- 相关推荐
七年级下册数学优秀教案(通用16篇)
作为一位无私奉献的人民教师,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。教案要怎么写呢?以下是小编整理的七年级下册数学优秀教案,希望能够帮助到大家。
七年级下册数学优秀教案 篇1
教学目标
1、经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念
2、了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论、
3、会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线、
重点:
探索和掌握平行公理及其推论、
难点:
对平行线本质属性的理解,用几何语言描述图形的性质、
教学过程
一、创设问题情境
1、复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?
学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答、教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?
2、教师演示教具、
顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?
3、教师组织学生交流并形成共识、
转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点、继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点、
二、平行线定义表示法
1、结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的`位置,这时直线a与b互相平行、换言之,同一平面内,不相交的两条直线叫做平行线、
直线a与b是平行线,记作“∥”,这里“∥”是平行符号、
教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线、
2、同一平面内,两条直线的位置关系
教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系、
在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一、即两条直线不相交就是平行,或者不平行就是相交、
三、画图、观察、归纳概括平行公理及平行公理推论
1、在转动教具木条b的过程中,有几个位置能使b与a平行?
本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行、
2、用直线和三角尺画平行线、
已知:直线a,点B,点C、
(1)过点B画直线a的平行线,能画几条?
(2)过点C画直线a的平行线,它与过点B的平行线平行吗?
3、通过观察画图、归纳平行公理及推论、
(1)由学生对照垂线的第一性质说出画图所得的结论、
(2)在学生充分交流后,教师板书、
平行公理:经过直线外一点,有且只有一条直线与这条直线平行、
(3)比较平行公理和垂线的第一条性质、
共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的
不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外、
4、归纳平行公理推论、
(1)学生直观判定过B点、C点的a的平行线b、c是互相平行、
(2)从直线b、c产生的过程说明直线b∥直线c、
(3)学生用三角尺与直尺用平推方验证b∥c、
(4)师生用数学语言表达这个结论,教师板书、
结果两条直线都与第三条直线平行,那么这条直线也互相平行、
结合图形,教师引导学生用符号语言表达平行公理推论:
如果b∥a,c∥a,那么b∥c、
(5)简单应用、
练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由、
本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范、
四、作业:课本P16、7,P17、11、
七年级下册数学优秀教案 篇2
教学目标:
1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。
2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。
教学重点:理解有序数对的概念,用有序数对来表示位置。
教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时
教学过程
一、创设问题情境,引入新课
展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?
原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。
二、师生共同参于教学活动
(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。
师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?
生:不能,要确定还必须知道“排数”。
(2)教师书写平面图通知,由学生分组讨论。
今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),(5,6)。
师:你们能明白它的意思吗?
学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。
师:请同学们思考以下问题:
①怎样确定你自己的座位的'位置?
②排数和列数先后须序对位置有影响吗?
生:通过讨论,交流后得到以下共识:
①可用排数和列数两个不同的数来确定位置。
②排数和列数的先后须序对位置有影响。
(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
(4)在生活中还有用有序数对表示一个位置的例子吗?
学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。
例如:人们常用经纬度来表示,地球上的地点
三、巩固练习
让学生完成p46的练习。
四、布置作业
1、课本习题6,1,1。
2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
五、教后反思
师:谈谈本节课,你有哪些收获?
由同学交流解决问题,教师设疑为以后的学习奠定基础。
七年级下册数学优秀教案 篇3
教学目标:
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点:
数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动)设计理念
设置情境
引入课题
教师通过实例、课件演示得到温度计读数。
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学。
探究新知
教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的'同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解
寻找规律
归纳结论
问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结
请学生总结:
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业
1,必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
七年级下册数学优秀教案 篇4
一、教材分析
1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。
2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:
(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的'最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析
1、知识目标:掌握最短路径概念、能够求解最短路径。
2、能力目标:
(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。
(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。
3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。
三、教法分析
课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。
四、学法指导
1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析
(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。
教学方法及注意事项:
(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。
(2)提示学生“温故而知新”,养成良好的学习习惯。
(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:
(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。
(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。
(三)讲授新课(25~30分钟)
1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。
(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:
①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。
②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。
③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。
④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。
教学方法及注意事项:
①启发式教学,如何实现按路径长度递增产生最短路径?
②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。
(四)课堂小结(3~5分钟)
1、明确本节课重点
2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?
(五)布置作业
1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。
六、教学特色
以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。
七年级下册数学优秀教案 篇5
教学目标
1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
教学准备
多媒体课件
教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作xx,B处记作xx。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的'点,它们到原点的距离分别是多少表示和的点呢
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:
①与原点的关系
②是个距离的概念
2、练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6,0,-10,+10
2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:
1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
3、出示题目
(1)-3的符号是xx,绝对值是xx;
(2)+3的符号是xx,绝对值是xx;
(3)-6.5的符号是xx,绝对值是xx;
(4)+6.5的符号是xx,绝对值是xx;
学生口答。
师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗
5、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数
②一个数的绝对值是它的相反数,这个数是什么数
③一个数的绝对值一定是正数吗
④一个数的绝对值不可能是负数,对吗
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗
(由学生口答完成,进一步巩固绝对值的概念)
6、例2.求绝对值等于4的数
(让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴
②从几何意义上分析,画一个数轴
因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
所以绝对值等于4的数是+4和-4.
6、练习:做书上12页课内练习1、2两题。
四、归纳小结
1、本节课我们学习了什么知识
2、你觉得本节课有什么收获
3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。
七年级下册数学优秀教案 篇6
【知识与技能】
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】
通过题目,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。
【情感、态度与价值观】
体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】
理解开平方与平方是一对互逆的`运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】
能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续打下基础。
【教具准备】
小黑板科学计算器
【教学过程】
一、导入
1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)
2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)
3、0.36的平方根是( )
4、(-5)2的算术平方根是( )
二、题目内容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若x=6,则=( )
5、若=0,则x=( ) 6、当x( )时,有意义。
(二)选择
1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4x2-49=0; 3、(25/81)x2=1;
4、求8+(-1/6)2的算术平方根;
5、求b2-2b+1的算术平方根;(b<1)
6、
7、 ;(用四舍五入方法取到小数点后面第三位)
8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。
三、小结与巩固
七年级下册数学优秀教案 篇7
认识三角形教学目标:
1.知识与技能
结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系。
2.过程与方法
通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力。
3.情感、态度与价值观
联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生兴趣。
教学重点难点:
1.重点
让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题。
2.难点
探究三角形的三边关系应用三边关系解决生活中的实际问题。
教学设计:
本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、题目应用、课堂小结、探究拓展思考、布置作业。
第一环节回顾与思考
1、如何表示线段、射线和直线?
2、如何表示一个角?
第二环节情境引入
活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片。
活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中。培养学生善于观察生活、乐于探索研究的品质,从而更大地激发学生数学的兴趣
第三环节三角形概念的讲解
(1)你能从中找出四个不同的三角形吗?
(2)与你的同伴交流各自找到的三角形。
(3)这些三角形有什么共同的特点?
通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法。并出两道题,从题目中归纳出三角形的三要素和注意事项。
第四环节探索三角形三边关系第一部分探索三角形的任意两边之和大于第三边
活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形。学生统计能否摆成三角形的情况。
第二部分探索三角形的.任意两边之差小于第三边
活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论。
第五环节题目提高
活动内容:
1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?
2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为.若第三边为偶数,那么三角形的周长.
3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆。学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?
第六环节课堂小结
活动内容:学生自我谈收获体会,说说学完本节课的困惑。教师做最终总结并指出注意事项。
学生对本节内容归纳为以下两点:
1.了解了三角形的概念及表示方法;
2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边。
注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。
第七环节探究拓展思考
1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求。
2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?
3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看。
第八环节作业布置
七年级下册数学优秀教案 篇8
[教学目标]
1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题
[教学重点与难点]
重点:邻补角与对顶角的概念。对顶角性质与应用
难点:理解对顶角相等的性质的探索
[教学设计]
一。创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的'角。
学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,
二。认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用
几何语言准确表达;
有公共的顶点O,而且的两边分别是两边的反向延长线
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系
教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念和对顶角的性质
三。初步应用
题目:
下列说法对不对
(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角
(2)邻补角是互补的两个角,互补的两个角是邻补角
(3)对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四。巩固运用例题:如图,直线a,b相交,求的度数。
[巩固](教科书5页题目)已知,如图,求:的度数
[小结]
邻补角、对顶角。
[作业]课本P9-1,2P10-7,8
七年级下册数学优秀教案 篇9
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.
3.通过学生共同观察和讨论,培养大家的合作交流意识.
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
教学难点
1.探索方程与函数之间的联系的过程.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的`关系.
教学方法
讨论探索法.
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2.看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法例题
1.因式分解的定义
2.提公因式法
七年级下册数学优秀教案 篇10
一、教学内容:
人教版教材五年级上册第五单元多边形的面积整理与复习
二、教学目标:
1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱
三、教学重、难点
重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
难点:引导学生整理多边形面积的推导过程,掌握转化的数学思想方法,建构知识网络。
四、教学准备:多媒体课件,多边形纸模
五、教学步骤与过程
(一)导入复习
师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)
师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。
板书课题:多边形面积计算复习课
(二)回顾整理,建构网络
1.复习平行四边形、三角形、梯形面积公式的.推导过程。
⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。
⑵根据学生的回答,出示每个公式的推导过程。
六、课堂练习
学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?
七,作业布置:练习十九
板书设计
S=ah÷2
S=abS=ah
S=(a+b)h÷2
七年级下册数学优秀教案 篇11
一、教学目标
(一)知识教学点
1.了解;方程算术解法与代数解法的区别。
2.掌握:代数解法解简易方程。
(二)能力训练点
1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。
2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。
(三)德育渗透点
1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。
2.渗透化“未知”为“已知”的化归思想。
(四)美育渗透点
通过用新的方法解简易方程,使学生初步领略数学中的方法美。
二、学法引导
1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。
2.学生学法:识记→练习反馈
三、重点、难点、疑点及解决办法
1.重点:代数解法解简易方程。
2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。
3.疑点:代数解法解简易方程的依据。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。
七、教学步骤
(一)创设情境,复习导入
(出示投影1)
引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?
师:该问题如何解决呢?请同学们考虑好后写在练习本上.
学生活动:解答问题,一个学生板演.
师生共同订正,对照板演学生的做法,师问:有无不同解法?
学生活动:回答问题,一个学生板演,其他学生比较两种解法.
问;这两种解法有什么不同呢?
学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).
师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的`逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.
[板书]1.5简易方程
(二)探索新知,讲授新课
师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?
学生活动:踊跃举手,回答问题。
[板书] 含有未知数的等式叫方程
接问:你还知道关于方程的其他概念吗?
学生活动:积极思考并回答。
[板书] 方程的解;解方程
追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,
师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。
[板书]
学生活动:相互讨论达成共识(合理。因把x=5 代入方程3x+9=24 ,左边=右边,所以x=5是方程的解)
【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。
师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。
(三)尝试反馈,巩固练习
例1 解方程(x/2)-5=11
问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?
学生活动:思考并回答.(师板书)
问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?
学生活动:思考并回答(师板书)
解:方程两边都加上5,得
(x/2)-5+5=11+5
x/2=16
(x/2)*2=16*2
x=32
问:这个结果正确吗?请同学们自己检验.
学生活动:练习本上检验并回答问题.(正确)
师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.
学生活动:回答这两个问题.
七年级下册数学优秀教案 篇12
教学目标:
了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。
教学重点:
对概念的理解及对数据收集整理。
教学难点:
总体概念的理解和随机抽样的合理性。
教学过程:
一、情景创设,引入新课
上节课我们对全班同学对自己所喜爱的学科进行了调查,那么如果要对某校20xx名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?
二、新课
1.抽样调查的意义
在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。
抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。
2.总体、个体、样本、样本容量的意义
总体:所要考察对象的全体。
个体:总体的每一个考察对象叫个体。
样本:抽取的部分个体叫做一个样本。
样本容量:样本中个体的数目。
3.抽样的注意事项
①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查20xx名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映20xx名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.
②抽取的`样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在20xx名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.
总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.
下面是某同学抽取样本数量为100的调查节目统计表:
表中的数据信息也可以用条形统计图或扇形统计图来描述。
七年级下册数学优秀教案 篇13
学习目标:
1.理解平行线的意义两条直线的两种位置关系;
2.理解并掌握平行公理及其推论的内容;
3.会根据几何语句画图,会用直尺和三角板画平行线;
学习重点:
探索和掌握平行公理及其推论.
学习难点:
对平行线本质属性的理解,用几何语言描述图形的性质
一、学习过程:预习提问
两条直线相交有几个交点?
平面内两条直线的位置关系除相交外,还有哪些呢?
(一)画平行线
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"画"。
3、请你根据此方法练习画平行线:
已知:直线a,点B,点C.
(1)过点B画直线a的平行线,能画几条?
(2)过点C画直线a的平行线,它与过点B的平行线平行吗?
(二)平行公理及推论
1、思考:上图中,①过点B画直线a的平行线,能画 条;
②过点C画直线a的平行线,能画 条;
③你画的直线有什么位置关系? 。
②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?
二、自我检测:
(一)选择题:
1、下列推理正确的是 ( )
A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d
C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c
2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )
A.0个 B.1个 C.2个 D.3个
(二)填空题:
1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的.直线有且只有 条。
2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:
(1)L1与L2 没有公共点,则 L1与L2 ;
(2)L1与L2有且只有一个公共点,则L1与L2 ;
(3)L1与L2有两个公共点,则L1与L2 。
3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。
4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。
三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
七年级下册数学优秀教案 篇14
教学目标:
1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教学具准备:
多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的.海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:—155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:什么是正数、负数?
师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0.5、+8844.43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是xx。水结冰时的温度是xx。地球表面的最低温度是。
3、讨论生活中的正数和负数
(1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
七年级下册数学优秀教案 篇15
【教材简析】
本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量系列出求吃 1/2个、1/3个、1/4 个,可以分给几人的算式,然后通过观察、操作探索出一个数的几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷2/3 的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。
【教学目标】
1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的式题。
2、使学生在探索整数除以分数计算方法的过程中,进一步体会猜想——验证的数学思想方法。
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增强学好数学的自信心。
【教具准备】
课件
【教学过程】
一、谈话导入
同学们,吃是为了汲取生理上的营养,学是为了汲取精神上的养份。今天,我们采用“边品边学”的方式,学习“整数除以分数”。
揭题:整数除以分数
二、提出猜想
1、谈话:老师带来了同样大小的4个橙子(媒体呈现)
如果每人吃2个,可以分给几人怎么列式?
学生口头列式。
提问:为什么用4÷2计算呢?
学生回答后,师小结:也就是说把4个橙子,按2个一份平均分,可以用除法计算。
问:如果每人吃一个呢?
学生口头列式。
2、出示:如果“每人吃1/2 个,可以分给几人”又怎么列式?
学生口头列式,教师板书:4÷1/2
追问:为什么用除法计算?
学生回答后,师小结:就是把4个橙子,按 个一份平均分,因此也是用除法计算(课件出示)
3、谈话:请看屏幕,从图中你数出4÷1/2 得多少?(教师随学生回答板书4÷1/2 =8)
提问:从这幅图中,你还能想到什么?
(一个橙子分给2个人,4个橙子就能分给8个人。)
学生回答,教师恰当评价。
教师针对学生的回答,继续提问:如果这样想又怎样列式?(教师板书4×2=8)
4、思考:仔细对比这两个式子,你有什么发现?
学生先独立思考,再在小组里交流自己的想法。
反馈时恰当评价。(教师板书4÷1/2 = 4×2)
三、进行验证
(一)验证一
过渡:是不是所有的整数除以分数都能用以上几个同学说的方法做呢?这只是我们的猜想,还需进一步验证。(板书猜想、验证)
1、出示:如果每人吃1/4 1/4个,可以分给几人?
学生口头列式
提问:按刚才的方法,可以怎么计算?结果是多少?
(学生回答,教师板书4÷1/4 =4×4=16)
谈话:结果是否正确,我们来验证一下
请每个同学拿出4个同样大小的圆片代表橙子,用笔分一分。
学生操作,教师巡视指导。
反馈:你是怎么分的.,分得结果是多少?(随学生利用实物投影仪演示)
小结:操作的结果和刚才计算的结果是一样的。
2、出示:如果每人吃1/3 1/3个呢?
请学生先列式计算,用圆纸片分一分的方法求证结果是否正确。
反馈交流(辅以电脑演示)
小结:通过验证,再次证明了刚才的猜想是正确的。
(二)验证二
过渡:刚才研究的都是整数除以几分之一的题目,整数除以几分之几的题目,有没有类似的规律,我们继续探索。
1、出示例3(电脑出现图示)
提问:怎么理解2/3 米?
2、让学生独立列式算一算。
3、学生做好后追问:这个结果是否正确,请同学们打开书57也在例3的图中动笔分一分进行验证。
4、学生独立思考后在小组里交流,全班反馈时指名学生在投影仪下演示。
四、获得结论
1、观察比较
学生观察黑板上的一些算式:
4÷ 1/2= 4×2=8
4÷1/3 =4×3=12
4÷1/4 =4×4=16
4÷2/3 =4×3/2 =6
说说这些乘式中的第二个因数与除式中的除数有什么关系?
3、思考概括
通过以上操作活动你认为整数除以分数可以怎样计算? 小组里交流回报。
五、巩固练习
过渡:今天的知识大餐你品出了哪些滋味,不妨来回味一番。
1、填一填 12÷2/3 =12×( 3/2 )=18 9÷6/7 =9×( 7/6 )=21/2
2、找朋友
3、练习十一第5题
先出示前一部分要求,学生想一想后再让学生算一算,体会计算方法的正确性。
4、算一算 10÷2/5 8÷2/3 3÷6/7 12÷8/7
说明:转化成乘法后,能约分的要先约分。
5、算一算、比一比
(1)逐一出示第一组题,师:老师这儿有一组题,比一比谁算得又快又对。准备笔和草稿纸,算出答案马上举手。
提问:做这组题要注意什么?
6、实际问题
谈话:现在,人们出行都有便利的交通工具,下面是自行车、小轿车、摩托车行使30千米所用时间表,你能求出它们各自的速度吗?
提示:单位用千米/时
六、课堂小结
今天学习了整数除以分数的内容,你有什么收获?
明天将要学习分数除以分数,你有什么想法呢?
七、布置作业
书60页第6题。
七年级下册数学优秀教案 篇16
教学目标:
1、知道有理数加法的意义和法则
2、会用有理数加法法则正确地进行有理数的加法运算
3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法
教学重点:
有理数加法则的探索及运用
教学难点:
异号两数相加的法则的理解及运用
教学过程:
一、创设情境
展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?
(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)
二、探求新知
1、甲、乙两队进行足球比赛,
(1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?
(2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?
足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?
(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)
(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?
(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能举出一些运用有理数加法的实际例子吗?
(学生列举实例并根据具体意义写出算式)
3、学生活动:
(1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(3)、你还能再做一些类似的活动,并写出相应的算式吗?
(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的.加法法则。)
4、归纳法则:
观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?
(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)
5、例题精讲:
例1 、计算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)
解:(1)、(-5)+(-3)
= -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)
= -8
(2)、(-8)+(+2)
= -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)
= -6
(4)、5+(-5);
=0 (互为相反的两数之和为0)
6、训练巩固:
1、 p33练一练2
(学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)
7、延伸拓展:
(1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和
(2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明
(这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)
三、课堂小结:
学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。
四、布置作业:
1、课本p41第1题
2、列举一些生活中运用有理数加法的实际例子,并相互交流。
【七年级下册数学优秀教案】相关文章:
七年级数学下册教案02-15
七年级生物教案下册优秀02-01
七年级下册数学教案04-18
人教版七年级数学下册教案01-29
七年级数学下册教案(15篇)03-01
七年级数学下册教案15篇02-19
数学三年级下册优秀教案02-26
七年级下册数学教案9篇07-20
七年级下册数学教案15篇02-16