八年级上册数学教案

时间:2023-02-27 16:23:25 教案 投诉 投稿

八年级上册人教版数学教案

  作为一名教职工,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。那么优秀的教案是什么样的呢?下面是小编为大家收集的八年级上册人教版数学教案,仅供参考,希望能够帮助到大家。

八年级上册人教版数学教案

八年级上册人教版数学教案1

  教学目标:

  1、理解并掌握等腰三角形的判定定理及推论。

  2、能利用其性质与判定证明线段或角的相等关系。

  教学重点:

  等腰三角形的判定定理及推论的运用。

  教学难点:

  正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系。

  教学过程:

  一、复习等腰三角形的性质。

  二、新授:

  i提出问题,创设情境

  出示投影片、某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(b点)为b标,然后在这棵树的正南方(南岸a点抽一小旗作标志)沿南偏东60°方向走一段距离到c处时,测得∠acb为30°,这时,地质专家测得ac的长度就可知河流宽度。

  学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。

  ii引入新课

  1、由性质定理的题设和结论的变化,引出研究的`内容——在△abc中,苦∠b=∠c,则ab=ac吗?

  作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

  2、引导学生根据图形,写出已知、求证。

  2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)。

  强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。

  4、引导学生说出引例中地质专家的测量方法的根据。

八年级上册人教版数学教案2

  教学目标:

  1、理解运用平方差公式分解因式的方法。

  2、掌握提公因式法和平方差公式分解因式的综合运用。

  3、进一步培养学生综合、分析数学问题的能力。

  教学重点:

  运用平方差公式分解因式。

  教学难点:

  高次指数的转化,提公因式法,平方差公式的灵活运用。

  教学案例:

  我们数学组的观课议课主题:

  1、关注学生的合作交流

  2、如何使学困生能积极参与课堂交流。

  在精心备课过程中,我设计了这样的自学提示:

  1、整式乘法中的平方差公式是xxx,如何用语言描述?把上述公式反过来就得到xxxxx,如何用语言描述?

  2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

  ①—x2+y2②—x2—y2③4—9x2

  ④(x+y)2—(x—y)2⑤a4—b4

  3、试总结运用平方差公式因式分解的条件是什么?

  4、仿照例4的分析及旁白你能把x3y—xy因式分解吗?

  5、试总结因式分解的.步骤是什么?

  师巡回指导,生自主探究后交流合作。

  生交流热情很高,但把全部问题分析完已用了30分钟。

  生展示自学成果。

  生1:—x2+y2能用平方差公式分解,可分解为(y+x)(y—x)

  生2:—x2+y2=—(x2—y2)=—(x+y)(x—y)

  师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

  生3:4—9x2也能用平方差公式分解,可分解为(2+9x)(2—9x)

  生4:不对,应分解为(2+3x)(2—3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

  生5:a4—b4可分解为(a2+b2)(a2—b2)

  生6:不对,a2—b2还能继续分解为a+b)(a—b)

  师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

  反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

  (1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

  下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

  (2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

  我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

  确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

八年级上册人教版数学教案3

  一、教学目标

  1、理解分式的基本性质。

  2、会用分式的基本性质将分式变形。

  二、重点、难点

  1、重点:理解分式的基本性质。

  2、难点:灵活应用分式的基本性质将分式变形。

  3、认知难点与突破方法

  教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

  三、练习题的意图分析

  1、p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

  2、p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的`取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

  教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

  3、p11习题16、1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“—”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

  “不改变分式的值,使分式的分子和分母都不含‘—’号”是分式的基本性质的应用之一,所以补充例5。

  四、课堂引入

  1、请同学们考虑:与相等吗?与相等吗?为什么?

  2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

  3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

  五、例题讲解

  p7例2、填空:

  [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

  p11例3、约分:

  [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

  p11例4、通分:

  [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

八年级上册人教版数学教案4

  一、教学目标:

  1、加深对加权平均数的理解

  2、会根据频数分布表求加权平均数,从而解决一些实际问题

  3、会用计算器求加权平均数的值

  二、重点、难点和难点的突破方法:

  1、重点:根据频数分布表求加权平均数

  2、难点:根据频数分布表求加权平均数

  3、难点的突破方法:

  首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

  应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

  为了更好的理解这种近似计算的'方法和合理性,可以让学生去读统计表,体会表格的实际意义。

  三、例习题的意图分析

  1、教材P140探究栏目的意图。

  (1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

  (2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

  这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

  2、教材P140的思考的意图。

  (1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

  (2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

  3、P141利用计算器计算平均值

  这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

  四、课堂引入

  采用教材原有的引入问题,设计的几个问题如下:

  (1)、请同学读P140探究问题,依据统计表可以读出哪些信息

  (2)、这里的组中值指什么,它是怎样确定的?

  (3)、第二组数据的频数5指什么呢?

  (4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

  五、随堂练习

  1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

  所用时间t(分钟)人数

  0

  0<≤ 6

  20

  30

  40

  50

  (1)、第二组数据的组中值是多少?

  (2)、求该班学生平均每天做数学作业所用时间

  2、某班40名学生身高情况如下图,

  请计算该班学生平均身高

  答案1.(1).15. (2)28. 2. 165

  六、课后练习:

  1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表

  部门A B C D E F G

  人数1 1 2 4 2 2 5

  每人创得利润20 5 2.5 2 1.5 1.5 1.2

  该公司每人所创年利润的平均数是多少万元?

  2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?

  年龄频数

  28≤X<30 4

  30≤X<32 3

  32≤X<34 8

  34≤X<36 7

  36≤X<38 9

  38≤X<40 11

  40≤X<42 2

  3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

  答案:1.约2.95万元2.约29岁3.60.54分贝

八年级上册人教版数学教案5

  教学目标

  1、知识与技能

  领会运用完全平方公式进行因式分解的方法,发展推理能力、

  2、过程与方法

  经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤、

  3、情感、态度与价值观

  培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力、

  重、难点与关键

  1、重点:理解完全平方公式因式分解,并学会应用、

  2、难点:灵活地应用公式法进行因式分解、

  3、关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

  教学方法

  采用“自主探究”教学方法,在教师适当指导下完成本节课内容、

  教学过程

  一、回顾交流,导入新知

  【问题牵引】

  1、分解因式:

  (1)—9x2+4y2;(2)(x+3y)2—(x—3y)2;

  (3)x2—0、01y2。

  【知识迁移】

  2、计算下列各式:

  (1)(m—4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a—b)2。

  【教师活动】

  引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

  3、分解因式:

  (1)m2—8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2—2ab+b2。

  【学生活动】

  从逆向思维的角度入手,很快得到下面答案:

  解:

  (1)m2—8mn+16n2=(m—4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2—2ab+b2=(a—b)2。

  【归纳公式】

  完全平方公式a2±2ab+b2=(a±b)2。

  二、范例学习,应用所学

  【例1】把下列各式分解因式:

  (1)—4a2b+12ab2—9b3;

  (2)8a—4a2—4;

  (3)(x+y)2—14(x+y)+49;(4)+n4。

  【例2】如果x2+axy+16y2是完全平方,求a的值。

  【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3。

  三、随堂练习,巩固深化

  课本p170练习第1、2题。

  【探研时空】

  1、已知x+y=7,xy=10,求下列各式的值。

  (1)x2+y2;(2)(x—y)2

  2、已知x+=—3,求x4+的值。

  四、课堂总结,发展潜能

  由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的`公式,主要的有以下三个:

  a2—b2=(a+b)(a—b);

  a2±ab+b2=(a±b)2。

  在运用公式因式分解时,要注意:

  (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。

  五、布置作业,专题突破

八年级上册人教版数学教案6

  一、教学目标

  1、认识中位数和众数,并会求出一组数据中的众数和中位数。

  2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

  3、会利用中位数、众数分析数据信息做出决策。

  二、重点、难点和难点的突破方法:

  1、重点:认识中位数、众数这两种数据代表

  2、难点:利用中位数、众数分析数据信息做出决策。

  3、难点的突破方法:

  首先应交待清楚中位数和众数意义和作用:

  中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。

  教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。

  在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。

  三、例习题的意图分析

  1、教材P143的例4的意图

  (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。

  (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)

  (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

  (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

  2、教材P145例5的意图

  (1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。

  (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)

  (3)、例5也反映了众数是数据代表的一种。

  四、课堂引入

  严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

  五、例习题的分析

  教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。

  教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。

  六、随堂练习

  1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)

  1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

  求这15个销售员该月销量的中位数和众数。

  假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。

  2、某商店3、4月份出售某一品牌各种规格的.空调,销售台数如表所示:

  1匹1.2匹1.5匹2匹

  3月12台20台8台4台

  4月16台30台14台8台

  根据表格回答问题:

  商店出售的各种规格空调中,众数是多少?

  假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?

  答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。

  2. (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。

  七、课后练习

  1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是

  2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.

  3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( )

  A.97、96 B.96、96.4 C.96、97 D.98、97

  4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:

  温度(℃) -8 -1 7 15 21 24 30

  天数3 5 5 7 6 2 2

  请你根据上述数据回答问题:

  (1).该组数据的中位数是什么?

  (2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?

  答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天

八年级上册人教版数学教案7

  一、内容和内容解析

  1.内容

  三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

  2.内容解析

  本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

  理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

  本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

  二、目标和目标解析

  1.教学目标

  (1)理解三角形的高、中线与角平分线等概念;

  (2)会用工具画三角形的高、中线与角平分线;

  2.教学目标解析

  (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

  (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

  (3)掌握三角形的高、中线与角平分线的画法.

  (4)了解三角形的'三条高、三条中线与三条角平分线分别相交于一点.

  三、教学问题诊断分析

  三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

  三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

  三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

【八年级上册数学教案】相关文章:

八年级上册数学教案01-13

八年级数学教案11-16

八年级上册总结04-30

五年级上册数学教案01-25

三年级上册的数学教案01-10

五年级上册数学教案12-03

八年级上册地理总结07-28

八年级上册期末总结12-20

八年级上册生物总结04-18