单位)今天我们主要研究了分多个物体组成的一个整体,(板书:一个整体)这些我们通常都可以把它们叫做单位"1"。(板书:单位"1")

  师:除了这些你还能再举几个单位"1"的例子吗?

  生:一个西瓜。

  生:一个蛋糕。

  生:一个苹果。

  师:刚才同学都举的是一个物体的,还能举一些别的吗?

  生:10个人。

  生:10本书。

  生:8个铅笔盒。

  生:5瓶啤酒。

  生:3块橡皮。

  师:看来同学们已经理解了单位"1"。那你能结合刚才的这些例子用自己的话说说什么叫分数吗?小组先讨论讨论。

  (小组讨论一分钟左右)

  师:谁来说说。

  甲生:'把一个物体平均分成几份,取其中的几份,就是几分之几。

  乙生:把一个物体平均分成若干份,取其中的几份,就是几分之几。

  师:刚才都是说分一个物体,还有没有别的啦?

  丙生:把几个同样的物体平均分成若干份,取其中的几份,就是几分之几。

  师:通过你们说的,教师知道你们已经明白了,那么到底数学家是怎样归纳的呢,请同学们看屏幕。

  屏幕展示:把单位平均分成若干份,表示这样的一份或几份的数叫做分数。

  找生读,学生质疑。

  师:这就是我们这节课研究的分数的意义。

  (板书课题:分数的意义)

  师:那你能通过3/10,说说分数由哪几部分组成的吗?

  生:分数线、分子、分母组成。

  师:分母、分子各表示什么意思?

  生:分母表示把一个物体平均分成几份,分子表示取了其中的几份。

  师:这一物体也就是单位。

  三、 巩固练习

  1.用分数表示下面各图中的阴影部分。

  2、填空;

  (1)把一堆苹果平均分成5份,一份是这堆苹果的( )两份是这堆苹果的( )。

  (2)把今天来上课的同学平均分成()组,一个组的人数是全()班人数的(),二个组的人数是全班人数的()。

  3、糖块游戏。

  拿走9块糖的1/3,拿走几块?为什么?再拿走剩下的1/3,拿走几块?为什么?再拿剩下糖的1/4,拿走几块?

  四、总结(略)

《分数的意义》教案9

  课堂上需要解决的问题:(按本节课的顺序)

  (1)分数各部分的名称、读法、写法。 (2)“单位1”的理解。

  (3)分数的意义。 (4)分数的“单位”。

  重点:所授之识均为重点。难点:既知是难点,上课之前已想办法通过合理的教学手段予以克服,上课之时何来难点。

  教学过程:

  一、拉近学生距离:向学生问好(用激情洋溢的情绪调动学生的情绪,并引导学生观察、读懂教师的表情、动作,使学生被老师的行为所吸引。)

  二、有效引导,引出分数,解决“写法、读法、各部分名称、初步理解意义”这4个任务。

  1、大家会分东西吗,下面看老师分,大家要注意看,要弄清楚以下几个问题?

  A老师分的是什么“东西”?

  B我是怎么分的?

  C分成了几份?

  D红颜色的占其中的几份?

  连起来说一句话:老师把( )( )分成了( )份。红颜色的占其中的( )份

  (1)将一段1米长的线段平均分成了3份,红的占其中的2份。

  老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。

  (2)将一个长方形平均分成6份。红的占其中的5份。

  老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。

  (3)将8只羊平均分成4份,红色的羊占其中的(1)分。

  老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。

  2、引导:

  (1) 大家注意,我们把下面这句话的意思用简单的形式来表示:

  6和9的最小公倍数是18。→=18

  数学中许多较为复杂的语言我们可以用一个简单的形式来表示,大家觉得爽不爽?

  (2)我们今天再来爽一爽

  A课件回到将一条线段平均分成3段的画面。

  “老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。”这句话实在太长了,我现在用一个简单的方法来表示,大家说好不好?引出分数“三分之二”( ),(在显示过程当中明确分数的写法。)教师明题,这个数叫分数,它读作“三分之二”下面的3叫做“分母”上面的“2”叫做“分子”(该部分全部由教师在黑板上板书。)教师提问:分母表示什么意思?分子表示什么意思?反过来问一下:在这里“三分之二”表示什么意思呢?→表示把1米长的线段平均分成3份,表示其中的两份。

  B课件回到将一个长方形平均分成6份,红的占其中5份的画面。

  将“老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。”用分数表示。(已经可以叫学生自己说、写了)之后让学生回答:分母表示什么意思?分子表示什么意思?反过来问:“六分之五”这个分数表示什么意思呢?→表示把一个长方形平均分成6份,表示其中的5份。

  C课件回到将8只羊平均分4份,红色的占其中的1份的画面。

  将“老师把(8只羊)(平均)分成了(4)份,红的'占其中的(1)份。”这句话用分数表示。由学生来完成。反过来问→“四分之一表示什么意思呢?→表示把8只羊平均分成4份,表示其中的1份。

  三、单位“1”的认识

  给出另一个新的分数“二分之一”问它表示什么意思呢?

  教师对学生的回答表示认可,但提出疑问:你难道知道一定是分这个东西吗?听听其他同学的意见。

  A可以分西瓜 B可以分菠箩 C可以分小鸭……

  总之,我们很多东西都可以分,但在分的时候,我们都把他们当成“一个整体”来看,是“一个整体”所以我们可以给他们取一个统一的名字:单位“1”,大家说好不好,不好,你取取看。1为什么加引号的问题解决。

  (通过课件,使学生明确单位“1”)

  四、深入理解分数意义,分数的单位的认识

  1、练习巩固:课件演示

  (1) 上面是一个空心的圆,下面是一个分数:四分之三

  让学生说说:要你做什么?把这个圆平均分成4份,用颜色表示(取)其中的三份。(或:把单位“1”平均分成4份,表示其中的3份。)

  回答清楚以后由学生自己完成。

  (2) 出示一条线段:下面是一个分数:十分之七

  让学生说说:要你做什么?(让学生用两种方式来回答。)再由学生完成。(除了用颜色涂以外,教师教另一种表示方法,为教学例1做准备。

  (3)出示例1,让学生弄请清和(2)的区别,明确是将0~1之间的线段分一下。然后完成例1。

  完成其余2~3题。

  2、分数单位的认识

  1)分母是3的最小分数想一想是几?分母6的最小分数是几?分母是8的最小分数是几?

  通过观察,使学生认识到这些分数的分子都是“1”,取一个共同的名字叫“分数单位”

  2)练习

  三分之一()是哪些分数的分数单位?说一说各含有几个分数单位。

  六分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  八分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  练一练第5题。

  练一练第6题。

  五、巩固练习:完成书上其余练习。教师巡视批阅。

  六、课堂总结:

  以一个分数为例,说一说(1)分数各部分的名称、读法、写法。

  (2)分数的意义。

  (3)“单位1”的理解。

  (4)分数的“单位”。

  六、拓展题

  有一位老伯将17头牛留给他的三个儿子,他给大儿子二分之一,给二儿子三分之一,给小儿子九分之一,你会帮他们分吗?怎么分?他们各得几头?

  七、作业布置:

  《作业本》

《分数的意义》教案10

  一、教学内容

  分数的意义

  教材第61页的内容。

  二、教学目标

  1.使学生进一步理解并掌握分数的意义。

  2.知道一个物体、一个计量单位、一个整体都可以用单位“1”表示。

  3.引导学生学会抽象概括,培养初步的逻辑思维能力。

  三、重点难点

  1.理解和掌握分数的意义。

  2.理解单位“1”。

  3.突破一个整体的教学。

  四、教具准备

  投影,练习投影片,长方形、圆形纸各一张。

  五、数学过程

  (一)导入

  请学生举出几个具体的分数。(老师板书)

  根据学生举例的分数,请同学们说出都知道这个分数的什么?如这个分数表示的意义,它的`各部分名称,以及自己的课外知识等。

  老师举例并板书:

  请学生说出表示什么意思。

  学生甲:表示把一块月饼平均分成4份,吃了其中的1份,可以说吃了这块月饼的。

  学生乙:还可以表示把一根绳子平均剪成4份,其中的1份,就是

  这根绳子的。

  (二)教学实施

  1.认识单位“1”。

  (1)动手操作。

  老师:如果用图表示,可能你们每人会有不同的表示方法,现在请你动手折一折或画一画来表示。

  学生展示成果。

  (2)老师投影出示图片。

  老师:投影片上的这些图,你能在每一幅图上表示出它的吗?学生先小组内交流,再集体反馈。

  学生甲:我把4根香蕉看作一个整体,一根香蕉是这个整体的。

  学生乙:把8个苹果看作一个整体,把这个整体平均分成4份,每份两个苹果是这个整体的。

  学生丙:我把12个△看作一个整体,把这个整体平均分成4份,每份3个△是这个整体的。

  学生丁:我把1米看作一个整体,把它平均分成4份,其中的1份,就是1米的。

  (3)概括总结。

  老师:刚才同学们在表示的过程中,有什么发现吗?

  学生甲:都是把物体平均分成4份,表示这样的一份。

  学生乙:我发现有的是把1个图形平均分,有的是把8个苹果、12个△平均分,还有的是把1米平均分。

  老师:一个图形,一个实物比较好理解,我们把它称为一个物体,那么8个苹果、12个△是由许多单个物体组成的,我们称作一个整体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  (4)举例。

  老师:对于这个整体,你还能想出其他的例子吗?

  学生:这个整体还可以是一筐茄子、一车煤、一个年级的人数、全中国人口等。

  2.概括分数。

  老师:通过上面的学习,同学们对于单位“1”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1”可以很小,也可以很大......

  刚才同学们举了很多分数的例子,那到底什么是分数,你能尝试用文字描述一下吗?

  先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?

  学生相互交流补充。

  明确:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。(板书)

  老师强调必须是平均分。

  (四)思维训练

  说一说下图中的阴影部分占整个图的几分之几。

  (五)课堂小结

  这节课我们学习了什么?师生共同回忆总结。

《分数的意义》教案11

  【教材分析】

  教材首先指出百分数在生产、工作和生活中有广泛的作用,接着通过两个实例引出百分数的概念。教材这里强调的是两个数量的比,并联系比的概念说明,百分数也可以看作是以100为后项的一种比,所以又叫做百分率或百分比。最后教学百分数的写法。

  【学情分析】

  学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的含义尤为重要。

  【教学目标】

  1、使学生了解百分数的意义,会正确读写百分数。

  2、指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。

  【重点难点】

  1、百分数的意义及读、写。

  2、分数与百分数的意义之间的联系和区别。

  【教具准备】

  课前查阅百分数的资料。

  小黑板或投影。

  【教学过程】

  活动(一)复习准备

  1、在日常生活中,同学们会经常看到或听到这样一些数:(出示投影或小黑板)

  (1)在12届亚运会中各国金牌情况如下:中国占40.3%,韩国占18、5%,日本占17.4%,其它国家占23.8%。

  (2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。

  2、谁知道这些数是什么数?你对百分数已经有了哪些了解?你还想了解什么?

  师:在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。这节课就来研究。

  活动(二)探究新课

  1、某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。六年级学生占全年级的几分之几?五年级三好生占全年级的几分之几?17/100、3/20分别表示两个量之间的什么关系?(倍数关系)

  ⑴根据学生的回答板书:六年级三好生占全年级的17/100 五年级三好生占全年级的'3/20

  板书:17/100=17/100

  3/20=15/100

  ⑵提问:根据所得的数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)

  ⑶讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)

  ⑷小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。

  ⑸思考:17/100和15/100都表示什么?(表示三好学生和总人数之间的倍数关系)

  2、练习。(出示课件)

  一个工厂从一批产品中抽出500件,经过检验,有490件合格。合格的比率是多少?思考并计算这批产品的合格率是多少?(490/500)改写成分母是100的分数是多少?(98/100)说说98/100表示什么?

  3、概括百分数的意义。

  ⑴师:通过以上的练习说一说17/100、15/100、98/100都表示什么?(表示一个数是另一个数的百分之几)

  ⑵提问:什么是百分数?百分数表示两个量之间什么关系?

  ⑶小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做分率或百分比。

  板书:百分数的意义和写法。

  ⑷提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?4、学习百分数的读法和写法。

  提问:百分数和分数比,相同点和不同点是什么?百分数应该用什么形式表示呢?

  (1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。

  (2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。

  5、百分数与分数的联系和区别。

  活动(三)巩固练习

  1、第105页“做一做”。

  2、第106页第1,2题。

  3、(投影)判断:

  (1)分母是100的分数叫做百分数。

  (2) 27/100千米可以写成27%千米。

  (3)百分数的分母一定是100。

  (4)五(2)班45人,体育全部达标,达标率100%。

  4、填空:

  (1)一本书看了40%,表示( )占( )的40%。

  如果书是100页,看了( )页;书是 200页,看了( )页。

  (2)一条公路,修了25%,还剩 ( )%没修。

  (3)火车速度比汽车快25%,火车的速度是汽车的( )%。

  5、一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。十月份的产值比九月份的多了还是少了?

  活动(四)课堂总结

  这节课我们学习了哪些知识?(百分数的意义、读法和写法。)你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。

  【教学反思】

  学生了解了百分数的意义,会正确读写百分数。学生能够在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养了学生分析、概括能力。

《分数的意义》教案12

  一、教学内容:

  人教版义务教育课程标准实验教科书小学数学五年级下册教材第61~62页,练习十一部分练习。

  二、教材分析:

  “分数的意义”一课是人教版新教材五年级下册的内容,是对小学生数概念的一次重要扩展。与旧教材相比,新教材在单位“1”这个概念的理解上进行了微调,将原先的“一个物体、一个计量单位,几个物体组成的一个整体都可以看作单位“1”这项内容调整为比较符合认知习惯的“一个物体、一些物体都可以看作一个整体,通常用单位‘1’表示”。

  三、教学目标:

  1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。

  2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。

  3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的`兴趣。

  四、教学重点:理解分数的意义

  教学难点:认识单位“1”和概括分数的意义

  五、学情分析:

  学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数及同分母分数的大小,会加减简单的同分母分数。通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,让学生经历整个概念的形成过程,帮助他们从中获得感悟,促使其主动参与建构。

  六、设计理念:

  本课的教学设计主要以构建主义基本理念为依托,注重学生的认知规律,关注学生的生活经验,让学生在做数学中体验分数的价值,激发学习的兴趣,培养良好的数感。 《数学课程标准》指出:“让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。”为了比较完整的建立起分数的概念,利用孩子们在三年级对分数的初步认识已有的知识为基础,提供平台让学生举例说明分数的含义,让学生在合作、探

  究中主动获取知识,找到把许多物体组成的一个整体平均分与把一个物体平均分之间的内在联系,抽象概括出分数的意义,并强调了单位“1”的概念,揭示了分数表示部分与整体的关系。教学过程中师生、生生之间的自我评价与相互评价,增强了学生的自信心和责任感,促进师生的共同发展。

《分数的意义》教案13

  课题一:(一)

  教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。

  教学重点 理解。

  教学用具 教材第84~85页有关的投影片、线段图等。

  教学过程

  一、创设情境

  1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。

  2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。

  3.揭示课题

  在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。

  二、探索研究

  1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:

  (1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?

  (2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )

  (3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?

  如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?

  2、进一步认识单位1。

  以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:

  (1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?

  (2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?

  (3)练习:说出下图中涂色的部分各占整体的几分之几。

  ● ●

  ●○○○○○ ● ●

  ●○○○○○ ● ●

  ● ○

  ● ○

  ● ○

  3.揭示。

  (1)观察以上教学过程 所形成的板书。

  一个物体

  计量单位 单位1

  一些物体

  告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)

  (2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?

  (3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

  4.练习。练习十八第1、2、3题。

  5.教学分数各部分名称、分数单位。分数的读、写法。

  (1)教师任意写出几个分数,让学生说出分数各部分的名称。

  (2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?

  (3)认识分数单位,初步了解分数单位的特点。

  练习:① 的分数单位是,它有个 。

  ② 的分数单位是,它有个 。

  ③个 是。

  ④ 是个 。

  (4)想一想:读、写分数的方法是怎样的?

  读作 ,表示 个 。

  读作 ,表示有 个 。

  三、课堂实践

  1. 表示把平均分成份,表示这样的份的数。

  2. 读作,分数单位是,再添上个这样的单位是整数1。

  四、课堂小结

  1、什么叫做分数?如何理解单位1?

  2、什么是分数单位?分数单位有什么特点?

  五、课堂作业

  练习十八第5、6题。

  课题二:(二)

  教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。

  教学重点 理解。

  教学过程

  一、 创设情境

  1.用分数表示图中阴影部分。

  ▲▲ ▲▲

  △△ ▲▲

  2.口答:什么是分数?如何理解单位1?

  3.填空。

  是个 。 的分数单位是

  7个 是。 的分数单位是

  二、揭示课题

  出示学习内容及学习目标。板书课题:。

  三、探索研究

  1.认识用直线上的点表示分数。

  分数也是一个数,也可以用直线(数轴)上的点来表示。

  (1)认识用直线上的点表示分数的方法。

  ①画一条水平直线,在直线上画出等长的距离表示0、1、2。

  ②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :

  0 1 2

  (2)提问:如果要在直线上表示 ,该怎样画?启发点拨。

  ①先画什么?再画什么?

  ②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?

  ③ 应用直线上的哪一个点来表示?

  (3)如果要在这条直线上表示分母是10的分数,该怎么办?

  这条直线上0~1之间的第七个点表示的分数是多少?

  2.练习。

  (1)教材第87页下面做一做的第2题。

  (2)用直线上的点表示 、 、 、 。

  3.教学例1。

  (1)指名读题,帮助学生理解题意。

  (2)出示讨论题,同桌讨论。

  ①这题中把什么看作单位1?

  ②1人占这个整体的几分之几?

  ③5人占这个整体的几分之几?

  (3)汇报讨论结果,板书答语。

  (4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。

  4、练习。教材第88页的做一做。

  四、课堂实践

  1.教材第87页的做一做。

  2.用直线上的点表示 下面的分数: 、 、 、 、 。

  3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?

  五、课堂小结

  1.用直线上的点表示分数的方法是怎样的?

  2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?

  六、课堂作业

  练习十八第4、7、8题。

  课题三:分数与除法的关系

  教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。

  教学重点 理解和掌握分数与除法的关系。

  教学用具 投影片(教材第89页的饼图)

  教学过程

  一、创设情境

  1.填空。

  (1) 表示。

  (2) 的分数单位是,它有个这样的分数单位。

  2.计算。(1)58 (2)49

  二、揭示课题

  我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)

  三、探索研究

  1.教学例2

  (1)读题后,指导学生根据整数除法的意义列出算式。板书:

  13=

  (2)讨论:1 除以3结果是多少?你是怎样想的?

  (3)教师画出线段示意图,帮助学生理解。

  1米

  ?

  通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。

  (3)写出答语。

  2.教学例3。

  (1)读题后,引导学生列出算式:34。

  (2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。

  (4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,

  34=(块)。

  由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。

  3、认识分数与除法的关系。

  (1)引导学生观察13=、34=这两道算式,想一想:

  ①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?

  ②用分数表示商时,除式里的被除数、除数分别是分数里的什么?

  ③分数与除法的关系是怎样的?

  (2)教师总结,学生发言,归纳出以下三点:

  ①分数可以表示整数除法的商;

  ②在表示整数除法的商时,要用除数作分母、被除数作分子;

  ③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)

  分数与除法的'关系可以表示成下面的形式:

  板书:被除数除数=

  (3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?

  板书:ab=(b0)

  (4)想一想:这里的b能为0吗?为什么?

  启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。

  (5)再想一想:分数与除法有区别吗?区别在哪里?

  着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。

  4、学生阅读教材,质疑问难。

  四、课堂实践

  教材第91页中间的做一做。

  五、课堂小结。

  引导学生回顾全课,说说学到了什么,自我总结,教师作补充。

  六、课堂作业 。练习十九第1~3题。

  课题四:分数与除法关系的应用

  教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。

  教学重点 求一个数是另一个数的几分之几的应用题。。

  教学过程

  一、创设情境

  1.口答:30分米=米 180分=时

  练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

  2.说一说:分数与除法的关系?

  3.用分数表示下面各算式的商。

  (1)79(2)47(3)815(4)5吨8吨

  二、揭示课题

  这节课学习分数与除法关系的应用。(板书课题)

  三、探索研究

  1.出示例4。

  (1)出示例4并审题。

  (2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

  让全体学生尝试练习。

  (3)集体订正。订正时让学生说说是怎样想的?

  (4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

  重点说明当两数相除得不到整数商时,其结果可以用分数表示。

  2.练习教材第91页下面的做一做。

  3.教学例5 。

  (1)出示教材第92页复习题,让学生独立列式解答。

  集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

  板书:3010=3

  答:鸡的只数是鸭的3倍。

  (2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

  讨论后师生共同评价,主要有两种方法:

  ①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。

  ②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。

  (3)比较复习题与例5异同点。

  通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

  4、练习。教材第92页做一做第1、2题。

  四、课堂实践

  1.在括号里填上适当的分数。

  8厘米=米 146千克=吨 23时=日

  41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米

  2.五(1)班有女生25人,比男生多4人。

  (1)男生占全班人数的几分之几?

  (2)女生占全班人数的几分之几?

  (3)男生人数是女生人数的几分之几?

  五、课堂小结

  1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

  2、求一个数是另一个数的几分之几应用题的解答方法是什么?

  六、课堂作业

  练习十九第4~7题。

  七、思考题。

  练习十九第8题及思考题。

  课题五:分数大小的比较

  教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。

  教学重点 掌握比较分数大小的方法。

  教学用具 投影片(教材例6、例7直观图)

  教学过程

  一、创设情境

  1.教材第93页复习题,请一名学生口答。

  2.看图写分数,并比较分数的大小。

  0 1

  二、揭示课题

  以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)

  三、探索研究

  1.同分母分数的大小比较。

  (1)比较 和 的大小。

  出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )

  如果没有直观图,该怎样比较 与 的大小呢?

  因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。

  (2)用类似的方法引导学生比较 和 的大小。

  (3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)

  板书:分母相同的两个分数,分子大的分数比较大。

  2.练习:教材第93页做一做。

  3.同分子分数的大小比较。

  (1)比较 和 的大小。

  ①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。

  ② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。

  (2)比较 和 的大小。

  用类似的方法进行比较并得出结论: < 。

  (3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?

  板书:分子相同的两个分数,分母小的分数比较大。

  4、练习:教材第95页的做一做。

  四、课堂小结

  比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。

  五、课堂实践

  1.练习二十第1题。

  2.练习二十第3题。

  六、课堂作业

  练习二十第2、4题。

  七、思考练习

  在括号里填上合适的数

  < < < > >

《分数的意义》教案14

  一、复习导入

  1、根据分数与除法的关系填空。

  被除数÷除数说说:分数与除法的关系。

  2、提问:80÷20的商是多少?

  被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?

  回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)

  (商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)

  二、新课

  1、动手做数学。

  (1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。

  (涂上阴影)

  (2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?

  (3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。

  2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?

  (1)观察并研究分子、分母是按什么规律变化的?

  1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。

  (2)学生发现并归纳得出的规律(揭示:分数的基本性质):

  分数的分子和分母同时乘以或者除以相同的数分数的大小不变。

  (3)理解意义。

  提问:刚才我们根据分数的意义来说明分数的基本性质的。能不能根据分数与除法的关系和商不变的规律来说明呢?

  先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)

  将分数的基本性质补充完整。

  3、应用性质、解决问题。

  (1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。

  (2)把3/4和15/24化成分母是8而大小不变的分数。

  要求:独立思考解答、交流方法

  (3)师生一起总结方法:

  看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。

  (4)独立完成练一练。

  重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。

  变化的依据是分数的`基本性质

  (5)口答练习十八第2题并说明判断的依据。

  4、全课总结:你能将这节课的内容及重点归纳概括一下吗?

  5、作业:完成练习十四

  理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。

  三、难点点拨

  在运用分数的基本性质时,会出现以下几种错误:

  ①忽略了“同时”。举例说明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。

  ②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。

  在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。

  ③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的

《分数的意义》教案15

  教具准备

  投影。

  教学过程

  (一)导入

  分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。

  (二)教学实施

  1 . 引导学生归纳、梳理知识点。

  提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?

  学生自己试着归纳,然后请学生汇报发言,集体补充。

  老师随着学生的汇报,进行板书。

  分数的意义

  分数的意义

  分数与除法的关系:a÷b= (b≠0)

  真分数

  真分数和假分数

  假分数 带分数

  约分 最大公因数

  分数的基本性质的

  通分 最大公倍数

  ① 同分母分数

  分数大小的比较 ② 同分子分数

  ③ 分子、分母都不同的分数

  分数化成小数

  分数和小数的互化

  小数化成分数

  2 .应用知识练习。

  ( 1 )完成教材第101 页的第1 题。

  先独立完成填空,集体订正。

  然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?

  ( 2 )完成教材第101 页的第2 题。

  让学生先将这7 个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。

  ( 3 )完成教材第101 页的第3 题。

  学生先独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。

  ( 4 )完成教材第101 页的`第4 题。

  先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的互化练习。

  提问:互化时要注意什么?

  (四)思维训练

  1 . 分数 是真分数,而且可以化成有限小数,x 最大是几?

  2 .一个分数,分子和分母的和是43 ,如果分母加上17 ,这个分数就可以化简成言,这个分数是( ) o

  3 .一个最简分数,把它的分子扩大2 倍,而分母缩小到原来的 后,正好等于 ,这个分数原来是( )。

  (五)课堂

  通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。

  教学目标

  1 .通过复习,帮助学生梳理本单元的知识要点及知识间的联系。

  2 .培养学生归纳、知识的能力,掌握和复习知识的方法。

  3 .培养学生自觉复习的习惯。

  重点难点

  归纳、本单元的知识点。

【《分数的意义》教案】相关文章:

分数的意义教案12-22

《分数的意义》教案01-24

人教版分数的意义教案12-29

《分数的意义》教案模板04-27

分数的意义教案范文05-10

有关分数的意义教案01-23

有关《分数的意义》教案01-24

关于分数的意义教案01-24

【精】分数的意义教案01-25

分数的意义教案【热】01-25