八年级数学上册教案

时间:2023-02-27 12:10:38 教案 投诉 投稿

八年级数学上册教案

  作为一名老师,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?下面是小编帮大家整理的八年级数学上册教案,欢迎大家借鉴与参考,希望对大家有所帮助。

八年级数学上册教案

八年级数学上册教案1

  一、创设情景,明确目标

  多媒体展示:内角三兄弟之争

  在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?

  二、自主学习,指向目标

  学习至此:请完成《学生用书》相应部分.

  三、合作探究,达成目标

  三角形的内角和

  活动一:见教材P11“探究”.

  展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.

  小组讨论:有没有不同的证明方法?

  反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.

  针对训练:见《学生用书》相应部分

  三角形内角和定理的应用

  活动二:见教材P12例1

  展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?

  小组讨论:三角形的内角和在解题时,如何灵活应用?

  反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  1.本节学习的数学知识是:三角形的内角和是180°.

  2.三角形内角和定理的证明思路是什么?

  3.数学思想是转化、数形结合.

  《三角形综合应用》精讲精练

  1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的`个数是( )

  A.1个 B.2个 C.3个 D.4个

  2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )

  A.5 B.6 C.7 D.10

  3.下列五种说法:①三角形的三个内角中至少有两个锐角;

  ②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).

  《11.2与三角形有关的角》同步测试

  4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?

  (2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?

  (3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?

八年级数学上册教案2

  知识目标:理解变量与函数的概念以及相互之间的关系

  能力目标:增强对变量的理解

  情感目标:渗透事物是运动的,运动是有规律的辨证思想

  重点:变量与常量

  难点:对变量的判断

  教学媒体:多媒体电脑,绳圈

  教学说明:本节渗透找变量之间的简单关系,试列简单关系式

  教学设计:

  引入:

  信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?

  信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.

  t/m 1 2 3 4 5

  s/km

  新课:

  问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?

  (2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?

  (3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积s的式子表示圆的半径r?

  (4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的`值,探索它们的变化规律,设长方形的长为xm,面积为sm2,怎样用含x的式子表示s?

  在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。

  指出上述问题中的变量和常量。

  范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?

  (1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式;

  (2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;

  (3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;

  (4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。

  活动:

  1.分别指出下列各式中的常量与变量.

  (1)圆的面积公式s=πr2;

  (2)正方形的l=4a;

  (3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.

  2.写出下列问题的关系式,并指出不、常量和变量.

  (1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

  (2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式.

  思考:怎样列变量之间的关系式?

  小结:变量与常量

  作业:阅读教材5页,11.1.2函数

八年级数学上册教案3

  一、创设情景,明确目标

  投影:金字塔,斜拉大桥,塔吊,自行车等,让学生感受生活中处处有三角形的身影,我们研究的“三角形”这个课题来源于实际生活之中。

  请说一说你已经学习了三角形的哪些知识?

  二、自主学习,指向目标

  1、自学教材第1至3页。

  2、学习至此:请完成《学生用书》相应部分。

  三、合作探究,达成目标

  三角形的概念表示方法及分类

  活动一:阅读教材第1至2页内容,并思考以下问题:

  (1)具有什么特征的图形叫三角形?(不在同一直线上的三条线段,首尾顺次相接所组成的图形)

  (2)三角形有几条边?有几个内角?有几个顶点?(3,3,3)

  (3)三角形ABC用符号如何表示?三角形ABC的边AB、AC和BC怎样用小写字母分别表示?(a,b,c)

  (4)三角形按边分可以分成几类?按角分呢?

  展示点评:学生结合图形分别回答,师生共同点评。

  小组讨论:三角形的概念,如何用符号表示及分类?

  反思小结:三角形的图形特征,有三条边,三个内角,三个顶点,边可以用两个大写字母表示,也可以用一个小写字母表示。

  针对训练:见《学生用书》相应部分。

  三角形的三边关系

  活动二:画出一个△ABC,假设有一只小虫要从B出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长有什么数量关系?请说明你结论的正确性。

  展示点评:(1)小虫从B出发沿三角形的边爬到C如下几条线段。

  a、从xxBxx鯻xCxx

  b、从xxBxx鯻xAxx鯻xCxx

  从B沿边BC到C的路线长为xxBCxx。

  从B沿边BA到A,从A沿C到C的路线长为xxAB+ACxx。

  经过测量可以说xxAB+ACxx>xxBCxx,可以说这两条路线的长是xx不相等xx的

  小组讨论:在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?三角形的三边有怎么样的不等关系?

  反思小结:三角形的.任意两边之和大于第三边,任意两边之差小于第三边。

  针对训练:见《学生用书》相应部分

  三角形有关知识的运用

  活动三:见教材P3例题

  小组讨论:等腰三角形中有几个不同的边长?第(2)问中的长4 cm没有明确是腰还是底时应怎么处理?

  展示点评:等腰三角形的底和腰的长度,不确定时,应分情况予以讨论。

  反思小结:当题目中的条件不明确时要分类讨论。所有的三角形必须要满足三边关系定理。

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  1、概念:三角形,内角,边,顶点

  2、符号语言。

  3、三边关系。

  4、角形的分类。

  五、达标检测,反思目标

  1、现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B)

  A、 cm的木棒B。20 cm的木棒C。50 cm的木棒D。60 cm的木棒

  2、已知等腰三角形的两边长分别为3和6,则它的周长为(C)

  A、9 B、12 C、15 D、12或15

  3、已知三角形的三边长为连续整数,且周长为12 cm,则它的最短边长为(B)

  A、2 cm B、3 cm C、4 cm D、5 cm

  4、若五条线段的长分别是1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成xx3xx个三角形。若等腰三角形的两边长分别为3和7,则它的周长为xx17xx;若等腰三角形的两边长分别是3和4,则它的周长为xx10或11xx。

  5、如果以5 cm为等腰三角形的一边,另一边为10 cm,则它的周长为xx25xcmxx。

  6、工人师傅用35 cm长的铁丝围成一个等腰三角形铁架。

  (1)若腰长是底边长的3倍,那么各边的长分别是多少?

  (2)能围成有一边长为7 cm的等腰三角形吗?为什么?

  《11。1。1三角形的边》同步练习题(含答案)

  2、四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为()

  A、4 B、3 C、2 D、1

  答案B选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形。故选B。

  3、已知等腰三角形的一边长为3 cm,且它的周长为12 cm,则它的底边长为()

  A、3 cm B6 、cm C、9 cm D、3 cm或6 cm

  答案A当3 cm是等腰三角形的腰长时,底边长=12—3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能构成三角形,∴此种情况不存在;当3 cm是等腰三角形的底边长时,腰长= =4。5(cm),此时能组成三角形。∴底边长为3 cm,故选A。

  《11.1与三角形有关的线段》同步测试(含答案解析)

  2、一个三角形3条边长分别为x cm、(x+1)cm、(x+2)cm,它的周长不超过39 cm,则x的取值范围是xx。

  3、一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为xxx。

  4、已知a,b,c是三角形的三边长。

  (1)化简:|b+c—a|+|b—c—a|—|c—a—b|—|a—b+c|;

  (2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值。

八年级数学上册教案4

  《正方形》教学设计

  教学内容分析:

  ⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

  ⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

  ⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

  学生分析

  ⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

  ⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

  教学目标:

  ⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

  ⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

  ⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

  重点:掌握正方形的性质与判定,并进行简单的推理。

  难点:探索正方形的判定,发展学生的推理能

  教学方法:类比与探究

  教具准备:可以活动的四边形模型。

  一、教学分析

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

  教学过程

  一:复习巩固,建立联系

  【教师活动

  问题设置:①平行四边形、矩形,菱形各有哪些性质?

  ②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

  【学生活动

  学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

  【教师活动

  评析学生的结果,给予表扬。

  总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

  演示平行四边形变为矩形菱形的过程。

  二:动手操作,探索发现

  活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

  【学生活动

  学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

  设置问题:①什么是正方形?

  观察发现,从活动中体会。

  【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

  【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

  设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

  【学生活动】

  小组讨论,分组回答。

  【教师活动】

  总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

  设置问题③正方形有那些性质?

  【学生活动】

  小组讨论,举手抢答。

  【教师活动

  表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

  活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

  学生活动

  折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

  教师活动

  演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

  学生活动

  小组充分交流,表达不同的意见。

  教师活动

  评析活动,总结发现:

  一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

  有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

  有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

  四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

  以上是正方形的判定方法。

  正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

  学生交流,感受正方形

  三,应用体验,推理证明。

  出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

  方法一解:∵四边形ABCD是正方形

  ∴∠ABC=90°(正方形的四个角是直角)

  BC=AB=4cm(正方形的.四条边相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的对角线互相平分)

  ∴AO=×4=2cm

  方法二:证明△AOB是等腰直角三角形,即可得证。

  学生活动

  独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

  教师活动

  总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

  出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

  学生活动

  小组交流,分析题意,整理思路,指名口答。

  教师活动

  说明思路,从已知出发或者从已有的判定加以选择。

  四,归纳新知,梳理知识。

  这一节课你有什么收获?

  学生举手谈论自己的收获。

  请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

  发表评论

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

八年级数学上册教案5

  教材分析

  平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。

  学情分析

  学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。

  教学目标

  1、知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算.

  2、过程与方法:在探索平方差公式的`过程中,发展学生的符号感和归纳能力、推理能力.在计算的过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美.

  3、情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力.

  教学重点和难点

  重点:平方差公式的推导和应用.

  难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.

八年级数学上册教案6

  一、 教学目标

  1.了解分式、有理式的概念.

  2.理解分式有意义的条件,能熟练地求出分式有意义的条件.

  二、重点、难点

  1.重点:理解分式有意义的条件.

  2.难点:能熟练地求出分式有意义的条件.

  三、课堂引入

  1.让学生填写P127[思考],学生自己依次填出:,,,.

  2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程.

  设江水的流速为v /h.

  轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=.

  3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?

  四、例题讲解

  P128例1. 当下列分式中的字母为何值时,分式有意义.

  [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

  出字母的取值范围.

  [补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

  (补充)例2. 当为何值时,分式的值为0?

  (1) (2) (3)

  [分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的.公共部分,就是这类题目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 当x取何值时,下列分式有意义?

  (1) (2) (3)

  3. 当x为何值时,分式的值为0?

  (1) (2) (3)

  六、课后练习

  1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

  (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

  (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

  (3)x与的差于4的商是 .

  2.当x取何值时,分式 无意义?

  3. 当x为何值时,分式 的值为0?

八年级数学上册教案7

  教学目标

  (一)教学知识点

  1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。

  2.理解积的乘方运算法则,能解决一些实际问题。

  (二)能力训练要求

  1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。

  2.学习积的乘方的运算法则,提高解决问题的能力。

  (三)情感与价值观要求

  在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美。

  教学重点

  积的乘方运算法则及其应用。

  教学难点

  幂的运算法则的灵活运用。

  教学方法

  自学─引导相结合的方法。

  同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。

  教具准备

  投影片.

  教学过程

  Ⅰ.提出问题,创设情境

  [师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?

  [生]它的体积应是V=(1.1×103)3cm3。

  [师]这个结果是幂的乘方形式吗?

  [生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。

  [师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的'奥秒。

  Ⅱ.导入新课

  老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。

  出示投影片

  1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

  (1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

  (2)(ab)3=______=_______=a()b()

  (3)(ab)n=______=______=a()b()(n是正整数)

  2.把你发现的规律用文字语言表述,再用符号语言表达。

  3.解决前面提到的正方体体积计算问题。

  4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。

  5.完成课本P170例3。

  学生探究的经过:

  1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则。同样的方法可以算出(2)、(3)题。

八年级数学上册教案8

  一、学生起点分析

  通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.

  二、教学任务分析

  《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

  本节课的教学目标是:

  ①通过拼图活动,让学生感受客观世界中无理数的存在;

  ②能判断三角形的某边长是否为无理数;

  ③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

  ④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

  三、教学过程设计

  本节课设计了6个教学环节:

  第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

  第一环节:质疑

  内容:【想一想】

  ⑴一个整数的平方一定是整数吗?

  ⑵一个分数的平方一定是分数吗?

  目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.

  效果:为后续环节的进行起了很好的铺垫的作用

  第二环节:课题引入

  内容:1.【算一算】

  已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长 的平方 ,并提出问题: 是整数(或分数)吗?

  2.【剪剪拼拼】

  把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?

  目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.

  效果:巧设问题背景,顺利引入本节课题.

  第三环节:获取新知

  内容:【议一议】→【释一释】→【忆一忆】→【找一找】

  【议一议】: 已知 ,请问:① 可能是整数吗?② 可能是分数吗?

  【释一释】:释1.满足 的 为什么不是整数?

  释2.满足 的 为什么不是分数?

  【忆一忆】:让学生回顾“有理数”概念,既然 不是整数也不是分数,那么 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

  【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

  目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

  效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.

  第四环节:应用与巩固

  内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

  【画一画1】:在右1的正方形网格中,画出两条线段:

  1.长度是有理数的线段

  2.长度不是有理数的线段

  【画一画2】:在右2的正方形网格中画出四个三角形 (右1)

  2.三边长都是有理数

  2.只有两边长是有理数

  3.只有一边长是有理数

  4.三边长都不是有理数

  【仿一仿】:例:在数轴上表示满足 的

  解: (右2)

  仿:在数轴上表示满足 的

  【赛一赛】:右3是由五个单位正方形组成的.纸片,请你把

  它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)

  目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

  效果:加深了对“新知”的理解,巩固了本课所学知识.

  第五环节:课堂小结

  内容:

  1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?

  2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

  3.除了本课所认识的非有理数的数以外,你还能找到吗?

  目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

  效果:学生总结、相互补充,学会进行概括总结.

  第六环节:布置作业

  习题2.1

  六、教学设计反思

  (一)生活是数学的源泉,兴趣是学习的动力

  大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

  (二)化抽象为具体

  常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

  (三)强化知识间联系,注意纠错

  既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

八年级数学上册教案9

  一、教学目标

  (一)、知识与技能:

  (1)使学生了解因式分解的意义,理解因式分解的概念。

  (2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

  (二)、过程与方法:

  (1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

  (2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

  (3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

  (三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

  二、教学重点和难点

  重点:因式分解的概念及提公因式法。

  难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

  三、教学过程

  教学环节:

  活动1:复习引入

  看谁算得快:用简便方法计算:

  (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

  (2)-2.67×132+25×2.67+7×2.67= ;

  (3)992–1= 。

  设计意图:

  如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.

  注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

  活动2:导入课题

  P165的探究(略);

  2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的.?

  设计意图:

  引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

  活动3:探究新知

  看谁算得准:

  计算下列式子:

  (1)3x(x-1)= ;

  (2)(a+b+c)= ;

  (3)(+4)(-4)= ;

  (4)(-3)2= ;

  (5)a(a+1)(a-1)= ;

  根据上面的算式填空:

  (1)a+b+c= ;

  (2)3x2-3x= ;

  (3)2-16= ;

  (4)a3-a= ;

  (5)2-6+9= 。

  在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

  活动4:归纳、得出新知

  比较以下两种运算的联系与区别:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

八年级数学上册教案10

  教学内容

  本节课主要介绍全等三角形的概念和性质.

  教学目标

  1.知识与技能

  领会全等三角形对应边和对应角相等的有关概念.

  2.过程与方法

  经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

  3.情感、态度与价值观

  培养观察、操作、分析能力,体会全等三角形的应用价值.

  重、难点与关键

  1.重点:会确定全等三角形的对应元素.

  2.难点:掌握找对应边、对应角的方法.

  3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备

  四张大小一样的纸片、直尺、剪刀.

  教学方法

  采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

  一、动手操作,导入课题

  1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

  2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

  【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

  【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

  学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

  【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

  概念:能够完全重合的两个三角形叫做全等三角形.

  【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的`三角形会全等吗?

  【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

  【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

  【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

  【交流讨论】通过同桌交流,实验得出下面结论:

  1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

  2.这时它们的三个顶点、三条边和三个内角分别重合了.

  3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

八年级数学上册教案11

  一、内容和内容解析

  1、内容

  正比例函数的概念。

  2、内容解析

  一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。

  对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的`形式,这是正比例函数的基本特征。

  本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。

  基于以上分析,确定本节课的教学重点:正比例函数的概念。

  二、目标和目标解析

  1、目标

  (1)经历正比例函数概念的形成过程,理解正比例函数的概念;

  (2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。

  2、目标解析

  达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。

  达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。

  三、教学问题诊断分析

  正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。

  因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。

八年级数学上册教案12

  教学目标

  一、教学知识点:

  1.旋转的定义.2.旋转的基本性质.

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义.

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.

  教学重点:旋转的基本性质.

  教学难点:探索旋转的基本性质.

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一.巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的.

  2.每个物体的转动都是向同一个方向转动.

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.

  4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.

  二.讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.

  议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的'位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.

  由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.

  解:(见课本68页)

  书上68页做一做

  三.课堂练习

  课本P69随堂练习.

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.

  四.课时小结

  五.课后作业:课本P69习题3.4 1、2、3.

  六.活动与探究

  1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.

  2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.

  板书设计:

  教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。

八年级数学上册教案13

  教学目标:

  1、 理解运用平方差公式分解因式的方法。

  2、 掌握提公因式法和平方差公式分解因式的综合运用。

  3、 进一步培养学生综合、分析数学问题的能力。

  教学重点:

  运用平方差公式分解因式。

  教学难点:

  高次指数的转化,提公因式法,平方差公式的灵活运用。

  教学案例:

  我们数学组的观课议课主题:

  1、关注学生的合作交流

  2、如何使学困生能积极参与课堂交流。

  在精心备课过程中,我设计了这样的自学提示:

  1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

  2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

  ①-x2+y2 ②-x2-y2 ③4-9x2

  ④ (x+y)2-(x-y)2 ⑤ a4-b4

  3、试总结运用平方差公式因式分解的'条件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?

  5、试总结因式分解的步骤是什么?

  师巡回指导,生自主探究后交流合作。

  生交流热情很高,但把全部问题分析完已用了30分钟。

  生展示自学成果。

  生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

  生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

  师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

  生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)

  生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

  生5: a4-b4可分解为(a2+b2)(a2-b2)

  生6:不对,a2-b2 还能继续分解为a+b)(a-b)

  师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

  反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

  (1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

  下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

  (2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

  我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

  确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

八年级数学上册教案14

  一、知识点:

  1.坐标(x,y)与点的对应关系

  有序数对:有顺序的两个数x与y组成的数对,记作(x,y);

  注意:x、y的先后顺序对位置的影响。

  2.平面直角坐标系:

  (1)、构成坐标系的各种名称:四个象限和两条坐标轴

  (2)、各种特殊点的坐标特点:坐标轴上的点至少有一个坐标

  为0;X轴上的点的纵坐标为0,y轴上点的横坐标为0,原点

  的坐标为(0,0)。

  3.坐标(x,y)的几何意义

  平面直角坐标系是代数与几何联系的纽带,坐标(x,y)有某

  几何意义,如点A(-3,2)它到x轴、y轴、原点的距离分别是︱x︱

  =︱2︱=2,︱y︱=︱-3︱=3,OA = 。

  4.注意各象限内点的坐标的符号

  点P(x,y)在第一象限内,则x0,y0,反之亦然.

  点P(x,y)在第二象限内,则x0,y0,反之亦然.

  点P(x,y)在第三象限内,则x0,y0,反之亦然.

  点P(x,y)在第四象限内,则x0,y0,反之亦然.

  5.平行于坐标轴的直线的点的坐标特点:

  平行于x轴(或横轴)的直线上的点的这 纵 坐标相同;

  平行于y轴(或纵轴)的直线上的点的 横 坐标相同。

  6.各象限的角平分线上的点的坐标特点:

  第一、三象限角平分线上的点的横纵坐标 相同 ;

  第二、四象限角平分线上的点的横纵坐标 互为相反数 。

  7.与坐标轴、原点对称的点的坐标特点:

  关于x轴对称的点的横坐标 相同 ,纵坐标 互为相反数

  关于y轴对称的点的纵坐标 相同 ,横坐标 互为相反数

  关于原点对称的点的横坐标、纵坐标都 互为相反数

  8.特殊位置点的特殊坐标:

  坐标轴上点P(x,y) 连线平行于坐标轴的点 点P(x,y)在各象限的坐标特点

  X轴 Y轴 原点 平行X轴 平行Y轴 第一象限 第二象限 第三象限 第四象限

  (x,0) (0,y) (0,0) 纵坐标 相同

  横坐标 不同 横坐标 相同

  纵坐标 不同

  9.利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:

  (1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

  (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

  (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  10.用坐标表示平移:见下图

  二、典型训练:

  1.位置的确定

  1、如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为 _____.

  2、如图所示的象棋盘上,若帅位于点(1,﹣3)上,相位于点(3,﹣3)上,则炮位于点( )

  A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)

  2.平面直角坐标系内的点的特点: 一)确定字母取值范围:

  1、点A(m+3,m+1)在x轴上,则A点的坐标为( )

  A (0,-2) B、(2,0) C、(4,0) D、(0,-4)

  2、若点M(1, )在第四象限内,则 的取值范围是 .

  3、已知点P(x,y+1)在第二象限,则点Q(﹣x+2,2y+3)在第 象限.

  二)确定点的坐标:

  1、点 在第二象限内, 到 轴的距离是4,到 轴的距离是3,那么点 的坐标为( )

  A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)

  2、若点P在x轴的下方,y轴的左方,到每条坐标轴的.距离都是3,则点P的坐标为( )

  A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)

  3、在x轴上与点(0,﹣2)距离是4个单位长度的点有 .

  4、若点(5﹣a,a﹣3)在第一、三象限角平分线上,则a= .

  三)确定对称点的坐标:

  1、P(﹣1,2)关于x轴对称的点是 ,关于y轴对称的点是 ,关于原点对称的点是 .

  2、已知点 关于 轴的对称点为 ,则 的值是( )

  A. B. C. D.

  3、在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,

  得到点A,则点A和点A的关系是( )

  A、关于x轴对称 B、将点A向x轴负方向平移一个单位得点A

  C、关于原点对称 D、关于y轴对称

  3.与平移有关的问题

  1、通过平移把点A(2,﹣3)移到点A(4,﹣2),按同样的平移方式,点B(3,1)移到点B,则点B的坐标是 .

  2、如图,点A坐标为(-1,1),将此小船ABCD向左平移2个单位,再向上平移3个单位得ABCD.

  (1)画出平面直角坐标系;

  (2)画出平移后的小船ABCD,

  写出A,B,C,D各点的坐标.

  3、在平面直角坐标系中,□ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )

  A.(3,7) B.(5,3) C.(7,3) D.(8,2)

  4.建立直角坐标系

  1、如图1是某市市区四个旅游景点示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,建立平面直角坐标系,用坐标表示下列景点的位置.①动物园 ,②烈士陵园 .

  2、如图,机器人从A点,沿着西南方向,行了4 个单位到达B点后,观察到原点O在它的南偏东60的方向上,则原来A的坐标为 (结果保留根号).

  3、如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别是A ,B .

  5.创新题: 一)规律探索型:

  1、如图2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、.则点A2015的坐标为________.

  二)阅读理解型:

  1、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P作向上或向右运动(如图1所示.运动时间(s)与整点(个)的关系如下表:

  整点P从原点出发的时间(s) 可以得到整点P的坐标 可以得到整点P的个数

  1 (0,1)(1,0) 2

  2 (0,2)(1,1),(2,0) 3

  3 (0,3)(1,2)(2,1)(3,0) 4

  根据上表中的规律,回答下列问题:

  (1)当整点P从点O出发4s时,可以得到的整点的个数为________个.

  (2)当整点P从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点.

  (3)当整点P从点O出发____s时,可以得到整点(16,4)的位置.

  三、易错题:

  1、 已知点P(4,a)到横轴的距离是3,则点P的坐标是_____.

  2、 已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是_____.

  3、 已知点P(m,2m-1)在x轴上,则P点的坐标是_______.

  4、如图,四边形ABCD各个顶点的坐标分别为 (2,8),(11,6),(14,0),(0,0)。

  (1)确定这个四边形的面积;

  (2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?

  四、提高题:

  1、在平面直角坐标系中,点(-2,4)所在的象限是( )

  A、第一象限 B、第二象限 C、第三象限 D、第四象限

  2、若a0,则点P(-a,2)应在 ( )

  A.第象限内 B.第二象限内 C.第三象限内 D.第四象限内

  3、已知 ,则点 在第______象限.

  4、若 +(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为______.

  5、点P(1,2)关于y轴对称点的坐标是 . 已知点A和点B(a,-b)关于y轴对称,求点A关于原点的对称点C的坐标___________.

  6、已知点 A(3a-1,2-b),B(2a-4,2b+5).

  若A与B关于x轴对称,则a=________,b=_______;若A与B关于y轴对称,则a=________,b=_______;

  若A与B关于原点对称,则a=________,b=_______.

  7、学生甲错将P点的横坐标与纵坐标的次序颠倒,写成(m,n),学生乙错将Q点的坐标写成它关于x轴对称点的坐标,写成(-n,-m),则P点和Q点的位置关系是_________.

  8、点P(x,y)在第四象限内,且|x|=2,|y| =5,P点关于原点的对称点的坐标是_______.

  9、以点(4,0)为圆心,以5为半径的圆与y轴交点的坐标为______.

  10、点P( , )到x轴的距离为________,到y轴的距离为_________。

  11、点P(m,-n)与两坐标轴的距离___________________________________________________。

  12、已知点P到x轴和y轴的距离分别为3和4,则P点坐标为__________________________.

  13、点P在第二象限,若该点到x轴的距离为,到y轴的距离为1,则点P的坐标是( )

  A.( 1, ) B.( ,1) C.( , ) D.(1, )

  14、点A(4,y)和点B(x, ),过A,B两点的直线平行x轴,且 ,则 ______, ______.

  15、已知等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为________________.

  16、通过平移把点A(2,-3)移到点A(4,-2),按同样的平移方式,点B(3,1)移到点B,则点B的坐标是_____________.

  17、如图11,若将△ABC绕点C顺时针旋转90后得到△ABC,则A点的对应点A的坐标是( )

  A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)

  18、平面直角坐标系 内有一点A(a,b),若ab=0,则点A的位置在( ).

  A.原点 B. x轴上 C.y 轴上 D.坐标轴上

  19、已知等边△ABC的两个顶点坐标为A(-4,0)、B(2,0),则点C的坐标为______,△ABC的面积为______.

  20、(1)将下图中的各个点的纵坐标不变,横坐标都乘以-1,与原图案相比,所得图案有什么变化?

  (2)将下图中的各个点的横坐标不变,纵坐标都乘以-1,与原图案相比,所得图案有什么变化?

  (3)将下图中的各个点的横坐标都乘以-2,纵坐标都乘以-2,与原图案相比,所得图案有什么变化?

八年级数学上册教案15

  教学目标

  知识与能力:

  1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

  2.理解平行四边形的另一种判定方法,并学会简单运用.

  过程与方法:

  1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.

  2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

  情感、态度与价值观:

  通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

  教学方法 启发诱导式 教具 三角尺

  教学重点 平行四边形判定方法的探究、运用.

  教学难点 对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用

  教学过程:

  第一环节 复习引入:

  问题1:

  1.平行四边形的定义是什么?它有什么作用?

  2.判定四边形是平行四边形的方法有哪些?

  (1)两组对边分别平行的四边形是平行四边形.

  (2)一组对边平行且相等的四边形是平行四边形.

  (3)两条对角线互相平分的四边形是平行四边形.

  第二环节 探索活动

  活动:

  工具:两对长度分别相等的木条。

  动手:能否在平面内用这四根笔摆成一个平行四边形?

  思考1.1:你能说明你所摆出的四边形是平行四边形吗?

  已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形.

  思考1.2:以上活动事实,能用文字语言表达吗?

  学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:

  (1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.

  (2)通过观察、实验、猜想到:

  两组对边分别相等的四边形是平行四边形.

  在此活动中,教师应重点关注:

  (1)学生在拼四边形时,能否将相等两木条作为四边形的对边;

  (2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;

  (3)学生能否通过独立思考、小组合作得出正确的'证明思路.

  第三环节 巩固练习

  例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?

  八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?

  随堂练习

  1.判断下列说法是否正确

  (1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

  (2)两组对角都相等的四边形是平行四边形 ( )

  (3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

  (4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

  2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?

  3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.

  4.如图:AD是ΔABC的边BC边上的中线.

  (1)画图:延长AD到点E,使DE=AD,连接BE,CE;

  (2)判断四边形ABEC的形状,并说明理由.

  第四环节 小结:

  师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)平行四边形判定的应用 集备意见 个案补充

【八年级数学上册教案】相关文章:

八年级上册人教版数学教案02-27

八年级上册数学教案01-13

幼小衔接数学上册教案12-15

八年级上册生物教案06-23

八年级语文上册教案08-19

地理八年级上册教案03-07

生物八年级上册教案02-18

八年级上册数学教学总结05-09

八年级上册的数学教学计划02-10