圆的周长教案

时间:2024-04-26 22:54:51 秀雯 教案 投诉 投稿

圆的周长教案(通用19篇)

  作为一名教职工,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。写教案需要注意哪些格式呢?下面是小编为大家整理的圆的周长教案,欢迎大家分享。

圆的周长教案(通用19篇)

  圆的周长教案 1

  一、教学目标:

  1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。

  2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。

  3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。

  二、教学重点:

  理解圆周率,能计算圆的周长。

  三、教学难点:

  探索并理解圆的周长与直径的商为定值。

  四、教学准备:

  大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。

  五、教学策略:

  自主探索、讨论交流、点拨与练习

  六、教学程序:

  (一)激活目标

  出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?

  (二)活动建构

  1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)

  2、介绍圆周率的由来。

  任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。

  组织学生阅读资料,谈感受。

  3、推导出:c=πd或c=2πr

  4、计算花坛的周长,解决相关问题。

  圆形花坛的`直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?

  (三)解释应用

  一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?

  (四)反馈测评

  1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?

  2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?

  3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?

  (五)课堂小结

  我的最大收获是什么?我有什么遗憾?我有什么疑问?

  希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。

  圆的周长教案 2

  一、教学目标

  【知识与技能】

  掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

  【过程与方法】

  通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

  【情感态度与价值观】

  积极参与数学活动,培养学习数学的兴趣。

  二、教学重难点

  【重点】圆的周长的计算公式。

  【难点】圆的周长公式的推导过程。

  三、教学过程

  (一)导入新课

  创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。

  学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

  教师明确,圆一圈的长度即为圆的周长。

  引入课题——圆的周长。

  (二)探索新知

  1.探索发现

  学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

  学生汇报测量结果及测量方法。

  教师引导学生思考,圆的周长大小与什么有关。

  学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

  教师明确直径是半径的2倍,可看其中一项即可。

  2.探索圆的周长与圆的直径关系

  小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

  小组汇报分享测量结果,教师板书。

  学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

  学生汇报通过多次测量计算比值总在3.1左右。

  教师讲解:实际圆的'周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

  给出圆周率的特点:

  (1)是一个无限不循环的小数;

  (2)我国伟大的数学家祖冲之将其精确到小数点后七位;

  (3)现在为了方便只要取小数点后两位即可。

  (三)应用新知

  问题:大头儿子家圆桌直径为1米,求需要买多长的铁丝?3.1米够吗?

  教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

  (四)小结作业

  提问:通过本节课,你有什么收获?

  课后作业:回家找一个圆形,借助直尺测量,计算出周长。

  四、板书设计

  略

  圆的周长教案 3

  教学目标:

  1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。

  2、使学生理解和掌握圆周长公式,并能运用公式解决现实生活中的问题,培养学生的应用意识。

  3、通过对圆周率有关数学史料的介绍,结合学生对其中数字的感知,使学生体验到数学家对真理的锲而不舍的追求精神和严谨的科学态度,以及中国古代科技的兴盛。

  4、通过合作探究,使学生体验到实验对猜测的验证作用以及对问题的探索过程,并掌握学习方法,感受“转化”的数学思想。

  教学重点:

  经历探索圆周长公式的过程

  教学难点:

  理解圆周率的意义

  教学用具:

  多媒体课件

  学习用具:

  圆形学具、直尺、计算器、记录单

  教学过程:

  一、 情境导入

  (课件:圆形喷水池图片)

  师导语:同学们,你们看,这是一个圆形喷水池。设计师想在喷水池最外圈每间隔0.5米安装一盏地面灯。现在,设计师急切地想知道至少要准备多少盏地面灯就够用了。谁愿意帮助设计师解决这个问题?

  师追问:喷水池外圈一圈的长度叫什么?

  (圆的周长又如何计算呢?)

  引出课题:看来,我们要想帮助设计师,就要先学习“圆的周长”了。(板书课题:圆的周长)

  二、 探究新知

  1、引出定义:赶快拿出你手中的圆形纸片,指着它说说什么是圆的周长?同桌交流。(指名回答,教师板书:围成圆的曲线的长)

  2、猜想:你能猜猜圆的周长可能与圆的哪部分有关系吗?会有什么样的关系呢?说说你为什么这样猜?(随着回答板书:圆的周长直径)

  师导语:同学非常勇敢,积极大胆地进行了猜测,这是我们成功的第一步。但这仅仅是猜测,还不能确定为准确的结论,需要我们做个试验探索,验证一下大家的想法。

  3、指导学习方法:那好,看学习要求。(课件)(指名读)

  师提问:学习要求中提示我们要怎么做?(测量、填记录单、计算、找倍数)

  交流测量方法:你准备用什么方法测量圆的周长,快跟大家说一说。

  滚动法:在尺子上滚动圆,注意在圆上做个标记,正好滚动一周到标记的那一点就能测量出圆的周长了。

  绕绳法:将线绳绕圆一周,再将线绳拉直,测量线绳的.长度就是圆的周长。

  师导语:下面,就请你选用你喜欢的测量方法,测量出你手中的圆的周长和它的直径,并填好记录单,然后找到它们的倍数,得出结论。希望同学们在操作中将误差减少到最小。比一比哪个组合作得最愉快!开始合作!!!

  4、小组合作:教师巡视合作学习情况,参与有困难的组,进行个别的指导。

  5、反馈:请各组选一名代表汇报你们的学习情况,其他同学看大屏幕,观察数据特点,让我们共同总结出结论。(实物投影反馈信息,教师填表,学生观察。)

  圆的周长

  圆的直径

  圆的周长是直径的几倍

  (得数保留两位小数)

  师提问:如果我继续填下去,会出现什么情况?

  那就用字母代替吧。填(C d 三倍多一些)

  6、介绍圆周率:经过大家共同努力,发现圆周长是直径的三倍多一些。这是一个固定的数,我们把这个固定的倍数叫做圆周率。用字母“π”来表示(板书:圆周率 π)指导读:π(pai)。圆周率就是圆的周长与直径的商,(圆的周长÷直径=圆周率 c÷d=π)它的值在3.1415926-3.1415927之间,是一个无限不循环小数。(板书:3.1415926-3.1415927)在小学阶段,我们计算时一般取两位小数,π≈3.14(板书)

  7、介绍祖冲之:每当提到圆周率,人们会自然的想到一个人物——祖冲之。(课件)现在运用计算机可以将圆周率的值计算到小数点后上亿位。

  8、推导圆周长公式:同学们,根据圆周长与直径的倍数关系,你能推导出圆周长公式吗?(板书:c=πd)

  要想求圆的周长,必须告诉大家什么条件?(直径)

  知道半径怎么样求圆的周长?(板书:c=2πr)

  9、课堂小结:在全体同学的共同努力下,我们终于得到了圆周长的计算公式,接下来就要帮助设计师解决问题了。

  10、解决实际问题:

  (1)有了求圆周长公式,只要告诉你什么条件就能够帮助设计师计算出至少准备多少地面灯的问题了?

  (2)你能算出人们围绕这个圆走一圈大约是多少米吗?(课件)

  三、 巩固练习:

  1、口算:在计算圆周长时,我们发现,3.14成为了我们的好朋友。既然这样,就请1——10也来和它交朋友吧!(课件)比比谁的口算能力强?

  2、判断:你能根据今天所学知识进行判断吗?

  3、解答实际问题:生活中处处有数学问题,你们知道自行车车轮转动一周大约是多少米吗?

  4、同学们,你们看。这几位小朋友围坐在一起,正在商量着怎么样才能得到这个大树干的直径是多少米?你能帮他们解决这个问题吗?说说你解决问题的思路。

  四、 谈学习收获:

  圆的周长教案 4

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想

  新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的`探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。

  教学具准备:

  多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

  教学过程:

  一、创设情境,提出问题

  1、创设情境。

  这节课,老师要和同学一起探讨一个有趣的数学问题。

  媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

  2、迁移类推。

  引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

  (1)要求唐老鸭所跑的路程实际就是求什么?

  (2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

  (3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

  3、提出问题。

  看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

  梳理筛选形成学习目标:

  ①什么叫做圆的周长?

  ②怎样测量圆的周长?

  ③圆的周长与什么有关系,有什么关系?

  ④圆的周长怎样计算?

  ⑤圆的周长计算有什么用处?

  二、自主参与,探究新知。

  1、实际感知圆的周长。

  让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

  2、明确圆周长的意义。

  引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

  (1)圆的周长是一条什么线?

  (2)这条曲线的长就是什么的长?

  (3)什么叫做圆的周长?

  学生讨论互补,概括出“围成圆的曲线的长叫做圆的周长”(显示字幕)

  3、测量圆的周长。

  让学生讨论如何利用桌上的工具,探究圆周长的测量方法。

  小组内讨论、合作测量,然后一生向全班演示测量方法。

  (1)绳测法:用卷尺绕圆一周测量。

  (2)滚动法:媒体显示滚圆的动态。

  (3)设疑激趣:师甩动手中系线的小球转成圆,让学生测量此圆的周长。

  师:这就需要探讨一种求圆的周长的科学方法。

  4、引导学生探求圆的周长与直径的关系。

  (1)让学生观察、猜测圆的周长与什么有关系。

  媒体显示:大小不同的两个圆同时的滚动一周留下的轨迹。

  让学生观察这两个圆的周长与直径的长短。

  (2)圆的周长与直径有什么有关系。

  我们知道正方形周长是边长的4倍,那么圆的周长与直径是否也存在一定的倍数关系呢?这个问题让同学们自己去发现,请分组测量圆片,填好实验报告单。

  学生操作实验,小组分工合作,测量圆片的周长和直径,并用计算器计算出它们的比值,填好实验报告单。

  (3)小组汇报实验结果。投影学生报告单,引导观察数据,发现规律:无论大圆或小圆,圆的周长总是直径的3倍多一些。

  (4)媒体验证。屏幕上两个圆的直径分别去度量它们的周长。

  (5)概括结论。任何一个圆的周长都是它直径的3倍多一些。即圆的周长总是直径的3倍多一些。

  5、理解圆周率的意义。

  (1)让学生自学课本第111页第1、2自然段。

  (2)思考讨论:任何圆的周长和直径的比是一个什么数?它叫什么?用什么字母表示。

  (3)π的读写

  (4)介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。

  (5)认识圆周率数字特征和它的近似值。

  6、推导圆周长的计算公式

  (1)由圆周率的概念得到: 圆的周长÷直径=圆周率

  圆的周长=圆周率×直径

  c=πd或c=2πr

  (2)解疑,再现系线小球转成圆。现在会求它的周长吗?只要已知什么?

  三、应用新知,解决问题。

  1、尝试解答例1,点拔讲解规范书写格式。

  2、让学生提问,你对例1的解答有什么疑问。

  3、练习反馈,完成例1下面的做一做。

  四、实践应用,拓展创新。

  1、判断:

  ①π=3.14。( )

  ②圆的周长是它的直径的π倍。( )

  ③圆的直径越长,圆周率越大。( )

  2、求下圆的周长。

  3、应用公式解决实际问题

  (1)生试做

  (2)反馈

  (3)生完成P112做一做

  4、看平面图计算。(媒体显示课始呈现的唐老鸭与米老鼠跑步的画面):如果这个正方形的边长与圆的直径都是5米,你能判断出谁跑的路程多吗?怎样判断?

  五、总结评价,体验成功。

  1、你学到什么?(引导学生进行总结)

  2、怎么学到的?(评价总结,指出这些方法还可以用到今后的学习中去)。

  3、还有什么问题?(回顾本课想学到的知识都学到了没有)。

  六、作业

  1、独立作业:练习二十六第4、5、6题

  2、实践作业:

  3、课后思考题:(媒体显示)米老鼠沿着外圈跑,唐老鸭沿着“∞”字形跑,谁跑的路程多一些?

  圆的周长教案 5

  一、教学内容:

  《义务教育课程标准实验教科书数学》人教版六年级上册第62-64页《圆的周长》

  二、教材分析:

  本节课是学生在学习了长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识。这为学生认识、概括、归纳圆的周长提供了知识技能基础。在教法上,以“铺垫——探究新知——运用新知”为主线,又在各个环节中设置由浅入深、由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。

  三、设计理念:

  本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  四、教学目标:

  1. 让学生知道什么是圆的周长。

  2. 理解并掌握圆周率的意义和近似值。

  3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。

  4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。

  5. 结合圆周率的学习,对学生进行爱国主义教育。

  五、教学重点:

  推导圆周长的计算公式,准确计算圆的周长。

  六、教学难点:

  理解圆周率的意义。

  七、教学准备:

  老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等。

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  八、教学过程:

  (一)、创设情境,引起猜想

  1、激发兴趣,引出课题

  播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。

  问:同学们,你认为这样的比赛公平吗?

  2、认识圆的周长

  (1)回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  (2)认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  【设计理念】播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基础

  3、讨论正方形周长与其边长的关系

  (1)我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  (2)怎样才能知道这个正方形的周长?说说你是怎么想的?

  (3) 那就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  【设计理念】正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

  4、讨论圆周长的测量方法

  (1)讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  (2)反馈:(基本情况)

  <1>.“滚动”——把实物圆沿直尺滚动一周;

  <3>.“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (3)小结各种测量方法:(板书)转化曲 直

  (4)创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  (5)明确课题:

  今天这节课我们就一起来研究圆周长的计算方法。 (板书课题:圆的周长)

  【设计理念】教师引导学生结合具体实物想到采用不同的方法进行测量,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的.圆不能进行实际测量,既留给学生自主发挥的空间,又不断设置认知冲突,在遵循学生认知规律的前提下,有效地培养了学生思维的创造性。

  5、合理猜想,强化主体

  (1)请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论交流。

  (2)正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?向大家说一说你是怎么想的?

  (3)正方形的周长总是边长的4倍。再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  (4)小结并继续设疑

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  【设计理念】在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程中的主体地位。

  (二)、实际动手,发现规律

  1、分组合作测算

  (1)明确要求

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。(为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。)

  4、总结圆周长的计算公式

  (1) 如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长 =直径× 圆周率 用字母表示就是:C=πd

  (2) 如果知道圆的半径,又该怎样计算圆的周长呢 板书: C =2πr

  【设计理念】本环节选取一元硬币、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程,在理解圆周率意义的过程中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

  (三)、巩固练习,形成能力

  1.判断并说明理由:π =3.14 ( )

  2.选择:大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确的是:( )

  a.大圆的圆周率大于小圆的圆周率,大圆的圆周率小于小圆的圆周率;

  b.大圆的圆周率等于小圆的圆周率。

  3.实际问题:我家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,我至少需要准备多长的花边?

  (四)、小结:通过今天的学习,你有什么收获?

  【设计理念】练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题抓住了新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学、用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

  (五)、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆绕8字跑,谁跑的路程近

  附:板书设计

  圆的周长

  意义:围成圆的曲线的长度叫做圆的周长

  测量: 化曲为直法:滚动、拉直

  圆周率:(字母π);计算取值:3.14。

  公式: 因为c÷d=π 所以c=πd 或c=2πr

  圆的周长教案 6

  教材分析:

  圆的周长是在学生学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步来学习的。从生活实际入手,利用学生掌握的有关圆的知识,通过实验得出结论。

  学情分析:

  本单元第一部分通过对圆的研究,使学生初步认识了研究曲线图形的基本方法,也渗透了曲线图形与直线图形的内在联系。前期的学习和认识都为学生学习研究“圆的周长”奠定了良好的知识、方法基础和铺垫。“圆的周长”教学部分,教材在编排上加强了启发性和探索性,注重让学生动手操作,使学生在实践活动中通过交流、思考来探究,逐步导出和掌握计算公式。教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径、半径的关系,验证猜测等过程理解并掌握圆的周长计算方法。

  教学目标:

  知识与技能:知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

  过程与方法:通过对圆周长的测量和计算公式的探讨,培养学生的观察、猜测、比较、分析、综合和主动研究、探索解决问题方法的能力。

  情感态度与价值观:初步学会通过现象看本质的辩证思想方法,渗透“化曲为直”的数学思想,培养爱国主义情感,激发民族自豪感。

  教学过程:

  (一) 创设情景,导入课题。

  1、创设情境。

  (1)、教师出示熊大和光头强跑步比赛,请同学判断比赛的公平性并说明原因。

  师:学习新知识之前,老师想邀请大家一起来看一场比赛,每个同学都是裁判,有没有兴趣?比赛开始!

  (2)、师:看到这儿,你对这个比赛有什么看法?

  学生判断比赛的公平性并说明原因。

  学生发表看法,可能的回答如下

  生1:不公平,因为光头强沿着正方形跑,熊大沿着圆形跑。

  生2:不公平,因为正方形的周长比圆形的周长要长。

  ……

  (3)、教师小结,引出本节课题。

  师:看来,这个比赛与跑道的周长有关系。上节课同学们已经认识了圆,这节课我们就一起来研究圆的周长。(板书课题)

  设计意图:通过熊大和光头强比赛的情景创设,一方面是激发学生的学习兴趣和参与研究的主动性,体会数学与生活的密切联系;另一方面通过两种图形路程的不同,引出新课。

  2、认识圆的周长 。

  (1)、师:什么是圆的周长?怎样求圆的周长?

  (2)、教师出示圆形纸片。师:谁能上来指一指,哪个长度是这个圆形纸片的周长。

  (3)、教师在大屏幕上用flash动画出示圆环框架并小结。

  师:同学们说的很好,围成圆的曲线的长就是指圆的周长。

  设计意图:本环节的设计是让学生初步感知本课的知识范围,做好心理铺垫;老师展示的目的是为下面“化曲为直”的方法打基础。

  3、讨论圆的周长的测量方法。

  (1)师:要想测量这个圆的周长,能用直尺直接测量吗?为什么呢?

  (2)、师:你们有没有办法来测量它的周长?把你的方法在小组内交流一下。

  学生分组讨论,小组代表发言:

  生1:不能,因为圆的.周长是一条曲线,而直尺是直的!

  生2:把圆片放在直尺上滚动一周,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准另一刻度线,这时圆正好滚动一周。圆滚动一周的长就是圆的周长。(滚动法)

  生3:用一条长线把圆绕一周,捏紧这两个正好连接的端点,把线拉直,这两点之间的线的长就是圆的周长。(绕线法)

  (3)、教师跟随小组代表发言,用边演示边总结测量方法。

  教师小结:看来,同学们不论是用绕线法也好,滚动法也罢,都是非常巧妙地将曲线转化成了直直的一条线段再来测量,也就是一种化曲为直的方法,你们真是太棒了!

  师:(出示一个很大的圆形摩天轮)你能用这两种方法测量它的周长吗?

  看来,这两种测量的方法还是有一定的局限性的,那你们有什么好办法?

  设计意图:通过尝试性的动手测量,使学生较为牢固地掌握了周长的概念,也很好地培养了学生的动手操作能力,在这个过程中使学生切身体会到“化曲为直”的转化思想。

  (二) 自主学习,探究新知。

  1、猜测。

  师:正方形的周长与它的边长有关,那么,请你大胆猜想,圆的的周长与什么有关呢?(播放)

  2、探讨圆的周长与直径的关系。

  师:圆的周长和直径到底有什么样的倍数关系呢?现在我们就以小组为单位,测量3个大小不同的圆片的周长与直径,并通过合作的方式完成实验报告单,各组组长要 分工明确。(出示操作要求并播放轻音乐)

  圆的名称

  直径

  周长

  周长÷直径的商

  我们的结论:

  圆的周长是直径的(3)倍(多)一些。

  设计意图:训练了学生的思考习惯,也为下面学习找准方向,充分尊重了学生的主体地位。 本环节重在加强学生小组合作、合理分工、条理思考、大胆推理与清楚表达的指导,旨在为每一位学生的自主学习创造机会与条件,使每一位学生在自己的参与、思考与经历中获得经验认识,培养学生良好的数学学习方法、习惯和数学思考能力。

  3、 共同发现 。

  师:同学们,和大家分享一下你们测量的数据和计算结果,好吗?仔细观察实验报告单上的计算结果,你们有什么发现?

  生:我发现圆的周长都是直径的3倍多一些。

  每个小组汇报完后,把实验报告单粘贴在黑板上)

  4、 介绍圆周率。

  师:你们可真了不起,刚才,同学们测量了大大小小不同的圆,但却有着相同的发现,那就是任何圆的周长都是它直径的3倍多一些。其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是3倍多一些。这个倍数是一个固定不变的数,我们它叫做圆周率(板书)。(介绍误差)用字母π来表示。读法与写法。

  师:其实,有关圆周率的知识还有很多,那么我们就一起走进兔博士网站了解一下圆周率的由来。(播放)

  师:看完这些资料,你有何感想?

  设计意图:通过播放有关祖冲之的资料,引导学生发表感触,及时激励学生,对学生进行爱国教育,增强民族自豪感!

  5、推导圆的周长公式 。

  师:在计算时为了方便,我们只取它的近似值,π≈3.14,你能根据我们的结论推导出圆的周长公式吗?

  生:因为圆的周长总是它直径 的π倍。所以圆的周长=直径X圆周率。如果用C表示圆的周长,那么C=πd或C=2πr

  C=πd或C=2πr(板书)

  (三)、运用知识,解决问题。

  (1)出示图形题。

  师:你这样列式分别应用了哪个公式?

  (2)我是小法官。

  1、π=3.14 ( )

  2、大圆的圆周率大于小圆的圆周率。( )

  3、圆的周长总是直径的π倍。 ( )

  (3)走进生活,解决生活问题

  1、一面圆镜的镜面直径是25厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米 ?

  2、车轮转动一周,哪号车走得远?为什么?

  车轮转动一周走的距离和什么有关系?

  (4)运用今天所学知识,解决课开始的跑步比赛的公平性!

  设计意图:本环节主要为了检验学生利用知识解决问题的能力,第4题的设计为了照应开头;拓展延伸设计旨在提高学生对数学新知的应用能力和灵活变通能力,激发学生再创造的愿望和热情,真正提高学生的数学素养。

  (三)课堂小结。

  通过我们今天的学习,你们都有哪些收获?生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收获更多的快乐!

  (四)布置作业。

  1、课后习题1—3题。

  2、在数学日记中叙述一下你对圆周率的理解。

  圆的周长教案 7

  教学目标:

  1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

  2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

  3.学生感受平面图形的学习价值,进一步提高学习数学的'兴趣和学习数学的信心。

  教学重点:

  探索已知圆的周长,求这个圆的直径或半径的方法。

  教学难点:

  能熟练运用圆的周长公式解决实际问题。

  课前准备:

  多媒体课件

  教学设计:

  一、教学例6。

  ⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

  ⑵ 课件出示测量的结果:花坛的周长是251.2米。

  小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

  ① 在小组中说说自己的想法。

  ② 展示自己是怎么解答的。

  ⑶ 全班展示、交流。

  ① 根据圆周长公式C=πd列方程解答。

  解:设这个花坛的直径是x米。

  3.14x=251.2

  x=251.2÷3.14

  x=80

  ② 直接用除法计算。

  251.2÷3.14=80(米)

  ⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

  小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间的关系计算。

  2.习“试一试”。

  二、巩固拓展

  1.成“练一练”。提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

  2.成练习十四第5题。

  3.成练习十四第6题

  4.成练习十四第7题。

  5.生完成练习十四第8题。

  6.成练习十四第9、10题。

  三、总结延伸

  本节课,你有哪些收获?还有什么疑问?

  板书设计:

  圆的周长教案 8

  教学目标:

  用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。

  教学过程:

  一、探究解决问题的'方法。

  ⑴出示情境图。

  ⑵介绍解决方法。

  1、251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。

  2、解:设花坛的直径是x米。x×3.14=251.2,然后解方程。

  ⑶沟通两种方法间的联系。

  师生一起解方程:x=251.2÷3.14,x=80。

  观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。

  ⑷联想。

  想:算出圆的直径有什么价值。

  可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。

  二、多种练习,内化知识。

  ⑴独立完成试一试和练一练。

  ⑵解答练习十八第6题。

  独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。

  ⑶解答练习十八第8题。

  学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。

  三、作业,练习十八第7题。

  圆的周长教案 9

  教学目标:

  1.让学生经历已知一个圆的周长求这个圆的直径或半径的过程,体会解题策略的多样性。

  2.进一步理解周长、直径、半径之间的关系, 能熟练运用圆周长的公式解决一些实际问题。

  3.感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  已知一个圆的周长求这个圆的直径或半径。

  教学难点:

  理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

  教学准备:

  圆形图片。

  教学过程:

  一、复习旧知,引入新知

  提问

  1.什么是圆的周长?圆的周长计算公式是什么?

  2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?

  指名回答,明确计算方法。

  3.口答,求下列各圆的'面积。

  (l)r=2cm r=3cm r=5cm

  (2)d=2cm d=3cm d=5cm

  4.引入:知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。(板书:圆的周长计算的实际运用)

  二、合作交流,探究新知

  1.教学例6。

  (1)出示例6的情境图,指名读题,并且找出条件和问题。

  (2)讨论:如何准确地测算出这个花坛的直径?

  (3)交流后,明确:先测量出这个花坛的周长,再利用圆的周长计算公式计算

  花坛的直径。

  (4)出示测量结果:花坛的周长是251.2米。

  (5)学生独立完成。

  (6)集体订正,教师板书

  方法一:列方程解答。

  解:设花坛的直径是x米。

  3. 14x=251.2

  x=251. 23. 14

  x=80

  答:花坛的直径是80米。

  方法二:算术方法解答。

  251. 23. 14 =80(米)

  答:花坛的直径是80米。

  (7)师:两种方法有什么相同点和不同点?你喜欢什么方法?

  2.小结。

  (l)提问:已知圆的周长,如何求圆的半径或直径?

  (2)学生回答,教师板书

  ①列方程解答。

  ②d=C r=C 2

  三、巩固练习,加深理解

  1.完成练一练。

  (1)学生独立完成。

  (2)集体交流。

  2.完成练习十四第8题。

  (1)借助圆柱形教具演示,帮助学生理解什么是树干横截面。

  (2)学生独立思考并计算。

  (3)集体交流。

  3.完成练习十四第9题。

  (1)理解拱门的高度的含义。

  (2)学生独立计算。

  (3)集体订正。

  4.完成练习十四第10题。

  (1)学生独立思考。

  (2)集体交流,明确:可以通过计算来比较,也可以根据周长的计算公式来直接比较。

  5.作业:练习十四第6、7、10题。

  四、课堂小结

  师:通过这节课的学习,你有什么收获?

  学生发言,教师点评。

  板书设计:

  圆的周长计算的实际运用

  方法一:列方程解答。

  解:设花坛的直径是x米。

  3. 14x=251.2

  x=251. 23. 14

  x=80

  答:花坛的直径是80米。

  方法二:算术方法解答。

  251. 23. 14 =80(米)

  答:花坛的直径是80米。

  d=C r=C 2

  圆的周长教案 10

  【教学目标】:

  1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。

  2、能运用圆的周长的计算公式解决一些简单的数学问题。

  3、初步体会转换思想,学到一些解决实际问题的数学方法。

  【教学重点】:

  通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。

  【教学难点】:

  理解圆周率的意义

  【教学难点】:

  教师:课件(U盘)、表格、卷尺。

  学生:线或卷尺、计算器。

  【教学过程】:

  (1)教学准备:

  1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,8就是2的4倍,要求8是2的几倍,用8÷2。”填空。

  6是3的( )倍。 20是5的( )倍。

  22是7的( )倍。

  2、把倍数关系句改写成等式。

  ①6是3的2倍 ( )

  ②20是5的4倍。 ( )

  ③22是7的22/7 倍。( )

  ④C是d的a倍。( )

  3、 数学是一门关系学

  正方形的周长与边长的关系

  C=4a

  正方形的周长 是 边长的4倍

  (2)新授过程。

  自学课本第62页,思考

  1、什么是圆的周长?

  答:围成圆的曲线的长是圆的周长。

  2、直观认识圆的周长。演示动画。

  3、你认为 圆的周长与正方形的周长最大的不同在哪里?

  4、课本里介绍了几种度量圆的周长的方法?

  围绳法 滚动法

  5、动画演示滚动法

  6、哪个圆大?哪个圆的`周长大?圆的大小由什么决定圆周长

  的大小与什么有关系?

  7、猜想、判断。周长与直径比哪个长?周长是直径几倍?

  8、动手操作验证猜想

  其实,很早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。

  π是一个无限不循环小数。

  π=3.141592653……

  在实际应用中常常只取它保留两位小数的近似值,π≈3.14。

  9、投影展示π的前900位,体会π的小数数位的庞大。

  10、圆周率前6位谐音记忆

  π=3.14159…… 山 巅一寺一壶酒 巅 diān

  11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd

  c=2πr。

  12、对比 : c=4 a c=πd

  (三)知识应用。求下面圆的周长

  (四)课堂作业。《课本》P65 练习十四 1题、2题

  圆的周长教案 11

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第1112页圆的周长。

  【教学目标】

  1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

  2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

  3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

  【教学重、难点】

  1、探索发现圆的周长与直径的关系;

  2、运用圆周长的知识解决一些简单的实际问题。

  【教具、学具准备】

  1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

  2、课件1:阿凡提与国王比赛A、B

  课件2:圆的周长与直径的商的关系

  课件3:祖冲之有关资料

  【教学过程 】

  一、创设情境

  师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。 国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)

  50米

  师:同学们看,比赛开始了 紧张的比赛结束了。今天的比赛谁获胜了?

  生:国王的小花驴获得了胜利

  师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

  师:说说你是怎么想的?

  生:他们的小毛驴跑的路程不是一样长。

  师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

  生:量一量就知道了,师:谁能说说正方形的周长和什么有关系,有怎样的关系?

  生:正方形的周长和边长有关系,周长是边长的4倍,师:也就是说只要测出正方形的一条边长就可以 知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢 ?

  师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

  得出:围成圆的曲线的长叫圆的周长。

  二 自主合作,探究新知

  (1)发现测量圆的周长的不同方法

  师:下面请同学们把准备的圆拿出来,那圆的周长指的.是哪一部分的长,同桌互相比画一下。

  师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

  师:把你的好方法在小组内交流一下。

  (上台交流测量的方法)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

  生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以2,就可以求出圆的周长。

  师板:线绕、滚动、拉直 化曲为直

  (2)探究发现圆周率和圆的计算公式

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

  生:不行,圆太大了,测量不出来!

  师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

  生:有些圆的周长没办法用绕线和滚动的方法测量出来

  师: 那我们能找到一种更简便、更科学的办法来解决这个问题吗?

  师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

  生:周长是直径的2倍, 生:他们一样长, 生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)

  师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

  生:动手量一量,算一算,师:说的真好,这可是解决问题的好办法动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:

  1、小组同学作好分工,选好测量员、记录员、汇报员。

  2、记录员要及时地把测量员测量的数据记录在书上的表格里。

  3、可以用科学计算器帮忙算一算周长和直径的商。

  可以用科学计算器帮忙算一算周长和直径的商。

  师:好,现在我们来交流一下你们的实验结果。

  生:实物展台交流。

  师:大家仔细观察分析,看能发现什么?

  (厘米) 圆的直径

  (厘米) 周长与直径的商

  (保留两位小数)

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。

  生:所有圆的周长都是直径的3倍多一些,师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

  生:圆不论大小,它的周长都是直径的三倍多一些。

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数!你们的这个发现和许多大数学家的发现不谋而合,师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母表示。(板书:圆的周长直径=圆周率)

  师:关于圆周率,大家都知道什么?你说,生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,师:老师也收集了一些有关的资料,大家想看吗?

  看屏幕,这就是祖冲之,(课件介绍祖冲之 )

  师:我们通过圆的周长除以直径得到了也就是圆周率(板书:Cd=)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

  生回答、师板书:Cd= C= C=d

  d=2r C=2 C2=r

  圆的周长教案 12

  教学目标

  1、理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。

  2、培养学生的观察,比较,概括和动手操作能力。

  3、结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

  教学重点

  掌握并理解圆的周长,公式推导过程。

  教学难点

  理解圆周率的意义。

  教学过程

  一、创设情境,提出问题

  1、师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。

  2、你们知道这圈花边的边长是什么 (生:圆的周长。)

  3、用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法

  二、师生共同提出假设

  1、请学生回忆正方形周长和边长的关系。(边长×4)

  2、师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢

  生:半径,直径……

  3、请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么?

  学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。

  4、师:你估计圆的周长是其直径的几倍

  生猜想:3倍左右。

  5、师:你有办法验证吗 生讨论

  教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。

  三、合作交流,发现规律

  1、学生思考后可能出现的以下办法:

  ⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。

  ⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。

  师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢

  ⑶ 学生在小组内动手操作,测量进行验证。

  a”圆的周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3.14159……是一个无限不循环小数,我们在计算时通常取3.14,用字母π表示(请学生写一写)

  b结合圆周率进行爱国注意教育。

  c师生共同推导计算圆的周长公式。

  教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。

  四、实践应用,拓展新知

  1、学生尝试求圆的周长

  d=2cm r=3.5cm d=10cm

  2、圆形花坛的直径是20cm,它的`周长是多少m

  3、请同学们画一个周长是15cm的圆。

  教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。

  五、体验成功

  1、通过这节课的学习,你学会了什么

  2、课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm

  板书设计:

  圆的周长

  围成圆的曲线的长叫做圆的周长。

  c=πd c=2πr

  圆的周长教案 13

  教学内容:

  圆的周长的综合练习

  教学目标:

  通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的'半径或直径。

  教学重点:

  理解圆的半径、直径、周长之间的关系

  教学难点:

  能运用知识解决一些实际问题

  教学过程:

  一、揭示课题

  今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。

  板书课题:圆的周长

  二、练习指导

  基本练习(口答)

  ⑴在同一个圆内,所有的半径( ),所有的直径( ),直径是半径的( ),半径是直径的( )。

  ⑵( )决定圆的位置,( )决定圆的大小。

  ⑶什么是半径?什么是圆的直径?

  ⑷圆的周长总是它直径的( )倍,它是一个固定不变的数,用字母( )表示。

  练习指导

  1、求下面各圆的周长

  d=2米 d=1.5厘米 r=6分米

  2、求下面各圆的直径

  C=28.26厘米 C=50.24米

  3、求下面各圆的半径

  C=12.56米 C=314厘米

  以上几题均由学生板演,其余齐练

  全班讲评,订正

  三、解决实际问题

  1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?

  2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?

  3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。

  ①他一分钟可行驶多少米?

  ②他要通过2180米长的大桥,大约需要几分钟?

  四、课终小结

  今天我们练习了什么?你有什么收获?

  圆的周长教案 14

  教学目标:

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育。

  教学重点:

  推导圆的周长的计算公式,准确计算圆的周长。

  教学难点:

  理解圆周率的意义。

  教具准备:

  圆片、铁圈、绳子、直尺。

  教学方法:

  观察、演示、小组合作交流

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:花花和亮亮进行赛跑比赛,(如图)花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

  (3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  二、经历探究全程,验证猜想发现。

  ㈠圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  ㈡圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

  三、感受数学文化,激发情感教育。

  1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到比较精确的圆周长和直径的比值在和之间。这个结论在当时的`世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  2、介绍计算圆周率的情况。

  3、教学圆周率:π≈。

  四、归纳圆的周长的计算公式。

  学生讨论:

  (1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd或C=2πr

  五、应用圆周长计算公式,解决简单的实际问题。

  多媒体出示例1:一张圆桌面的直径是米,这张圆桌面的周长是多少米?(得数保留两位小数)指名读题,自己列式解答(1生板演)

  六、巩固新知。

  1、请学生说说怎样计算圆的周长?用字母又怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

  2、尝试练习:一辆自行车车轮的直径是米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)

  3、明辨是非:

  ⑴圆的周长和直径的比的比值叫做圆周率。( )

  ⑵大圆的圆周率大于小圆的圆周率。( )

  ⑶π的值等于。( )

  ⑷半径是10厘米的圆,它的周长是厘米。( )

  4、抢答:求下面各圆的周长:d=2厘米,d=3厘米,d=4厘米,d=5厘米,d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。

  七、质疑、小结:这节课你有什么收获?谁还有疑问?

  八、布置作业:练习四3、4、5题。

  圆的周长教案 15

  教学目标:

  用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。

  教学过程:

  一、探究解决问题的方法。

  (1)出示情境图。

  (2)介绍解决方法。

  1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。

  2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。

  (3)沟通两种方法间的联系。

  师生一起解方程:x=251.2÷3.14,x=80。

  观察解方程的'第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。

  (4)联想。

  想:算出圆的直径有什么价值。

  可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。

  二、多种练习,内化知识。

  (1)独立完成试一试和练一练。

  (2)解答练习十八第6题。

  独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。

  (3)解答练习十八第8题。

  学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。

  三、作业,练习十八第7题。

  圆的周长教案 16

  教学目标:

  1.使学生进一步掌握圆的周长计算公式,能应用公式求圆的直径或半径,正确解决求圆的直径或半径的简单实际问题。

  2.使学生通过圆的周长公式的实际应用,进一步掌握圆的半径、直径和周长间的关系,感受利用公式列方程解决简单实际问题的过程,提高分析和解决问题的能力。

  3.使学生感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  探索已知圆的周长,求这个圆的直径或半径的方法

  教学难点:

  运用圆的周长公式解决实际问题

  教学过程:

  一、复习引入

  1.什么是圆的周长?圆的周长计算公式是什么?

  2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?

  指名回答,明确计算方法。

  3.知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。

  二、自主先学

  出示例6和导学单

  1.题中的已知条件和所求问题是什么?。

  2.如何准确地测算出这个花坛的.直径?

  3.还有别的方法吗?

  三、小组讨论

  四、交流展示

  方法一:列方程解答。 解:设花坛的直径是x米。

  3. 14x=251.2

  x=251. 23. 14

  x=80

  答:花坛的直径是80米。

  方法二:算术方法解答。 251. 23. 14 =80(米)

  答:花坛的直径是80米。

  五、质疑拓展

  问:两种方法有什么相同点和不同点?你喜欢什么方法?为什么?

  小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间的关系计算。

  问:已知圆的周长,如何求圆的半径或直径?

  学生回答,教师板书

  ①列方程解答。②d=C r=C 2

  六、检测反馈

  1.完成练一练。

  (1)学生独立完成。

  (2)集体交流。

  提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

  2.完成练习十上第6题

  各自填表,说说半径、直径和周长的关系

  3.完成练习十四第8题。

  (1)借助圆柱形教具演示,帮助学生理解什么是 树干横截面

  (2)学生独立思考并计算。

  (3)集体交流。

  4.完成练习十四第9题。

  (1)理解拱门的高度的含义。

  (2)学生独立计算。

  (3)集体订正。

  5.完成练习十四第10题。

  (1)学生独立思考。

  (2)集体交流,明确:先求出花圃的周长,再求出种的棵数。

  6.作业:练习十四第8、10题。

  七、课堂小结

  通过这节课的学习,你有什么收获?

  圆的周长教案 17

  教学目标:

  了解圆的定义和性质掌握圆的周长公式能够应用圆的周长公式解决实际问题

  教学重点:

  圆的定义和性质圆的周长公式

  教学难点:

  如何应用圆的周长公式解决实际问题

  教学内容:

  一、圆的定义和性质

  圆是指平面上所有到圆心距离相等的点的集合。

  圆的性质:

  圆心到圆上任意一点的距离相等圆的直径是圆上任意两点之间距离最大的线段圆的半径是圆心到圆上任意一点的距离圆的周长是圆上任意一点到该点相邻两点之间的弧长之和

  二、圆的周长公式

  圆的周长公式为:

  C=2πr

  其中,C表示圆的周长,r表示圆的半径,π是一个常数,约等于。

  三、实际问题的`解决

  应用圆的周长公式解决实际问题的步骤:

  确定所求问题中的圆的半径或直径根据圆的周长公式计算圆的周长

  例如:

  一个圆的半径为10cm,求其周长。

  确定问题中的圆的半径为10cm根据圆的周长公式计算圆的周长:

  C=2πr=2××10=

  答案为

  再例如:

  一个圆的直径为20cm,求其周长。

  确定问题中的圆的直径为20cm根据圆的周长公式计算圆的周长:

  C=2πr=2××10=

  答案为

  四、教学方法

  本节课采用讲解和练习相结合的教学方法,让学生通过实际问题的解决来理解圆的周长公式的应用。

  五、教学评价

  本节课的教学评价主要通过学生的课堂表现和课后作业完成情况来评估。课堂表现包括学生的听课态度、课堂参与度、问题解答能力等方面;课后作业主要考察学生对圆的周长公式的掌握程度和应用能力。

  圆的周长教案 18

  一、教材分析

  “圆的周长”是人教版第十一册第四单元的教学内容。它是研究曲线图形的开始,也是今后学习圆面积及圆柱、圆锥等几何知识的基础。

  教材从生活情境入手,先让学生思考自行车绕圆形花坛骑一圈大约有多少米,从而引出圆的周长的概念。接着引导学生思考怎样用不同的方法测量圆的周长,在实践中逐渐体会到有些圆不能测量出周长,怎么办?在此基础上,探索圆周率,并归纳总结计算公式、运用公式解题。为了有效内化计算公式,教材安排了相应的变式应用练习。

  笔者以为,本教材有以下特点:一是层次分明、思路清晰、逻辑性较强;二是特别重视实验操作,突出直观教学,让学生在丰富的感性认识的基础上学习新知;三是注重培养学生的实验探究、归纳总结和发现规律的能力;四是通过圆周率的介绍,渗透了爱国主义教育。

  二、学生分析

  学生在三年级上册已经学习了周长的一般概念,熟练掌握了长(正)方形周长的计算方法。教材直观的情境导入,让学生理解圆周长的概念会很容易。学生已具备测量圆周长的基本技能,关键是圆的周长与什么有关,有什么样关系学生难以想到;或者容易受长方形、正方形周长公式影响,以为圆周长与直(半)径也一定成整数倍关系。这就需要教师适当引导、点拨,通过组织学生进行测量、计算、比较分析等探究活动,找出规律,总结特征。

  三、学习目标

  知识与技能:理解圆周率的意义,掌握圆的周长的计算公式。

  过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

  情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育

  其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。

  四、教学过程:

  (一)复习铺垫

  1.复习圆的认识。

  2.出示长方形、正方形及几个不规则图形,让学生指一指它们的周长,明确其计算结果用的是长度单位。

  以上两步同时进行,为理解圆周长的含义做好铺垫。

  (二)教学新知

  1.在情境中内化概念

  (1)具体感知圆周长的概念。

  出示情境图(小蚂蚁在正方形和圆形路口爬行),谁能说说小蚂蚁走哪条路近一些?

  说明,小蚂蚁走过的路程实际上就是圆的的周长。

  师生共同小结:围成圆的曲线的长是圆的周长。

  (2)板书课题。

  2.在探究中理解公式

  (1)设疑激思

  鼓励学生用不同的方式测量圆的周长。

  用绳测和滚动测量法,测量自己的.学具圆获圆形实物的周长。

  学生测量了这些圆的周长以后,教师进一步提问:“要是有一个很大的圆,怎么测量它的周长呢?如学校的圆形花坛。”如果学生说用卷尺绕花坛一周进行测量,教师可以举出更多的圆的例子,如空中划出的圆形,引导学生寻求更为一般化的方法。

  学生猜想圆的周长是否也有计算公式时?

  激思:圆的周长与什么有关?与直径到底有什么关系?

  (2)操作填表

  同桌两人一组,正确测量学具圆(实物)的周长和直径。并逐一汇总填表。

  再次操作:修正自己的测量结果。

  (3)比较发现

  分别引导学生竖向和横向看表格,比较找规律,计算圆周长和直径的比值,最后比较、分析、归纳出圆周长是直径的3倍多。

  (4)归纳总结

  介绍圆周率和祖冲之的故事。

  推导公式:圆周率=圆周长/直径;推出圆周长=圆周率×直径,圆周长=2×圆周率×半径。

  几下字母公式。

  3.在运用中强化公式

  教学例1独立解题。

  练习:口头列式并讲算理,巩固公式。

  (三)巩固练习(图略)

  基本练习。判断题,直接求周长。

  变式练习。在边长4分米的正方形内化画一个最大的圆,再求周长。

  综合练习。求阴影部分的周长。

  五、教学反思

  1、课前预设的学生活动太少,数学上没有从活动中探究新知;

  2、课前对学生原有任职的单位太简单,没有具体到学生。

  圆的周长教案 19

  【教学资料】

  圆周长计算公式的推导,周长计算。(人教版《义务教育课程标准实验教科书·数学》六年级第62~64页的教学资料。)

  【教学目标】

  1.理解圆周率的好处,推导出圆周长的计算公式,并能正确的进行简单的计算。

  2.培养学生的观察、比较、分析、综合及动手操作潜力。

  3.领会事物之间是联系和发展的辩证唯物主义观念以及通过现象看本质的辨证思维方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  【教学重点与难点】

  重点:圆的周长计算公式的推导,能利用公式正确计算圆的周长。

  难点:深入理解圆周率的好处。

  【教材分析】

  “圆的周长”概念的教学,是以长方形,正方形周长知识为认知基础的,是前面学习“圆的认识”的深化,“圆的周长”计算方法的教学,是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的`面积”以及今后学习圆柱、圆锥等知识的基础。因此它起着承前启后的作用,是小学几何初步知识教学中的一项重要资料。

  【学情分析】

  学生在学习圆的周长前已经理解了周长的好处,掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,明白半径,直径的关系并且会画圆,能测量出圆的直径。这节课是在这样的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。同时学生对各项动手操作的实践活动十分感兴趣,并且本班大部分学生思维活跃,善于动脑思考,有必须的自主学习潜力,相互探讨学习的风气较浓,对新事物比较感兴趣,平时教学中,经常开展小组合作式的探究学习活动,学生有较强的合作意识。老师只要充分发挥、调动他们的积极性,他们是乐意做课堂的主人的!

  【教学用具准备】

  教师准备:PPT课件、细绳、直尺、绳子系的小球。

  学生准备:圆形物品、圆形橡筋、直径为2、3、5厘米的圆形纸片、直尺、三角板、棉线、软皮尺、剪刀、实验报告单、计算器。

  【设计理念】

  我们的课堂是生活的课堂,生命的课堂。但是,在现实的课堂中“为讨论而讨论”、“为合作而合作”、“为活动而活动”等华而不实虚有其表的教学现象频频出现。细细反思,教学观念与教学行为之间的距离主要涉及到课堂教学的有效性问题。如我在本课设计上力求为学生创设“探究──发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华,从而使小组交流、师生交流、生生交流得以有效进行。我在教学中采取的策略如下:

  1、利用现代教育技术,发挥强大的演示作用。

  《圆的周长》从激趣引入、演示操作、指导探究、练习的出示都充分应用现代教育技术将文字、图形、动画、声音等多种信息加工组成在一起来呈现知识信息的特点,使学生在学习的过程中,充分调动他们的感官,激发他们的学习兴趣,调动他们学习的积极性,同时把知识的构成过程有效的呈现给学生。

  2、在操作中感悟。

  教学过程是教师引导学生把人类的知识成果转为个体认识的过程,是一处“再创造”的过程。在这个过程中,实践操作是最基本、最重要的手段和方法之一。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。

  3、在探究中发现与拓展。

  儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过测量圆的周长、探讨圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。

  总之,课堂应是师生互动、心灵对话的舞台;课堂应是师生共同创造奇迹、唤醒各自沉睡的潜能的时空;课堂应是向在场的每一颗心灵都敞开温情双手的怀抱,平等、民主、安全、愉悦是她最显眼的标志。

  【设计思路】

  从本课教学资料整体看,我的设计思路是下面的图:

  圆周长认识

  圆周长获取

  测量

  圆周率

  圆周长应用

  公式

  计算

【圆的周长教案】相关文章:

《圆的周长》教案02-06

圆的周长教案01-01

关于圆的周长教案01-15

【精选】圆的周长教案三篇08-05

圆的周长教案(精选20篇)11-28

圆的周长教案15篇01-01

圆的周长教案(15篇)01-10

《圆的周长》教案15篇02-26

圆的周长教案精选15篇03-13

圆的周长教案(精选15篇)02-23