《小数乘法》教案(精选21篇)
作为一名无私奉献的老师,常常要根据教学需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。怎样写教案才更能起到其作用呢?以下是小编整理的《小数乘法》教案,希望对大家有所帮助。
《小数乘法》教案 篇1
教学内容:
教科书第96~97页,练习十八第5~14题。
教学目标:
1、通过练习,使学生进一步掌握一个数除以小数的计算方法,能真确计算。
2、使学生在练习中感受商的一些变化规律,在解决简单实际问题的过程中,体会除法计算的实用价值,发展学生的数学思考能力。
教学过程:
一、基础训练
1、完成第5题。
集体口答,说说0.1÷0.05、0÷0.24的思考过程。
2、完成第6题。
独立完成,比一比每组中的三道算式和结果,说说有什么发现?
引起商的变化的原因是什么?
3、完成第7题。
独立计算,按要求比较。
什么情况下,商比被除数小?什么情况下,商比被除数大?
4、完成第8题。
你根据什么判断的?
二、提高训练
1、独立完成第(1)题的计算。
你还能提出用除法计算的问题吗?怎么解决呢?
2、完成第10题。
先计算每组中的两题,再比价,说说有什么发现?
哪一道题计算比较简便?
3、完成第11题。
每一题应该先算哪一步呢?
运算顺序是怎样的'?和整数四则混合运算顺序相同吗?
4、完成第12题。
你怎样理解“层高”的意思的?
你是怎样想的?怎样列式呢?
每一步什么意思?为什么要加1?
独立完成计算。
5、完成第13题。
你能列表整理条件和问题吗?
白色奶油 5.6 ?克
彩色奶油 2.5克 100克
在小组中列表整理并交流方法。
6、完成第14题。
你准备怎样解决这些问题呢?
还有其它的方法吗?
三、课堂小结
通过这节课的练习,同学们的计算又有了进步,解决问题的能力也提高了。
发现了小数除法中的规律,并且能把这些规律应用在计算上,在后面的学习中,还要多思考,多练。
《小数乘法》教案 篇2
教学内容
教材第12页例7及练习三。
内容简析
例7由前面的三组算式经过转变,得出前后的结果相同,引出整数的运算定律在小数乘法中同样适用。
教学目标
1.使学生知道整数乘法的运算定律对于小数同样适用。
2.会运用乘法的运算定律进行一些小数乘法的简便计算。
3.在自主探究中,培养学生的迁移类推和对比的学习方法。
4.培养学生简算的意识,提高思维的灵活性。
教学重难点
运用乘法的运算定律进行小数乘法的简便运算;能选择合理的方法进行小数乘法的计算。
教法与学法
1.本课时解决小数乘法的简便计算时主要是运用迁移类推和对比的教学方法:首先由整数乘法的运算定律迁移到小数乘法,运用类比和比较的方法得出整数乘法的运算定律在小数乘法中同样适用,并能灵活运用。
2.本课时学生的学习主要是通过迁移类推、比较、概括、应用等方法来学习整数乘法的运算定律推广到小数的计算方法及类比的数学思想。
承前启后链
教学过程
一、情景创设,导入课题
竞赛导入:
师:同学们,今天我们先来进行课前比赛,看谁的知识学得棒。
第一轮:看谁算得对(口算)。
25×4=25×2=125×8=25×10=50×2=125×10=
4×8= 4×5= 5×8= 20×5= 32×5= 22×10=
学生口答。
第二轮:看谁算得巧。
25×73×468×125×8125×(10+8)
学生先独立完成,再请学生上台板演。
师:说说你是怎样算的运用了什么定律
师:今天我们就把整数乘法运算定律推广到小数。(板书课题)
【品析:亲切的开场语调动了学生的学习热情,作为知识铺垫的复习题,用竞赛的方式呈现提高学生的学习积极性。】
谈话导入:
师:谁来说说在整数乘法中学过哪些运算定律,怎样用字母表示
师适当板书:乘法交换律:a×b=b×a,乘法结合律(a×b)×c=a×(b×c),乘法分配律:(a+b)×c =a×c+b×c。 (板书)
师:那么整数乘法运算定律在小数中是否同样适用呢(板书课题)
【品析:利用谈话引导学生说出学过的乘法运算定律的字母公式,从而引出整数乘法运算定律在小数乘法中是否同样适用的问题,激发学生的好奇心和求知欲,为新课的开展起到了良好的铺垫作用。】
课件引入:
(出示PPT课件:内容是整数乘法简便算法与得数相连,用篮筐和篮球表示算式和得数)
师:你能将篮球投入相应的篮筐里面吗(学生依次回答)
师:这是什么运算(整数乘法简便运算)
师:那么,整数乘法的简便运算定律在小数乘法中能适用吗(板书课题)
【品析:通过用课件设置情景图连线题引入整数乘法的简便运算方法,进一步追
问在小数乘法中是否同样适用,引起学生的质疑,激发学生探究的欲望。】
二、师生合作,探究新知
引领学生分析教材第12页例7上面的三组算式,提取已知信息,并找出待解决问题。
(1)整理从中获得的信息。
①第一组算式前后两个因数交换了位置;
②第二组算式前一个算式先算前两个数,再同第三个数相乘,后一个算式先算后两个数,再同第一个数相乘;
③第三组算式前一个算式先算前两个数的和,再同第三个数相乘,后一个算式先分别求出积,再把两个积相加。
(2)提出的问题。
如:每组的两个算式之间有什么关系呢对比后发现了什么
自主学习,分组讨论,探究解题方法。
根据学习经验,出示另一组是整数乘法的三组算式,和现在的三组算式进行比较,学生可以自己找出它们之间的关系。
虽然学生现在还不知道整数乘法的运算定律在小数乘法中同样适用,但是经过回顾分析,可以发现相同点。此时把问题抛给学生,让他们分组讨论,自主探究结果,会发现下面几种规律:(详见配套课件部分)
发现:整数乘法交换律对于小数乘法也适用。
发现:整数乘法结合律对于小数也适用。
发现:整数乘法分配律对于小数也适用。
【品析:本环节中借助例7上面的三组算式,通过计算发现三组算式中的数没变,只是转换成另一种形式进行计算,但结果不变。随即出示三组整数的乘法,让学生通过整数乘法和小数乘法的对比,把整数乘法的运算定律迁移类推到小数乘法中来,要鼓励学生重点讨论,特别是乘法分配律的算式转化思想,这种数学思想是需要逐步培养的,转化思想在数学学习中很重要,而本节课的整数乘法的运算定律推广到小数的知识,恰恰可以使学生建立数学转化思想,实际教学中要有的放矢地引导,同时在学生自主学习、分组讨论时要及时提示,让学生自己体会出整数乘法运算定律转化到小数乘法的过程和算式之间的转化过程。】
顺承算式,研学例7。
在总结完三组算式的基础上,教师抛出问题:我们已经知道整数乘法的运算定律在小数乘法中同样适用,下面请同学们小组合作,完成例7。
学生经过简单的交流讨论后,可以得出结论:两个算式分别运用乘法结合律和乘法分配律进行计算。然后选派学生代表介绍自己的解答方法。
在学生自主探究的过程中适时引导学生思考以下问题:
【品析:本环节是在研讨出整数乘法的运算定律在小数乘法中同样适用的基础上进行教学的,这个过程的`学习,不仅仅是记住一个运算定律进行简便计算那么简单,更重要的是要引导学生体会参与推导转化的每一个环节,在整个过程中,体会出各种运算定律的转化和灵活应用。本环节中主要的教法是转化和应用,主要的学法是讨论、探究和应用。】
三、反馈质疑,学有所得
在学习完例7的基础上,引导学生及时消化吸收,请同桌之间互相说一说常用的运算定律有哪些。然后教师提出质疑问题,引导学生在解决问题的过程中学会系统整理。
质疑一:在0.25×4.78×4中先算0.25×4.78,或是0.25×4还是4.78×4呢
学生讨论后得出结论:应该先算0.25×4,再同4.78相乘,因为0.25×4能凑成整数,再同4.78相乘比较简便。
质疑二:在0.65×202中,把202分成200+2时为什么一定要加括号呢
这个问题可以指导学生先组内讨论,归纳总结,引导学生明白把202分成200+2后,如果不加括号会改变原来算式的意义和数值的大小,所以这个问题可以先做初步探究得出结论:只有加上括号后,才不改变题意,还可以应用乘法分配律进行简便计算。
【品析:本环节设置在本课新授知识完成之后,由于本节知识是通过整数乘法推
广到小数乘法,对于学生而言,从整数乘法转化到小数乘法,真正地明白算理是难点,通过再次质疑和研讨真正实现了学有所得。】
四、课末小结,融会贯通
“本节课你学会了哪些知识还有什么是不明白的呢”
在师生共同总结之后,简单回顾乘法运算定律的计算方法:根据实际情况选用不同的运算定律进行简便计算,然后衔接下节课的学习任务,给大家留一个思考的话题:
小数乘法在实际问题中怎样灵活应用呢
五、教海拾遗,反思提升
回味课堂,发现亮点之处:两次质疑和讨论使学生的学习进入了二次消化吸收的过程,这次内化使学生真正明白了运算定律的算式转化道理。
反思过程,有待改进之处:学生对于一步直接运用乘法分配律时的转化过程弄不清楚,要根据学生的实际情况因材施教。
我的反思:
板书设计
整数乘法运算定律推广到小数
《小数乘法》教案 篇3
教学目标
(1)理解小数乘法的意义和计算法则,会根据实际需要求积的近似数,会计算小数连乘、乘加、乘减,并根据整数乘法的运算定律计算小数乘法。
(2)提高学生计算、估算的能力及观察、分析、判断的能力。
(3)培养学生认真书写、认真计算及时检验的好习惯。
第一课时
教学内容:
小数乘整数
教学目标:
(1)理解小数乘以整数的意义,掌握小数乘以整数的计算法则,正确地进行计算。
(2)通过运用迁移的方法学会新知识,培养类推的能力。
(3)培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
重点:
(1)理解小数乘以整数的意义和计算法则。
(2)熟练掌握小数乘以整数的计算方法,能够正确地进行计算。
难点:
理解计算法则的算理。
教学过程:
一、 复习辅垫
1.读题列式,并说一说各算式所表示的意义
4个13是多少? 18个20是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算。)
2.出示课件1
提问:通过刚才的计算和比较,你发现了什么规律?(用一句话表示)
二、 设疑引喻
出示课件2
板书课题"小数乘以整数"
三、 指导探索
1.出示图片1
2.组织讨论:
(1)用加法怎样列式?用乘法怎样列式?
(2)13.5×5表示的意义是什么?
(3)你觉得哪个算式比较简便?
(4)小数乘以整数的意义与整数乘法的意义有什么联系?
3.提问:小数乘以整数该怎样计算呢?
(如果学生有困难,教师可提示:①能不能把小数乘法转化成整数乘法呢?②能不能用前面复习中得到的规律来解决呢?)
组织学生小组合作学习:互相交流做法,交流这样做的依据。
4.出示课件3 提示:为什么要把325缩小10倍呢?
5.请学生看书学习今天的内容第1页,觉得重要的地方画下来。
四、质疑小结
1.今天我们都学会了哪些知识?请同学概括一下。(培养学生概括能力和语言表达能力)
2.提问:计算13.5×5时先算65×5,为什么算出的结果675还要缩小10倍呢?
3.你对今天学习的内容还有什么问题?(教师和学生共同答疑)
五、反馈调节
1.完成P4第1题 注意学生叙述意义时的不同说法
2.完成第1页做一做。
集体订正。鼓励学生能勇敢地说一说自己错在哪儿?教师注意行间巡视,发现学生的问题及时调节。
3.完成第4页第2题。
集体订正。
提问:观察上面的习题积的小数位数与被乘数的小数位数有什么关系?
4.P4第4题:
由学生独立完成后集体订正。
5.根据149×23=3427填结果。
14.9×23=( )
1.49×23=( )
149×0.23=( )
149×2.3=( )
( )×( )=3.427
板书设计
教学后记:
第二课时
教学内容:
一个数乘小数
教学目标:
1. 理解一个数乘以小数的意义,初步掌握一个数乘以小数的计算方法。
2.运用因数的变化引起积的变化规律和迁移类推的方法,学会一个数乘以小数的计算方法,初步培养学生类推和抽象概括能力。
3.培养学生认真书写、认真计算的好习惯。
教学重点:
理解一个数乘以小数的意义,掌握一个数乘以小数的计算方法。
教学难点:
理解一个数乘以小数的意义和计算方法。
教学过程:
(一) 复习铺垫
1.说出下面各小数表示的`意义是什么。
0.3 0.72 0.418 0.6 0.94
2.课件4
今天我们就利用这个规律学习新知识。
(二)指导探索
1.理解意义
(1)课件5,理解题意。
(2)引导学生理解一个数乘以小数的意义。
提问:怎样求出 米花多少钱?你是根据哪个数量关系列式的?
出示 13.5×0.5=
单价×数量=
提问:这个算式和上节课学习的有什么不同?13.5×0.5还是求几个13.5的和是多少吗?这个算式表示什么意思?
板书: 求13.5的十分之五是多少。
由学生互相说一说:求0.82米布用多少元该怎样列式?算式所表示的意义是什么?
(3)小结: 提问:你认为一个数乘以小数的意义是什么?师生共同小结一个数乘以小数的意义。一个数乘以小数的意义是求这个数的十分之几、百分之几、千分之几……
(4)练习
①说出下面乘法算式的意义:
3×0.7 8.5×0.4 7.2×0.86 18×0.23
②列出乘法算式:
求21的十分之七是多少? 30的一半是多少?
2. 学习法则:
引导讨论:理解了一个数乘以小数的意义,下面我们研究怎样计算,同学们可以联系小数乘以整数的计算方法及复习过的因、积变化规律进行尝试、讨论。
(1)出示讨论题:
①你能把两个因数转化成整数进行计算吗?
②转化成整数乘法后,两个因数发生了怎样的变化?积发生了什么变化?
③要得到原来的积,应该怎么办?
(2)学生分组讨论后试做,教师行间巡视,了解情况。并指名板演。
(3)课件6演示。
(4)由学生独立完成在书上。
提问:你是把13.5×0.82转化成谁乘以谁算的?为什么5和2对齐?
(5)独立完成 67×0.3 2.14×6.2
订正时让学生说一说怎样想的?
(6)归纳法则:观察比较后启发提问:
以上几题因数和积的小数位数有什么关系?
师生共同总结法则:(法则略)
(7)指导学生看教材中今天所学内容
(三)反馈练习
1.根据 11×18=198 直接说出下面各题的积。
1.1×18= 1.1×1.8= 0.11×18=
1.1×0.18= 0.11×18=
2.说出下面各题的积有几位小数
0.4×0.6 15.86×0.7 38×0.6 0.54×0.23
85×0.327 1.57×0.28 1.8×0.23
(四)质疑调节
1.这一节课你都学会了什么?
(由学生总结概括一个数乘以小数的意义和计算法则)
2.提出自己对所学知识的看法。(包括自己的问题、提醒别人要注意的地方、自身感受等)组织学生答疑、解疑。
(五)巩固发展
1.完成练习一 第6题,第8题。
2.列竖式计算。
1.8×23 0.37×0.4 1.056×25
3.一个长方形长是1.35米,宽是0.48米,这个长方形面积是多少平方分米?
《小数乘法》教案 篇4
教学内容:
教科书第22页例6、试一试、练一练,练习十八第1~4题。
教学目标:
1、使学生进一步掌握一个数除以小数的计算方法,掌握被除数的小数位数少于除数位数时的处理方法,能正确口算、笔算相应的练习。
2、使学生在探索计算方法的过程中,进一步提高应用所学知识解决简单实际问题的能力。
教学重点:
在计算一个数除以小数时被除数的小数部分位数不够,能运用在末尾补0的方法完成计算。
教学准备:
挂图。
教学过程:
一、复习导入
1、在括号里填上恰当的数。
0.24÷0.4=( )÷4 5.8÷0.2=( )÷2
0.24÷0.04=( )÷4 58÷0.2=( )÷2
说说每题是怎么想的?“58÷0.2”的58应转化为多少?
2、今天我们继续研究一个数除以小数的除法。(板书课题)
二、自主探索。
1、出示例6。
2、从例题的`图和统计表中,你获得了哪些信息?
要求妈妈买萝卜多少千克?你会列式吗?根据什么关系列式?
3、你会用竖式计算吗?在小组中试着算一算,把自己的方法和同学交流一下。
4、学生尝试计算,展示学生作业。
被除数上的0怎么来的?为什么要补0?除数划去小数点后,乘几?被除数呢?
指出:当被除数部分的位数比除数少时,要在被除数的末尾用0补足。
被除数补上0以后小数点在哪里?商的小数点应该在哪里?
5、试一试。
买番茄多少千克?你会列式吗?
学生尝试计算,指名板演。
被除数是整数,乘10是多少呢?
原来3的小数点在哪里?现在30的小数点在哪里?
也就是说被除数的小数点也向右移动了几位?
6、在小组里说一说怎样计算一个数除以小数。
归纳 :计算一个数除以小数时,先把除数转化为整数,再看除数的小数点向右移动了几位,被除数的小数点也向右移动几位。如果被除数的小数部分位数不够或者是整数,就用0补足。
7、完成练一练。
学生独立计算,说说每一题各是怎样移动被除数和除数的小数点。
三、巩固练习
1、完成练习十八第1题。
独立完成,说说被除数的小数点应该怎样移动。
2、完成练习十八第2题。
你是怎样验算的?
展示学生作业,集体核对。
3、完成练习十八第3题。
你是怎样列式的?
展示学生作业,集体核对。
被除数的小数点应该向右移动几位?
4、完成练习十八第4题。
从题中知道了哪些条件?怎样求人工每小时插秧多少公顷?
怎样求插秧机每小时插秧多少公顷?
独立完成计算。
四、课堂
今天又有了哪些收获?说说一个数除以小数应该怎样算?
《小数乘法》教案 篇5
教学内容:
课本第9-10页。
教学目的:
会把整数乘法的运算定律应用于小数的计算,并会用乘法运算定律进行简便计算。
教学过程:
一、复习。
1.口算。
2.5X4
1.25X0.8
32X25X4
0.5X
0.5X1.01
125X18X8
问:连乘的式题你是怎么算的X
在整数乘法中我们学过那些运算定律X
(主要从运算定律的内容、运算定律的字母表达式、举例说明应用运算定律怎样使计算简便来说明)
根据学生回答板书:aXb=bXa(aXb)Xc=aX(bXc)(a+b)Xc=aXc+bXc
2.用简便方法计算。
25X46X4
47X8X125
48X99
54X61+61X46
3.分组计算下面各题。
0.7X1.2
1.2X0.7
(0.8X0.5)X0.4
0.8X(0.5X0.4)
(2.4+3.6)X0.5
2.4X0.5+3.6X0.5
左边和右边对应算式结果相同吗X哪一种算法比较简便X为什么X
4.:运用运算定律可以使一些计算简便,小数乘法也可以运用整数乘法的.运算定律使一些计算简便。(板书课题:小数乘法的简便运算)
二、新授。
学生尝试计算。
0.25X4.78X4
=0.25X4X4.78
=1X4.78
=4.78
0.65X
=0.65X(+1)
=0.65X+0.65X1
=130+0.65
=130.65
学生板演后,要讲出简算依据。
运用定律计算,如果能设法使一个因数转化为整百数或者两个因数相乘的积为整百数就能使计算简便。
三、巩固练习。
1.用简便方法计算。
0.25X0.125X4X8
3.2X1.25
0.5X0.46+0.5X0.54
2.5X99
2.课本第10页做一做。
四、作业。
练习三第3、4、5题。
课后:
《小数乘法》教案 篇6
1教学目标
1.知识与技能:通过猜测-验证-应用等环节引导学生探索并理解整数乘法运算定律对于小数同样适用
2.过程与方法:能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。
3.情感态度与价值观:让学生相互交流、合作、体验成功的喜悦
2学情分析
五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的'积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
3教学重难点
本课的教学重点是:探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。
教学难点则是:运用运算定律进行小数乘法的简便计算。
4教学过程
4.1第一学时
4.1.1教学活动
活动1【导入】一、复习旧知,引入新课
(一)引导学生回忆整数乘法中学过哪些运算定律,对它们有哪些了解?
(1)0.5×0.2= (2)50×0.2= (3)500×0.2=
(4) 2.5×4= (5)2.5×0.4= (6)0.25×40=
(7)0.125×8= (8)12.5×8= (9)1.25×80=
学生从运算定律的内容、运算定律的字母表达式和应用运算定律怎样使计算简便这三个方面思考老师提出的问题,再和全班同学交流自己的想法。
乘法交换律:a×b=b×a
乘法结合律:(a×b) ×c = a× (b×c)
乘法分配律:(a+b) ×c = a×c+b×c
(二)在整数乘法中应用运算定律可以使一些计算变得简单,那么对于小数乘法这些运算定律是否也适用呢?下面我们就一起来研究问题。(板书课题)
活动2【讲授】二、探索新知,在游戏中探究发现、总结并应用规律
(一)验证整数乘法的运算定律对于小数乘法同样适用。
1.猜想验证。
观察每组的两个算式,它们有什么关系?
0.7×1.2 1.2×0.7
(0.8×0.5)×0.4 0.8×(0.5×0.4)
2.4+3.6)×0.5 2.4×0.5+3.6×0.5
出示第12页例7上面的内容。怎样验证小精灵的猜想对不对呢?
2.验证。
3.交流、汇报自己的发现。
4.小结:我们通过实例推导证明了整数乘法的运算定律对于小数乘法同样适用。那么我们就可以利用乘法的运算定律来解决小数乘法的实际问题了。
(二)教学例7
1.课件出示例7(1)运用运算定律计算
请你试着做一做,并说一说每一步各应用了哪一个运算定律。(强调:注意观察数的特点。)
运用运算定律计算
0.25×4.78×4
=
=
=
0.65×202
=
=
=
(1)引导学生观察、讨论因数有什么样的特征及怎样计算才能更简便,然后独立完成。
(2)集体订正,学生汇报自己的计算过程,教师板书。
3.小结:在小数乘法中,要使计算简便,我们应该注意什么?
在计算时应先观察各个数的特点,看其是否符合某一乘法运算定律,再计算。
活动3【练习】三、巩固练习
完成教材第12页“做一做”1、2题
活动4【活动】四、课堂总结
通过今天的学习,你有什么收获?
《小数乘法》教案 篇7
(一)教学内容
本单元的主要内容包括:单元主题图、小数乘整数、小数乘小数、积的近似值、解决问题、整理与复习。
(二)教学目标
1、知识与技能
(1)掌握小数乘法的笔算方法,能正确计算较简单的小数乘法,能在解决具体问题的过程中,选择合适的方法(口算、估算或笔算)进行计算。鼓励学生独立探索,提倡策略多样化。
(2)掌握小数乘法的估算方法,进一步强化估算意识。培养估算能力。
(3)能借助计算器进行较复杂的小数乘法计算,解决简单的实际问题。体会小数乘法在现实生活中的广泛应用。
(4)掌握保留积的近似值的方法,会根据具体情况保留积的近似值。
2、过程与方法
通过创设情境,探究现实生活中小数乘法的问题;在合作交流、探索与思考中,感受新旧知识的联系与区别,有效地运用原有知识推动新知识的学习;在解决问题的过程中,深化对所学知识理解,增强学生的应用意识。
3、情感、态度与价值观
感受小数乘法在实际生活中的应用,体验小数乘法的应用价值,通过课本知识与实际问题的联系,增强学生自主探究的欲望,获得成功的体验,坚定学生学好数学的信心。
(三)教学重难点、关键
1、重点::理解小数乘法的意义,掌握小数乘法的计算方法;强化估算意识,培养估算能力;会求积的近似值,并能根据具体情况保留积的近似值。
2、难点:积的小数点位置的确定;根据具体情况保留积的近似值。
3、关键:让学生通过现实情境理解小数乘法的意义;启动学生原有的认知经验,让学生在整数比较和辨析中抓住新知识的关键所在-----积的小数点位置的确定;思考如何在原有知识的基础上找到解决新问题的办法的途径,从而主动地掌握新知识;其间,突出对算理的探究,引导学生切实掌握小数乘法的计算方法。
(四)教学思路
本单元主题图呈现生活中应用小数计算的数学情境,激发学生的学习兴趣和动力;小数乘整数是学生借助整数乘法的有关知识探究小数计算方法的开始,学生通过探究,初步感知小数乘法的计算方法;然后通过小数乘小数的教学,深化学生对小数乘法计算方法的理解,归纳出小数乘法的计算方法,并要求学生将掌握的计算方法灵活应用于解题实际,提高学生对小数乘法计算方法的掌握水平;在此基础上,再通过积的近似值的学习,巩固小数乘法的计算方法,同时让学生理解生活中为什么需要积的.近似值以及如何处理积的近似值;解决问题是学生体验小数乘法的应用价值的重要途径,在解决问题的过程中,学生可以掌握一些新的解决问题的策略,提高解决问题的能力;最后通过整理和复习,沟通本单元知识与知识之间的联系,提高学生对本单元知识的掌握质量。
(五)教学探讨(小数乘整数)
下面我就其中的一节课来谈谈突破重难点的方法。
本节知识包括单元主题图、2个例题、1个课堂活动和练习一1---6题。重点突破小数乘整数的计算方法、积的小数点位置的确定。
单元主题图采用了市场购物的情境,通过购物呈现小数乘法在现实生活中的具体应用。通过单元主题图,一方面引发学生学习小数乘法的欲望;另一方面让学生体会所学知识与现实生活的联系,增强学生的应用意识。
在例1的教学中,由于题中采用的蔬菜单价是小数、买菜的数量是整数的方式呈现小数乘整数的计算情境,这就给教师 的教学留有较大的空间,教学中教师可以先把单价调整为整数,唤起学生对整数乘法相关知识的积极回忆后,再把单价改成小数来思考。这样可以有效地运用原有知识推动新知识的学习,用整数乘法的计算方法为小数乘整数的计算提供借鉴,让学生在此基础上探讨新的计算方法。
《小数乘法》教案 篇8
教学内容:教科书第92页,练习十六10~14题。
教学目标:
1、通过练习,使学生进一步掌握小数乘小数的计算方法,会运用运算律使计算简便,能熟练正确地进行计算。
2、使学生在练习中体会小数乘小数计算中存在的一些有趣的规律,提高学生的估算能力,激发学生兴趣。
教学过程:
一、基础训练
1、完成练习十六第6题。
口算小数乘小数时,也要先把小数看成整数相乘,再根据因数里小数的位数确定积的小数位数。
2、完成练习十六第10题。
(1)独立完成计算。
(2)每题的积与第一个因数比较,是大一些还是小一些?
为什么每组中第一题的积都比第一个因数大?
你有什么发现?
为什么每组中第二题的积都与第二个因数相等?
你有什么发现?
看看每组中第三题的积你有什么发现?
3、完成练习十六第11题。
根据刚才发现的`规律,你能说说每次乘的积比第一个因数大还是小?
指名学生口答。
独立完成计算并检验是否正确。4、完成练习十六第12题。
独立完成填写。
你是怎么想的?
5、完成练习十六第13题。
观察一下,哪几题可以简便计算?需要应用什么运算律?
10.4-9.6×0.5不能运用运算律简便计算,应该先算哪一步呢?你认为运算顺序与整数四则混合运算顺序相同吗?
指出:小数四则混合运算顺序与整数四则混合运算顺序相同。
二、提高训练
1、完成练习十六第14题。
出示题目。
从题中你了解到哪些信息?怎样列式呢?
每一步求的是什么?计算中可以简便计算吗?
独立完成,集体核对。
2、用简便方法计算下面各题。
3.6×7.25+0.36×27.5 0.68×86.3-5.8×8.63
三、课堂小结
这节课,你发现了什么规律?觉得自己掌握得如何?
《小数乘法》教案 篇9
教学目标
1、通过猜想验证等活动,理解整数运算定律同样适用于小数乘法。
2、能运用乘法运算定律对小数乘法进行简便计算。
3、培养学生自觉进行简算的意识,提高思维的灵活性。
重点难点
理解整数乘法运算定律对于小数同样适用。
会运用乘法运算定律进行小数乘法的简便计算。
教学过程
3.1第一学时
3.1.1教学活动
活动1【导入】一、复习铺垫
师:同学们,今天这节课我们将做一些计算方面的研究,你觉得要做计算研究你自身得具备些什么?(仔细,敏锐的观察力)(板书观察)
师:我们先来小试牛刀!
1、学生口答1.8×20.2×1.91.9+0.6
0.125×825×0.42.4-0.5
2、混合运算(口答):22-18+60.2+(1.5-0.8)(说一说,先算什么再算什么?)
师:是的,我们知道小数加减混合的顺序跟整数一样。
50-12×40.8+0.4×0.2(这里有新学的小数乘法,你还会吗)
师小结:你们的意思是,小数的加减乘除四则混合运算的顺序跟整数也是一样的?
师:确实如此,(课件出示)我们一起来读一下。(板书:整数)
师:你看,整数和小数的关系是多么的密切呀!
3、简便计算(加法运算定律)
7.5+1.8+0.2(你是怎么算的?你是运用了……?)
师小结:是呀,在以前的学习中我们还知道“整数加法的运算定律适用于小数加法”。
(磁贴:整数加法运算定律适用于小数加法)
活动2【活动】二、合作探究,探索新知:
1、整理提升,提出猜想
师:现在我们又学习了小数乘法,由此你联想到了什么?
(板书:整数乘法运算定律适用?于小数乘法)
生:整数乘法运算定律适用于小数乘法?(让学生重复一遍:你听到他刚说了什么?)
师:整数乘法运算定律到底适不适用用于小数乘法呢?对此我们还存在疑问(板书:?)需要我们来验证。那么怎样来验证呢?(板书:举例)
师提示:诶,我们可以借助以前学习“整数加法运算定律推广到小数”的经验,回想一下我们是怎么探究的?
生:首先回想有哪几个加法运算定律,再举例,计算一下看看两边是不是相等的……
师:那怎样验证乘法运算定律呢?举例之前,首先回忆一下有哪些定律?再举例(板书定律)。
2、律验证猜想
师:看来大家已经有了想法,我把这个任务交给你们,能完成吗?我们可以借助这张探究记录单来完成,先看一看,想想我们需要做些什么?
师:读一读方法提示,读的时候想一想注意什么?
方法提示:写一写:根据每个乘法定律编一些小数乘法的例子。
算一算:算出两边算式的结果,看是否相等。
想一想:通过举例,你有什么发现?
师:举例是要注意什么?(举小数乘法的例子)
独立验证:一曲音乐的时间,独立完成探究记录单。
探究记录单
整数乘法运算定律是否适用于小数乘法?
乘法运算定律
举例说明
我的结论:
乘法律
乘法律
乘法律
汇报。
学生汇报
教师相应板书在黑板上。
师反问:其它同学根据乘法运算定律举出的例子,计算时发现两边不相等的有吗?
师:如果给你们足够多的时间,像这样的例子你举得完吗?(板书:……)
师追问:那你能用一个式子简明的概括它们吗?(板书:字母式)(一个一个来)
板书同时教师完整表述:乘法交换律:交换两个因数的位置,积不变。
乘法结合律:先乘前两个数或者先乘后两个数,积不变。
乘法分配律:两个数的.和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
得出结论:
师:通过同学们的举例验证,消除了我们的疑问,一致认为……(擦掉?)
师:来,请你一起自豪的读一读我们的发现。
加深理解:
师:现在我们知道,这里的字母不仅可以表示“整数”,也可能是“小数”(板书:小数)
活动3【练习】三、实践应用
师:下面我们用所学的知识快速填一填,并说说你是怎么想的?
1、快乐填一填
4.2×1.96=×
2.5×(0.4×0.77)=(×)×
7.2×8.4+2.8×8.4=(+)×
7.2×8.4+×=(+)×
师:还能怎么填?注意听,你发现他是将两个数都成--(8.4或7.2)
填的完吗?但无论怎么填,我们都要保证有一个……(共同因数)
师小结:是呀,同学们在填写的过程中已经开始关注运算定律的“结构”了。(板书:结构)
2、简便计算
课件隐去拓展部分,提问:对于这个算式你能快速算出它的得数吗?你是在计算--(右边)
追问:如果以后碰到的是左边的算式呢?
生:根据乘法分配律转化为右边的形式。
师:看来,应用乘法的运算定律,可以使一些计算简便。
师:接下来我们来试一试。(学生独立尝试,板演并说想法)
(1)0.25×4.78×4师追问:你为什么想到把0.25和4先乘?你还碰到过像这样的数字朋友吗?比如说……
0.65×202师追问:为什么把202拆成两数之和的形式呢?(板书:+)为什么是200和2?强调:200×0.65和2×0.65都很简便。
师:我发现,大家在简便计算时,都做到了观察“数据”并对数据进行了合理的处理。
师:下面我们就来突破下自己,老师为大家准备了更有挑战性的计算,有信心吗?
(2)4.75×101-4.750.125×1613.7-3.7×3
全班学生先自己尝试解决,投影校对。
将学生作业收两份上来。(最后一题一个对,一个错进行对比)
师:他会这样做的原因是什么?看来他只关注了数据,而忽略了……(手指向乘法分配律)
如果要按他的方法解答,题目得怎么修改?13.7×3-3.7×3
师:学到这,你有什么要提醒大家的?
生:观察时不仅关注数据还要关注结构。(教师再次强调)
小结:我们发现有些算式符合运算定律的结构,并能对数据适当处理,确实能让计算变得“简便”(板书)。而有些不符合结构或数据没有特点的,就不能简便了,可以按四则混合运算的顺序进行计算。
3、连线练习
师:接下来我们就在观察结构和数据上突破自己,先观察,再连线!
4.8×9.96.7×a+a37.6×99+376×0.1
(6.7+1)×a37.6×(99+0.1)4.8×10-4.8×0.1
对于第三个:师:你们都连好了,那剩下的两个无疑就是一组了!……怎么了?
师:观察下面这个算式,将上面的算式怎么修改?
如果保持上面的算式不变,又怎么改变下面的算式呢?
师:由此可见,观察是多么重要啊!
4、解决问题
师过渡:同学们,刚才我们在计算中研究了小数乘法运算定律,其实,这样的定律在我们生活中也随处可见:
赵大伯在一块长方形菜地里种了茄子和辣椒,
4m茄子辣椒
7.5m2.5m
问:赵大伯家的菜地有多大?(请你用不同的方法解决)
学生独立完成,并分别完整汇报方法。
追问:你是怎么想的?(理解算式的意义和数量关系)
师:你看,除了计算,生活中的问题也帮我们验证了哪个运算定律。
拓展:出示长a,b,宽c,你还能表示出它的面积吗?(课件:字母式)
师:在图形面积计算上,你发现了吗?
师小结:同学们,我们思考的角度和证明的方法有很多,但都证明了……(读题)
只要我们做学习和生活的有心人,你就会离知识更近!
活动4【作业】
三、拓展延伸
师:今天我们收获了什么?我们是怎样获得知识的?
师小结:在学习整数乘法运算定律适用于小数乘法之前,我们已经学习了整数加法运算定律适用小数加法,用以前的学习经验帮助了我们今天的学习,得出了结论,使我们的知识越来越完整,概括为一句话:整数的运算定律都适用于小数。
师:同学们,今天我们通过自己的努力,成功得将“整数乘法运算定律推广到小数”,我们还学过什么数?(板书:分数),那请你来猜猜看,以后我们可能还会学什么知识,今后我们也可以像这节课一样来研究。
《小数乘法》教案 篇10
教学目标
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点
小数乘以整数的算理及计算方法。
教学难点
确定小数乘以整数的积的小数点位置的方法。
教具准备
放大的复习题表格一张(投影)。
教学过程
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元3.5元=3元5角
3元×3=9元5角×3=15角9元+15角=10.5元
用乘法计算:3.5×3=10.5元理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?
(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的?把3.5元看作35角
3.5元扩大10倍3 5角
× 3 × 3
1 0. 5元1 0 5角
缩小到它的1/10
105角就等于10.5元
(5)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书:0.7 2
× 5
3. 6 0
(2)强调依照整数乘法用竖式计算。
(3)示范:0. 7 2扩大100倍7 2
× 5 × 5
3. 6 0 3 6 0
缩小到它的1/100
(4)回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的.积360再缩小100倍。(提示:小数末尾的0可以去掉)
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
1 3.5
× 2
2.7 0
(6)小结小数乘整数计算方法
计算7 ×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?
①先把小数扩大成整数;②按整数乘法的法则算出积;
③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
l专项练习练习一4
二、运用
1、填空。
4.5 ( ) 0 .7 4 ( )
× 3 × 3 × 2 × 2
( ) 1 3 5 ( ) 1 4 8
2、做一做书p2
三、体验:(1)今天我们学习了什么?(板书课题) (2)小数乘以整数的计算方法是什么?
四、作业:练习一1、2、3个人修改
口算:
70×30
45×100
5.6×10
7.3×1000
0.75×10
0.008×100
注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。
板书设计:小数乘整数1
3.5元3 5角
× 3 × 3
1 0. 5元1 0 5角
例2
0. 7 2扩大到它的100倍7 2
× 5 × 5
3. 6 0 3 6 0
缩小到它的1/100
教后反思:学生基本能理解小数乘法的算理,但是在计算完后小数点经常点错。下节课要进行专项练习。
小数乘小数
教学目标1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点小数乘法的计算法则。
教学难点小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教具准备投影、口算小黑板。
教学过程一、引入尝试
1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8 ×1.2)
2、尝试计算
师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?
师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?
如果能,应该怎样做?(指名口答,板书学生的讨论结果。)
示范:
1. 2扩大到它的10倍1 2
× 0. 8扩大到它的10倍× 8
0.9 6缩小到它的1/100 9 6
3、1.2×0.8,刚才是怎样进行计算的?
引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。
4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?
5、小结小数乘法的计算方法。
师:请做下面一组练习(1)练习(先口答下列各式积的小数位数,再计算)(2)引导学生观察思考。
①你是怎样算的?(先整数法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)
③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3)根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
(4)专项练习①判断,把不对的改正过来。
0.0 2 4 0.0 1 3
× 0.1 4 × 0.0 2 6
9 6 7 8
2 4 2 6
0.3 3 6 0.0 0 0 3 3 8
三、应用
1、在下面各式的积中点上小数点。
0 . 5 8 6 . 2 5 2 . 0 4
× 4. 2 × 0 . 1 8 × 2 8
1 1 6 5 0 0 0 1 6 3 2
2 3 2 6 2 5 4 0 8
2 4 3 6 1 1 2 5 0 5 7 1 2
2、做一做:先判断积里应该有几位小数,再计算。
67×0.3 2.14×6.2
3、P.8页5题。
先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。
四、体验回忆这节课学习了什么知识?
五、作业:P8 7、9题。P9 13题。个人修改
口算:
5.2×0.2
7.3×0.01
76×0.03
75×0.05
0.05×6
79.2×0.2
②根据1056×27=28512,写出下面各题的积。
105.6×2.7= 10.56×0.27= 0.1056×27= 1.056×0.27=
板书设计:
教后反思:小数乘小数的乘法是本单元的难点,学生在计算时错误较多,要继续多练,重点练习点小数点。
《小数乘法》教案 篇11
教学目标
1、使学生进一步掌握小数乘法的计算法则。
2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教学重点
运用小数乘法的计算法则;正确计算小数乘法。
教学难点
正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教具准备
小黑板或投影片若干张
教学过程
一、复习准备:
1、口算:P.5页10题。
0.9×6 7×0.08 1.87×0 0.24×2 1.4×0.3
0.12×6 1.6×5 4×0.25 60×0.5
老师抽卡片,学生写结果,集体订正。
2、不计算,说出下面的积有几位小数。
2.4× = 1.2× =
4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。
二、新授:
1、教学例5:非洲野狗的速度是56千米/小时,鸵鸟的速度是非洲野狗的1.3倍,鸵鸟的速度是多少千米/小时?
⑴想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)
⑵是这样的吗?我们一起来算一算?
①怎样列式? ②为什么这样列式?(求56的1.3倍是多少,所以用乘法.)
使学生明确:现在倍数关系也可以是比1大的小数。
⑶生独立完成,指名板演,集体订正。
⑷算得对吗?可以怎样验算?
⑸通过刚才同学们的计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。
2、看乘数,比较积和被乘数的大小。
①(出示练习一10题中积和被乘数的'大小)先计算。
②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?
③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为1.20.4的乘数是0.4比1小,求的积还不足一个1.2,所以积比被乘数小;而2. 4×3的乘数是3比1大,求的积是2.4的3倍(或3个2.4那么多),所以积比被乘数大。
④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)
三、运用
1、做一做:3.2×2.5= 0.8 2.6×1.08=2.708先判断,把不对的改正过来。
2、P.9页13题
四、体验今天,你有什么收获?
五、作业:P8页8题,P9页11、14题
个人修改
3、思考并回答。
(1)做小数乘法时,怎样确定积的小数位数?(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
⑤专项练习:练习一12题先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。
板书设计:
当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教后反思:在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。
《小数乘法》教案 篇12
教学目标:
1.让学生掌握分数乘小数的计算方法,提高学生根据实际情况灵活选择合适的计算方法的能力。
2.在学生自主探索的基础上,引导学生自由地表达自己的想法,培养学生合作交流的能力。
3.通过解决日常生活中的实际问题,让学生体验数学的意义和价值。
教学重点:
掌握分数乘小数的计算方法。
教学难点:
提高学生根据实际情况灵活选择合适的计算方法的能力。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1.计算下面各题
2.通过计算引导学生回忆分数乘整数和分数乘分数的计算方法,并强调能约分的先约分再计算会更简便。(让学生自由回答,教师加以引导与整理。)
3.导语:前几节课我们学习了分数乘整数和分数乘分数的计算方法,今天,我们继续学习分数乘法的有关知识。
【设计意图:通过复习分数乘整数和分数乘分数的计算方法,激活学生的学习经验与学习技能,为学习分数乘小数埋下伏笔。同时,简明扼要地导入新课,让学生迅速地进入学习状态。】
二、自主学习(自主学习,生成问题)
(一)阅读理解
1.出示呈现例5情境图(数学信息),从图中你得到了哪些数学信息?根据这些数学信息你想解决什么数学问题?(学生自主提出问题,教师选择问题板书。)
(1)松鼠欢欢的尾巴有多长?
(2)松鼠乐乐的尾巴有多长?
【设计意图:由孩子们喜欢的小动物的知识引出例5,激发了学生学习的兴趣。了解题目中有哪些数学信息是解决问题的第一步,可以帮助学生更好地解决数学问题。】
1.自主解答
松鼠欢欢的尾巴有多长?怎样列式?你能计算出来吗?在练习本上试一试。(板书:,学生尝试计算,教师巡视,请不同做法的学生板演。)
2.交流探讨,体会不同算法
先在小组内交流计算方法,再全班交流,一一展示,分析出现的不同计算方法。
(1)可以把2.1化成分数,再跟相乘,结果是,化成带分数。
(dm)
(2)可以把化成小数0.75,再跟2.1相乘,结果是1.575。
2.1×=2.1×0.75=1.575(dm)
【设计意图:本环节的交流分为两个层次,一个是在小组内交流,给每个学生参与的机会,使交流活动不至于成为个别学生的专场展示,尽可能让每个学生都说出自己的解题思路;二是全班交流,使全体学生在理解自己算法的同时,知道解决同一道题目还有不同的思路,享受不同算法带来的快乐,并掌握自己未考虑到的计算方法,逐步提高综合运用所学知识解决实际问题的能力。】
3.师小结:同学们说得都很不错,这道分数乘小数的题目我们主要采用两种方法来计算,既可以把小数化成分数再计算,也可以把分数化成小数再计算,这两种方法用到了我们学过的分数乘分数和小数乘小数的知识。
【设计意图:教师的这段简单小结以旧引新,促进知识迁移,巩固掌握新知识,实现了有意识的学法指导。】
三、合作探究(小组合作,解决问题)
1.自主解答
刚才例5第(1)题大家完成得很不错,下面第(2)题有没有信心做对呢?(出示课件,学生尝试独立解答。)
2.交流反馈
(1)可以把2.4化成分数,再跟相乘,结果是。
(dm)
(2)可以把化成小数0.75,再跟2.4相乘,结果是1.8。
2.4×=2.4×0.75=1.8(dm)
3.自学课本
(1)除了上面两种计算方法,这道题还有另一种算法。同学们打开课本第8页,看一看,有没有不明白的地方?(学生看书自学。)
(2)这种算法你看懂了吗?引导学生说计算过程。(课件逐步出示第三种算法。)
小数2.4和分数的分母先约分得到0.6,0.6再跟分子3相乘,结果是1.8。
4.对比思考。
为什么可以这样约分?你觉得这样约分计算简便吗?
【设计意图:让学生独立完例5第(2)题,既复习了分数乘小数的两种计算方法,起到巩固练习的作用,又通过自主阅读教材学习先约分再计算的方法,不仅可以让学生准确掌握计算方法,更使学生深刻地体会到分数乘小数先约分再乘比较简便。】
四、回顾反思
1.既然先约分再计算这种方法这么简便,为什么第(1)题没用这种简便方法计算呢?
2.师小结:先约分再计算虽然简便,但只在小数与分数分母有共同因数的.情况下适用,如果小数与分数分母没有共同的因数,就不能直接约分,只能采用把小数化成分数或把分数化成小数再计算的方法。所以在实际计算过程中,我们要特别注意观察算式中小数与分数分母的特征,明确小数与分数分母是否有共同的因数,然后再选择合适的算法进行计算。
【设计意图:在这个环节中,通过思考“为什么第(1)题没用这种简便方法计算呢?”,让学生体会到先约分再计算的局限性,从而引导学生在解决问题的过程中灵活选择合适的算法。】
五、拓展总结(应用拓展,盘点收获)
(一)对比练习
1.学生独立完成。
2.反馈:计算时你更喜欢哪种算法?
【设计意图:在前面学习分数乘整数的过程中,学生已经充分感受了先约分再计算的简便性,在这个练习中,学生会进一步感受到这种算法不仅在分数乘整数中可以让计算更简便,在分数乘小数中同样适用,培养学生简便计算的意识。】
(二)基本练习
教材第8页做一做
1.学生先观察每一道题的特征,思考:每道题可以用几种方法来做?哪种方法更简便?然后选择合适的方法进行计算。
2.反馈交流时提问:哪几题可以先约分再计算?可以把分数化成小数计算吗?
【设计意图:这个环节通过四道题的对比练习,让学生发现不仅先约分再计算有局限性,分数化小数这种算法也有一定的局限性。在引导学生比较各种方法的优缺点的同时,进一步感受计算方法的灵活性与合理性。最终在学生充分理解的基础上共同归纳出结论,以丰富学生体验知识获得结论的过程,加深记忆。】
(三)提高练习
教材第10页“练习二”第2题:美国人均淡水资源量约为1.38万立方米,我国人均淡水资源量仅为美国的。我国人均淡水资源量是多少万立方米?
1.学生独立完成,一生板演。
2.反馈计算过程,强调能约分的先约分再乘。并适时补充我国的水资源知识,进行节约用水教育。
(四)拓展练习(多余条件)(机动)
教材第10页“练习二”第4题:蜂蜜最主要的成分是果糖和葡萄糖,果糖和葡萄糖的质量占蜂蜜总质量的以上。有一种蜂蜜,果糖和葡萄糖的质量占蜂蜜总质量的。如果有2.5kg的这种蜂蜜,其中的果糖和葡萄糖共有多少千克?
1.学生独立完成。
2.交流汇报。
3.教师点拨:在解决含多余条件的实际问题时,要先弄清楚题意,看问题所需的条件是什么,选择恰当的条件,找出多余条件,然后分析数量关系,列出算式,最后检验结果是否正确。
【设计意图:这道题隐含了一个多余条件,增加了学生的审题难度,所以要引导学生在解决问题的过程中找准题目中的关键条件,提高学生的审题能力,掌握解决含多余条件的实际问题的一些基本策略。】
(五)课堂小结:今天我们学习了什么内容?(板书课题:分数乘小数)分数乘小数怎么计算?计算时应该注意什么?
【设计意图:通过让学生自主回顾本课所学知识,指导学生把新旧知识联系起来,形成知识结构,既帮助学生理清思路、把握学习重难点,又巩固新知识、强化记忆。】
《小数乘法》教案 篇13
教学内容:
教科书第68~69页,例1、试一试、练一练,练习十二第1~3题。
教学目标:
1、使学生在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。
2、使学生在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括及合情推理能力,感受数学探索活动的乐趣。
3、在解决实际问题中体会数学计算在生活中的广泛应用。
教学重点:
小数乘整数的计算方法。
教学难点:
确定积的小数点位置。
教具:
课件。学具:计算器。
教学过程:
一、明确目标,提出课题。
师:同学们,有关小数的计算,我们已经学过了哪些?(指名提问)那么猜猜看,有关小数的计算还得有哪些?
师:是的,这节课我们就一起来研究有关“小数的乘法和除法”的第一课时“小数乘整数”。(板书课题。)
二、自主探究,习得方法。
(一)依据信息,提出问题。
1、出示例题场景图,提问:请看屏幕,从图中你能知道什么?
生1:夏天每千克西瓜0.8元,冬天每千克西瓜2.35元。(好的,你说。)
生2:冬天的西瓜比夏天贵。
说明:是的,反季节的水果价格比较贵。
2、提出问题。
师:根据这些信息,要求“夏天买3千克西瓜要多少元?”,你会列式吗?学生列式。同意吗?
(二)解决问题1。
1、尝试。
激发:0.8×3就是小数乘整数,能不能自己想办法算出得数?先想一想,再在练习本上算一算。算好了,请举手。
学生思考、计算,教师巡视了解学生用的方法。
2、交流。
师:算好了,谁先来说说?
生1:用加法:0.8+0.8+0.8=2.4。
引导:板书0.8+0.8+0.8,问:怎么算?想三八二十四,写4进2。
3个0.8相加算出结果,也就是0.8×3表示什么?
说明:是的,小数乘法的意义和整数乘法的意义相同。
生2:0.8元=8角8×3=24角24角=2.4元
引导:你有想到这种方法吗?有想到的请举手。问:为什么要把0.8元换算成8角?也就是把小数0.8换算成了整数8。(板书:小数―整数)
评价:很好,能用元角分的单位换算,计算出结果。
生3:因为8×3=24,所以0.8×3=2.4。
引导:有这样想过的请举手。你是怎么想的?这样想有没有什么道理呢?我们一起来看,这里的8根据小数的意义,可以看做…(8个0.1),8个0.1乘3就是…24个0.1,24个0.1就是2.4。是这样吗?
评价:能把新知识转化成了旧知识。(引导语:0.8乘3是求几个0.8相加的和?0.8元也可以看成是几角?)
3、比较。
师:比较一下这两种方法,在算0.8×3时,有什么相同的地方?都想到了什么?〖8×3〗也就是都把小数乘整数变成了…整数乘整数。
4、列竖式。
师:还有不同的算法吗?你说我来写,先写…0.8,再乘3,3写在哪儿?(板书好再问)有没有不同的意见?现在有两种写法,你认为那一种更好一些呢?(如果只有一种,问:都认为写在这儿,为什么?)
在学生充分说的基础上,说明:把小数0.8先看成整数8计算,也就是把0.8的什么先不看?(根据回答遮住小数点)8就跟…3对齐了。接着计算,三八二十四。根据我们前面的探索,这里乘得的积应该是几位小数?因数中的小数是几位小数。共3页,当前第1页123
那么0.8×3=2.4,我们一起口答。
(三)解决问题2。
1、列式。
师:如果,冬天也买3千克西瓜要多少元?谁来列式?2.35×3也是小数乘整数,它表示什么?
2、尝试列竖式计算。
师:这道题比刚才这道题要难了,敢不敢尝试?好,在练习本上算一算。
学生计算,老师巡视。
3、展示。
师:算好了,谁先来说说你是怎么算的?
问:3写在哪儿?为什么?小数点写在哪儿?是不是等于7.05,我还可以用什么方法计算?(板书加法)得数是一样的。
我们来看这里因数中的小数是几位小数,积有几位小数?
好的,2.35×3=7.05,一起口答。
4、对比。
师:同学们,通过这两道题的计算,你发现了什么?(末位对齐或小数的位数问题)观察这两题的因数与积你发现了什么?能不能接着往下猜?也就是说因数里有…,积就有…。(板书:因数里有几位小数,积就有几位小数?)
(四)探索小数点的位置。
1、猜想。
师:两道题就能确定这是一条规律了?我们再来做几道题验证一下,好不好?出示4.76×12,你猜积有几位小数?你能不能也举一些像这样的乘法式子让其他同学猜猜积有几位小数?最后一次机会,谁来说个小数位数多些的?
2、验证。
师:下面拿出计算器,准备好,请听题。第一题…
算好的请举手。你说?57.12是几位小数,证明我们的判断是…正确的。第二题…。
师:请把计算器收起来。同学们经过刚才的计算和验证,证明了什么?(指板书)我们就能确定这是一条规律。
3、判断。
师:根据这条规律,请你来当小法官。
(1)下面的计算,积的小数点位置正确吗?0.12×4=4.8
师:为什么?怎么改?
(2)在爱心捐款活动中,五年级同学决定把收废品的钱捐给希望小学,共收集了废品32千克,每千克0.84元。
0.84×32=2688元
师:同学们,本来只有二十几元的钱,生活委员却算成了2688元,听到这你有什么感受?
(五)总结小数乘整数的计算方法。
师:同学们,学到现在小数乘整数你会算了吗?回顾一下我们刚才的计算过程,你认为小数乘整数应该怎样算?自己先想一想,再与同桌同学说说。
小结:计算小数乘整数时,一般先把小数看成整数,然后按照整数乘法的计算方法进行计算,最后看因数有几位,就从积的右边起数出几位点上小数点。
过渡:同学们,会算了,我们来练练身手好吗?
三、巩固延伸。
1、练一练的第1题。
请翻开书,第69页做练一练第一题。
最后两题如果感觉不够算,可以写在练习本上。
拿上一位同学的.作业,讲评:
(1)第一小题,对吗?你是怎么算的?
(2)第二小题,对吗?(你有什么建议?或这个零为什么要画去?)小数乘法也一样要化简。
(3)第三小题,有意见吗?你有什么建议?
哦,把小数先看成整数,那么这个地方,还应不应该有小数点,而应该在…结果点上小数点。要不要改一改?
(4)(找对的同学)第四小题,现在我们来看这位同学做的对吗?对的请举手。
师:通过这几道题的计算,你觉得小数乘整数计算时有什么地方要提醒大家的?(数位末位对齐、小数点、末尾有零要化简、竖式的中间不用点小数点)
2、练一练的第2题。
师:提醒得很到位。出示14.8×23,现在不用计算,只要知道哪个算式的得数,你就能知道14.8×23的得数?共3页,当前第2页123
告诉你148×23=3404,能告诉我14.8×23的结果吗?你是怎么想的?
再来148×2.3,得数多少?0.148×23呢?
出示□×□=34.04,方框里能填哪些数?
师:你很聪明,同学们请看是一位小数,也是一位小数,一位小数乘一位小数积是不是两位小数呢?以后我们还会再研究小数乘小数的计算方法。
3、解决实际问题。
过渡:利用今天学的知识我们来解决一些实际问题。
(1)出示:2008年,就是北京奥运会了。为庆祝奥运会上海有位大学生很有创意,独自一人骑自行车从上海出发去北京,每天约行92.4千米,经过15天到达北京。而且还带着一份长102米,宽0.98米的“万人签名支持奥运”条幅,送给北京的奥组委。
(2)根据这些信息你能解决哪些数学问题?好,自己给自己提出一个问题,算一算。
(3)通过计算,你体会到了什么?
四、反思回顾。
师:同学们,今天我们学习小数乘整数,你有什么收获?
《小数乘法》教案 篇14
教学内容
教科书第1页的例1和做一做,练习一的第1~4题.
教学目的
1.使学生理解小数乘整数的意义,掌握小数乘整数的计算法则.
2.培养学生的迁移类推能力.
教具准备
教师将教科书第1页的复习中的表格写在小黑板上.
教学过程
一、复习
1.复习整数乘法的意义.
教师:我们已经学过整数的乘法,同学们还记得整数乘法的意义是什么吗?让两个学生说一说整数乘法的意义.
教师:在乘法算式中各部分的名称是什么?(因数、因数、积)
2.复习整数乘法中因数变化引起积变化的规律.
教师出示小黑板的复习题.让一名学生在小黑板上做,其他学生打开教科书,在书上自己独立做.教师巡视,集体订正.
订正后,教师可以引导学生观察、比较:
第2栏与第1栏比较,因数有什么变化?积有什么变化?(第2栏与第1栏相比,第一个因数扩大了10倍,第二个因数没变,积也扩大了10倍.)
第3栏与第1栏比较,因数有什么变化?积有什么变化?(第3栏与第1栏相比,第一个因数扩大了100倍,第二个因数没变,积也扩大了100倍.)
第4栏与第1栏比较又怎样呢?(第一个因数扩大了1000倍,第二个因数没变,积也扩大了1000倍.)
我们现在再倒过来观察,第3栏与第4栏比较有什么变化?(第一个因数缩小了10倍,第二个因数没变,积也缩小了10倍.)
那么,第2栏、第3栏与第4栏比较呢?(第一个因数分别缩小了100倍、1000倍,第二个因数没变,积也分别缩小了100倍、1000倍.)
根据上面的观察、比较,我们能得出什么结论呢?可以让学生适当讨论,从而得出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍积也扩大(或缩小)10倍、100倍、1000倍
教师:这个规律非常重要,对我们以后的学习会有很大的帮助,同学们一定要很好地掌握.
二、新课
1.教学小数乘整数的意义(例1的前半部分).
教师出示例1.
教师:想一想,这道题可以怎样解答,该怎样列算式?多让几名学生回答,教师把学生的列式写在黑板上.(如果学生中没有列出乘法算式,教师可以借助加法算式启发学生想:加法中的各个加数有什么特点?还能用别的方法计算吗?怎样列式?引导学生列出乘法算式.)
学生列出算式以后,着重让列出乘法算式的学生说一说是怎样想的.
13.55表示什么意思?(5个13.5)
还表示什么?(求13.5的5倍是多少.)
教师:过去我们学习的是整数乘整数,今天我们列的乘法算式是小数乘整数.同学们想一想,小数乘整数的意义同整数乘法的意义比较相同不相同?(相同)
让两名学生说一说小数乘整数的意义.教师板书:小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
2.教学小数乘整数的计算法则(例1的后半部分).
教师:我们已经知道了小数乘整数的意义与整数乘法的意义相同,那么该怎样计算呢?想一想,能不能把这些小数乘法转化成整数乘法呢?
教师:我们先复习一下小数点位置移动引起小数大小变化的规律.让两个学生说一说.
教师:小数乘法可以依照整数乘法用竖式进行计算.
教师板书:13 . 5
5
教师:如果把这个式子变成整数乘法,就要去掉小数点,那么这个式子变成了什么?(1355)教师在小数乘法的竖式右边写出整数乘法的竖式:
13 . 5135
55
让学生说一说整数乘法应该怎样计算.教师在整数乘法下面写出积(675).
13 . 5135
55
675
教师引导学生讨论:
13.5变成135相当于小数点怎样移动,因数扩大了多少倍?(小数点向右移动一位,因数扩大了10倍.)教师依照教科书例题的形式,用彩色粉笔画出从13.5到135的.箭头,并在箭头上标明扩大10倍.
另一个因数变化了没有?(没有)
一个因数扩大了10倍,另一个因数没有变化,那么新的积与原来的积相比发生了什么变化?(积比原来扩大了10倍)
那么,要得到原来的积就要把新的积怎么样?(缩小10倍.)教师用彩色粉笔画出从675到小数乘法竖式积的箭头,并在箭头上标明缩小10倍.
要把675缩小10倍,就要把小数点怎样移动?(小数点向左移动一位)
13.55的积应该是多少?(67.5)
教师在小数乘法竖式下面积的位置上板书:67.5
教师:买5米花布要用多少元?(67.5元)教师在横式上写出得数,注明单位名称,板书答案.
教师引导学生回顾一下小数乘整数的计算方法,使学生明确:先把小数看作整数,小数扩大10倍,这样乘出来的积也扩大10倍,要求原来的积,就要把乘出来的积再缩小10倍.
3.基本练习.
做教科书第84页下面的做一做.
教师:这道题该怎样列式?(9.7614)
同学们能根据例题的方法计算出这道题的得数吗?让学生独立计算,教师巡视,了解全班学生掌握的情况以及存在的问题.
集体订正时,让两名学习好的学生说一说是怎样想的.特别要让学生比较一下这道题与例题的异同.(这道题因数有两位小数,都是小数乘整数.)使学生初步认识到积的小数位数与因数的小数位数应该一样.
三、巩固练习
1.做练习一的第1题.
指名让学生说一说每个乘法算式的意义.可有意识地让学习有困难的学生说,并按照下面的问题顺序回答:读算式;说出是什么数乘什么数;算式的意义是什么?
2.做练习一的第2题.
教师说明题目要求,学生独立列式.集体订正时,让学生再说一说小数乘整数的意义.
3.做练习一的第3题的前两道小题.
学生独立计算,教师巡视,对学习有困难的学生进行个别辅导.集体订正时,可让计算有错误的学生说一说是怎样算的,使他们知道自己错在哪里,以提醒全班学生注意不要犯类似的错误.
四、小结
教师引导学生根据例题与练习中因数的小数位数的不同情况,总结小数乘整数的计算方法:小数乘整数,先按照整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位点上小数点.
五、作业
练习一的第3题的后四道题,第4题.
《小数乘法》教案 篇15
单元导学
本单元的主要内容有小数乘法、积的近似数、整数乘法运算定律推广到小数和运用小数乘法解决问题。
小数乘法是《数学课程标准》数与代数领域“数的运算”中的重要内容,也是本册教材的重点和难点,小数乘法在实际生活和数学学习中有着广泛的应用,是小学生应该掌握和形成的基础知识和基本技能。
学生在以前的学习过程中已经掌握了整数的四则运算、小数的意义和性质以及小数的加减法运算,已经具备了一定的经验。因此,本单元的学习要注意加强与整数的联系,以便引导学生将整数乘法的经验迁移到小数乘法中来,提高学生的.学习能力。
备内容
小数乘法
小数乘整数(1课时)
小数乘整数与整数乘法的联系;小数乘整数的算理及算法
小数乘小数(1课时)
小数乘小数的算理及算法;积的大小与因数的关系
倍数是小数的实际问题和乘法验算(1课时)
求一个数的小数倍数是多少的问题的解题方法及小数乘法的验算方法
解决问题(1课时)
用小数的估算解决购物问题;用小数乘加、乘减解决问题及小数乘加、乘减的运算顺序
整数乘法运算定律推广到小数(1课时)
整数乘法运算定律在小数乘法中的推广及应用
积的近似数(1课时)
用“四舍五入”法截取积的近似数
备目标
知识与技能
过程与方法
情感态度与价值观
1.掌握小数乘法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释。
2.会用“四舍五入”法保留一定的小数位数,求出积的近似数。
3.理解整数乘法运算定律对于小数乘法同样适用,并会运用这些运算定律进行有关小数乘法的简便运算。
1.通过数学活动,培养学生迁移、转化的思想,增强运用旧的知识来解决新的知识能力,从而提高学生的分析和推理能力。
2.在解决问题的过程中,深化对所学知识的理解,增强学生的应用意识。
1.在与他人交流算法的过程中,学习表达自己的想法,逐步养成善于倾听、敢于质疑的好习惯。
2.感受小数乘法在实际生活中的应用,体验小数乘法的应用价值。
3.增强学生自主探究的欲望,获得成功的体验,坚定学生学好数学的信心。
备重难点
重点
1.理解小数乘法的算理。
2.明确因数与积之间的关系。
3.运用小数乘法的知识解决实际问题。
难点
1.熟练计算小数乘法,会求积的近似数。
2.运用乘法运算定律进行简便计算。
《小数乘法》教案 篇16
教学目的:
1、学生理解小数乘以整数的意义,掌握小数乘以整数的计算法则。
2、培养学生的迁移类推能力。
教学重点:理解算理,正确计算。
教学过程:
一.创设生活情境,赋予现实意义
(汇报时有选择填入一个整数、一个一位小数、一个两位小数)
让学生根据表中的信息编出几道应用题。
二.激起学习兴趣,创造活动机会,
谈话:对于这些问题,你能解决哪些呢?
(1)学生独立尝试计算,汇报交流(选择有代表性的'方法板书在黑板上)
板书:①加法算式:
②乘法算式:
(2)讨论各种算法,尝试说理。
三.扩大思维空间,亲历数学过程
(1) 在括号内填上适当的数。
2.4 ( )
×6 ×6
从以上几题中,你有什么发现?
(2) 请你在下面各题积的合适位置点上小数点。(题略)
(3) 小结:通过探索,大家对小数乘整数的方法都有了各自的理解。那么,你觉得应该怎样计算小数乘法呢?
四、提供出错时空,经历思维碰撞
(1)口算:0.4×3 3×0.17 0.21×4
(2) 5×8.34 14×0.36 0.12×90 1.05×24
五、在开放中激活思维,尊重学生独立思考
(1) 变式练习:要使872×12=10.488的积正确,因数的小数点该怎样点?你有什么诀窍?
(2) 开放练习:在括号里填上你喜欢的数,使算式成立:
( )×( )=0.36
《小数乘法》教案 篇17
教学目标:
使学生理解小数乘小数的意义,掌握小数乘小数的计算法则,能正确运用计算法则计算小数乘小数的乘法,培养学生的合作能力和迁移类推能力。
课前准备:
教师准备小黑板、投影仪(片)。
教学过程:
一、复习
0.52+0.48=0.17+0.33=3.6+6.4=
0.8×3=3.7×5=46×0.3=
二、新授:
1、教学例1
(1)出示例1:投影出示
下面是小明房间的平面图,房间长3.6米,宽2.8米。
1.15米3.6米
阳房间
台2.8米
门
(2)提问:房间的面积有多大?先估计一下。
3.6×2.8≈()
想:3×3=9,面积在9平方米左右。
4×3=12,面积在12平方米左右。
(3)提出:列竖式计算怎样算呢?
把这两个小数都看成整数,很快计结果。
3.6×1036
×2.8×10×28
288288
7272
1008÷1001008
相乘后怎样才能得到原来的`积?
(4)学生讨论。
得出:两个因数分别乘十,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的积是10.08。
2、试一试。
提出:要求阳台的面积是多少平方米?怎样列式?
2.8×1.15=()
计算2.8×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?
小组合作试一试。
(投影展示学生做的结果)
1.15×100115
×2.8×10×28
920920
230230
3.220÷10003220
解释算理:
得出:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.22。
3、小数乘小数的计算法则。
(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?
(2)在小组里说说小数乘小数应该怎样计算。
(3)先按整数乘法算出积是多少。
看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
4、练一练。
(1)你能给下面各题的积点上小数点吗?
8.772.916.5
×0.9×0.04×0.6
7832916990
(2)计算下面的题。
3.46×1.21.8×4.510.4×2.5
5、总结小数乘小数的法则。
板书设计:小数乘法3.6×2.8=10.08(平方米)3.6×1036×2.8×10×28288288727210.08÷1001008答:房间的面积是10.08平方米。
练习设计:
练习十四2、3题。
《小数乘法》教案 篇18
教学内容:
人教版小学数学教材五年级上册第16页例9,练习四第6~9题。
教学目标:
1.经历分段计费问题的解决过程,自主探究分段计费问题的数量关系,能运用分段计算的方法正确解答这类实际问题,进一步提升解决问题的能力。
2.在解决问题的过程中,学会用摘录的方法收集和整理信息,能从不同的角度分析和解决问题。
3.通过回顾与反思,积累解决问题的活动经验,初步体会函数思想。
教学重点:
运用分段计算的方法正确解答分段计费的实际问题。
教学难点:
探究分段计费问题的数量关系,初步体会函数思想。
教学准备:
将例题与相关习题制成PPT课件。
教学过程:
一、联系生活,提出问题
1. 同学们,你们都乘坐过出租车吧!你知道出租车是怎样收费的吗?(PPT课件演示。)
2. 出租车的收费标准是采用分段计费的,今天这节课我们就一起来探究、解决分段计费的实际问题。
3. 板书课题:解决问题(2)。
【设计意图】引导学生从自己熟悉的日常生活中发现、提炼具体的数学问题,使学生感受到数学与现实生活的密切联系,体会到数学广泛应用于我们日常生活的方方面面。
二、引导探究,解决问题
(一)阅读与理解
1. 呈现情境,明确问题。
(1)出示例9的问题情境。(PPT课件演示,暂不出示收费标准。)
(2)提问:这一情境中要我们解决的问题是什么?解决这个问题还需要知道什么信息?(出租车的收费标准。)
(3)出示收费标准(PPT课件演示)。
2. 读懂图文,摘录信息。(教师逐步板书或PPT课件适时演示。)
(1)收费标准:
3 km以内: 7元;
超过3 km: 每千米1.5元(不足1 km按1 km计算)。
(2)行驶里程:6.3 km。
3. 集体交流,理解标准。(PPT课件突出显示。)
(1)3 km以内7元是什么意思?(出租车从起步到行驶3 km里程,应付的车费都是7元。)
(2)你为什么认为3 km以内7元包括3 km呢?(因为超过3 km,每千米就要按1.5元收费。)
(3)超过3 km后就要按每千米1.5元的标准收费,并且不足1 km按1 km计算。这里不足1 km按1 km计算又是什么意思呢?你能举例说明吗?
(4)问题中行驶里程是6.3 km,根据收费标准,应按多少千米收费呢?(用进一法取整数,按7 km收费。)
4. 教师归纳,概括要点。(PPT课件演示。)
(1)问题中的收费标准是分两段计费的,3 km以内是一个收费标准,为一段;超过3 km又是一个收费标准,又为一段。
(2)超过3 km部分,不足1 km要按1 km计算,也就是要用进一法取整千米数。
【设计意图】解决分段计费问题的关键是理解题意,尤其是理解计费标准。为了帮助学生理解问题中的收费标准,教师采用条件摘录的方式收集信息,引导学生逐条逐句地解释含义,并结合具体数据(学生的举例的和题中的6.3 km)帮助学生切实理解,在此基础上教师再对收费标准的两个要点进行明确的归纳和概括,既促使学生养成认真审题的.良好学习习惯,又有效地突破了分段计费问题的教学关键和难点。
(二)分析与解答
1. 启发学生用自己的方法尝试解答。
(1)教师启发引导:我们已经理解了题意,也理解了这个问题中的收费标准是分两段计费的,那么同学们能不能尝试用自己的方法进行解答?
(2)学生尝试解答。
预设一:7+1.54=7+6=13(元);
预设二:1.57=10.5(元),7-1.53=2.5(元),10.5+2.5=13(元)。
2. 组织、引导学生讨论、交流不同的解答方法。(PPT课件适时演示解答过程。)
(1)预设一(分段计算):
生:我是分两段计算的,前面3 km为一段,应付车费7元;后面4 km为一段,每千米1.5元,应付车费是1.54=6(元);再把两段应付的车费合起来就是13元。
师(质疑):后面一段里程为什么是4 km,计算后面一段车费为什么用1.54?
生:根据收费标准,6.3 km按7 km计算,前面一段是3 km,后面一段就是4 km,所以计算后面一段的车费就应该用1.54。
(2)预设二(先假设再调整):
生:我是用先假设再调整的方法解答的,先假设总里程7 km都按每千米1.5元计算,结果是10.5元;而这样前面3 km的费用少算了7-1.53=2.5(元);再来调整,用10.5元加上少算的2.5元,所以应付车费13元。
【学情预设】根据学生已有的知识和经验,大多数学生容易想到用第一种解答方法解答。但第二种解答方法学生不容易想到,因此,在组织学生讨论、交流时,教师可以根据学生的具体情况进行引导。如:如果把前面一段3 km也按每千米1.5元收费,车费是少算了还是多算了?
3. 引导学生积累解决分段计费实际问题的经验。
(1)变换例题条件:如果行驶里程是8.4 km,你还能用刚才的方法计算出车费吗?如果行驶里程是9.8 km呢?(PPT课件演示。)
(2)学生自主解答,教师巡视。
(3)集体交流订正。(教师板书或PPT课件呈现解答过程。)
【设计意图】沿用例题情境,变换问题条件,让学生在熟悉的情境中解决变换后的问题,不仅有利于学生进一步体会解决分段计费问题的思路和方法,也有利于学生在对比中发现解决分段计费问题的规律,积累解决实际问题的经验,促进学生观察分析、归纳概括能力的发展。
(三)回顾与反思
1. 回顾。
(1)我们刚才解决的实际问题都具有什么特点?
(2)这些问题我们是怎样解决的?
2. 反思用分段计算解决分段计费问题的过程与方法。
(1)呈现例题及变式题的解答过程。(PPT课件呈现。)
(2)提问:观察、比较上面的解答过程,你发现了什么规律?
(3)揭示规律(PPT课件演示):应付车费=7+1.5(总里程-3)。
(4)质疑:为什么总是用7元去加后段里程的车费?(引导学生说出:根据收费标准,前段里程3 km的车费7元是固定不变的。所以,只需要计算出后段里程的车费,再和7元相加,就求出了应付的车费。)
3. 反思用先假设再调整方法解决分段计费问题的过程与方法。
(1)呈现例题及变式题的解答过程。(PPT课件呈现。)
(2)提问:观察、比较上面的解答过程,你发现了什么规律?
(3)揭示规律(PPT课件演示):应付车费=1.5总里程+2.5。
(4)质疑:为什么总是用假设车费再加上2.5元?(引导学生说出:如果把所有里程都假设为每千米1.5元,那么前段里程3 km的车费就只算了4.5元,少算了2.5元。所以,算出假设车费后,再加上2.5元才是应付的车费。)
4. 教师归纳。
(1)通过同学们刚才的讨论和交流,我们发现了解决分段计费问题的规律,找到了解决分段计费问题的两种一般方法。(PPT课件演示。)
(2)在解决问题时,我们都应该像这样对解答的过程与方法进行回顾与反思,从中发现所蕴含的规律,找到解决问题的一般方法,提高我们解决问题的能力。
5. 拓展(制作、应用出租车价格表)。
(1)这节课,我们用两种方法解决了乘出租车付费的实际问题。其实,我们还可以用制作价格表的方法来解决乘出租车付费的问题。
(2)你能完成下面的出租车价格表吗? (PPT课件出示价格表。)
(3)学生完成出租车价格表。(教材第16页。)
(4)思考:观察表中的数据,你发现行驶里程与出租车费之间有什么关系?它们之间的变化情况又是怎样的?(PPT课件呈现。)
(5)应用出租车价格表解决问题。(PPT课件呈现。)
①妈妈坐出租车行驶了7.2 km,应付车费多少钱?
②王叔叔乘坐出租车,下车后付了16元车费,他至少乘坐了多少千米?至多呢?
【设计意图】通过回顾与反思,引导学生分别反思用分段计算和先假设再调整的方法解决分段计费问题的过程,帮助学生建立解决这类问题的两种一般方法。通过引导学生完成出租车价格表,并观察、思考表中行驶里程与出租车费之间的关系及变化情况,感受分段计费的特点和规律,让学生初步体会函数思想。
三、实践应用,内化提升
(一)基本应用
练习四第7题。
(1)理解题意:你怎样理解合影价格表中的信息?问题一共需付多少钱是分哪两段计费?
(2)学生独立完成。
(3)全班集体交流:你是怎样解决这个问题的?
(二)拓展应用
1. 练习四第8题。
(1)理解题意:这道题是实际生活中的一个什么问题?它的收费标准是怎样的?
(2)学生独立完成。
(3)全班集体交流:通话时间8分29秒应该按几分钟计算?你是怎样解答的?
2. 练习四第9题。
(1)理解题意:这道题里有几种收费标准?解答这道题除了考虑分段计费外,还要区分什么?
(2)学生独立完成。
(3)全班集体交流:你是怎样解答第(1)问的?第(2)问呢?
(4)你还能提出其他数学问题并解答吗?
【设计意图】直接选用教材提供的练习,让学生充分感受分段计费问题在实际生活中的广泛应用。练习根据问题的复杂程度分了基本应用和拓展应用两个层次,在练习中特别注意引导学生理解题意,理解问题中的计费标准,这既是解决这类问题的基础,又是解决这类问题的关键。解答时放手让学生自己独立完成,并通过交流让学生体会解决问题的多种方法,增强学生分析问题、解决问题的能力。
四、全课总结,畅谈收获
1. 说一说,这节课的学习你有什么收获?
2. 本节课是本单元的最后一节课,本单元的学习你有什么收获?
五、作业练习
1. 课堂作业:练习四第6题。
2. 家庭作业。
(1)回顾本单元的学习内容,你有哪些收获?
(2)学习中遇到了哪些问题?你是怎样解决的?
《小数乘法》教案 篇19
教学内容:
人教版小学数学教材五年级上册第5~6页例3、例4及“做一做”,练习二第1~5题。
教学目标:
1.通过旧知迁移,引导学生自主探究、逐步理解小数乘小数的算理,掌握基本算法。
2.使学生掌握在确定积的小数点位置时,小数位数不够的,要在前面用0补足;引导学生发现一个因数比1大(或小)时,积和另一个因数的大小关系。
3.培养学生运用迁移的数学思想解决新问题的能力。
教学重点:小数乘小数的计算方法。
教学难点:小数乘法中积的小数位数和小数点位置的确定。
教学准备:、课本。
教学过程: 一、类比迁移,情境展开
教学例3。
1.出示例题。
(1)师:同学们,最近我们要给学校宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗?
(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?
(3)板书(或用PPT演示):2.4×0.8=________
2.尝试计算。
(1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同?(两个因数都是小数。)
(2)师:我们上节课学习的小数乘整数是怎样计算的?那两个因数都是小数又怎么计算呢?
(3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢?如果能,应该怎样做?
(4)指名学生口答,教师适时板书(或PPT演示)学生的讨论结果。
3.理解算理。
引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。
4.进一步明确算理(两个因数的小数位数不同)。
(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢?
(2)板书(或用PPT演示):1.92×0.9=________
(3)师:这道题也可以先按整数乘法计算吗?积里的小数点应该点在哪里呢?
【设计意图:在给宣传栏刷油漆的问题背景下,迁移已有的小数乘整数的经验,为学生进一步探究小数乘小数的计算方法奠定坚实的基础。】
二、深化探究,总结算法
(一)探究因数与积的小数位数的关系
1.学生独立完成第5页的“做一做”。
2.师:观察例3及“做一做”各题中因数与积的小数位数,你能发现什么?
(二)小结小数乘法的计算方法
1.组织学生回顾、讨论小数乘法是怎样计算的。
2.组织学生汇报、交流自己的计算方法。
(1)师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)
(2)师:怎样确定积的小数点的位置?(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)
3.根据学生的讨论和交流,逐步归纳概括出小数乘法的计算方法,并让学生将教材第6页小数乘法的计算方法补充完整。
【设计意图:教材上安排了计算方法的小结,通过本环节的教学有意识地培养学生由具体到抽象的归纳概括能力。】
三、引发冲突,突破难点
(一)教学例4
1.出示例题。
(1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗?
(2)板书(或用PPT演示):0.56×0.04=________
2.尝试计算。
(1)学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。
(2)师:在计算时,遇到了什么新问题?
(3)师:乘得的积的小数位数不够时,怎样点小数点呢?
(二)及时巩固
1.学生独立完成教材第6页“做一做”的第1题。
(其中既有一般的.小数乘法,也有积的小数末尾有0和积的小数位数不够的类型,帮助学生全面掌握小数乘法的计算。)
2.学生完成教材第6页“做一做”第2题的计算。
(三)探究积与因数的大小关系
1.集体订正“做一做”第2题时,引导学生分别将每组题中计算的结果和第一个因数比较大小,发现其中的规律。
2.组织学生交流、总结自己发现的规律。
(1)一个数(0除外)乘大于1的数,积比原来的数怎么样?
(2)一个数(0除外)乘小于1的数,积比原来的数怎么样?
3.帮助学生进一步明确积与因数的大小关系,并结合具体例子明确应用这个关系可以判断乘法计算中的一些错误。
【设计意图:“乘得的积的小数数位不够,怎么点小数点?”是小数乘法中的难点,让学生用刚刚总结的小数乘法的计算法则来进行例4的计算,意图就是引发学生的认知冲突,促成学生用已有的知识和经验化解冲突,解决遇到的新问题,从而突破学习难点。引导学生自主探索积和因数之间的大小关系,不仅为确定小数点的位置提供了操作依据,避免在确定积的小数位数时发生错误,而且也有利于培养学生的探究意识和分析归纳能力。】
四、实践应用,内化提升
(一)基本练习
1.练习二第1题(基本计算)。
(1)学生独立练习。
(2)组织学生交流和订正。(其中有第一个因数的位数比第二个因数的位数少、积的小数末尾有0和积的小数位数不够等多种类型同时出现的小数乘法计算,让学生充分地交流和发表意见,教师适时给予指导,帮助学生全面掌握小数乘法的计算方法。)
2. 练习二第2题(基本应用)。
(1)帮助学生理解题意,指导学生看懂每种商品各有多少千克。
(2)引导学生回顾单价、数量和总价之间的关系。
(3)学生独立完成。
(二)拓展练习
补充题:在下面算式的括号里填上合适的数。(你能想出不同的填法吗?)
0.48=( )×( )
=( )×( )
【设计意图:通过分层次的练习,旨在让学生通过基本计算全面掌握小数乘法的计算方法,培养学生的运算能力;通过基本应用感受小数乘法在现实生活中的实际应用,培养学生的应用意识;通过拓展练习进一步体会因数与积小数位数之间的关系,培养学生灵活运用小数乘法计算方法的能力。】
五、全课总结,畅谈收获
说说这节课你有什么收获?
六、课堂练习
练习二第3、4、5题。
《小数乘法》教案 篇20
教学要求:
1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用“四舍五人法”截取积、商是小数的近似值。
3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教学重点:
1、使学生掌握小数乘、除法的计算法则。
2、能正确地进行小数乘、除法的笔算和简单的口算,提高学生的计算能力。
3、能正确应用“四舍五入法”截取积是小数的近似值,并能解决有关的实际问题。
4、会应用所学的运算定律及其性质进行一些小数的简便计算。
教学难点:
在理解小数乘、除法的.算理和算法的基础上,掌握确定小数乘法中积的小数点位置。
课题:
小数乘以整数
教学内容 :
例1和例2、“做一做”,练习第1~4题。)
教学要求:
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点:
小数乘以整数的算理及计算方法。
教学难点:
确定小数乘以整数的积的小数点位置的方法。
教学用具:
放大的复习题表格一张(投影)。
教学过程:
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。
出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元
3.5元=3元5角 3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元
理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的?
把3.5元看作35角
《小数乘法》教案 篇21
教学内容:
教科书第3页的例3、例4,第3页做一做,练习一第10~13题
教学目的:
使学生掌握确定积的小数位时,位数不够会用0补足;
使学生初步掌握“当乘数比1小时,积比被乘数小,当乘数比1大时,积比被乘数大”;培养学生的观察比较的能力。
教学重点、难点:
在积中点小数点时,位数不够如何用“0”补充
教学过程:
一、复习引入
1、7×0.84.2×0.31.3×0.5
口算并说说怎样想的?
2、指名说说小数乘法的计算法则
3、把下面各数缩小1000倍
12.5256103
二、进行新课
1、教学例30.056×0.15
(1)启发提问:
①怎样列竖式?要不要小数点对齐?为什么?
②怎样把0.056×0.15转化成整数乘法?
③按整数乘法乘出来的积,比原题的结果扩大了多少倍?
④要得到原来的积,该怎么办?
⑤积的小数位数不够时,怎么办?
(2)强调:计算小数乘法在点小数点时,乘得的积的小数位数不够就要在小数的前面补零。
注意:先点小数点,再去掉小数末尾的.零
(3)验算:交换因数位置后让学生说说0.056×0.15、
0.15×0.056各求的是什么?然后进行检验。
(4)练一练
1.3×0.050.025×1.8
2、教学例4
(1)指名读题
(2)列出算式:这题该用什么方法计算?
(3)说说18.5×2.4表示什么意义?
(4)指出:以前表示两个数的位数关系的都是整数,现在倍数关系也可以是比1大的小数,就象这里,18.5的2.4倍就是求18.5的2倍和18.5的十分之四合起来是多少?
求18.5的2倍用乘法,求18.5的十分之四用乘法,因而求
18.5的2.4倍也用乘法。
(5)算出得数(学生自练后填在书上)
集体订正
3、观察例3,例4,比较积和被乘数的大小
(1)小组讨论并填表:当积小于被乘数时,乘数有了什么特点?(与1比较是怎样的关系)
当积大于被乘数时,乘数有了什么特点?
为什么有这种规律?
(2)做一做
先判断一下,积比被乘数大还是小,再计算
指名板演,其余自练
集体订正,说说怎样算的
三、巩固练习
1、P5第10题小组形式,小组长报题,组员抢答
汇报情况,共同纠正易错题,择题说说口算步骤
2、判断下列各题是否正确,为什么?
0.2812.2
×0.5×0.5
───────────
0.014061.0
3、P5第12题做在书上后集体订正,指名说出每道题对错的理由
4、P5第13题自练后评讲
四、全课
今天学习的小数乘法,在点小数点时碰到了什么问题?怎么解决的?乘数比1小时,积比被乘数大还是小?反过来呢?
五、布置作业
P5第11题
六、板书
一个数乘以小数
例3注意点
计算过程表格
例4
计算过程
【《小数乘法》教案】相关文章:
小数的乘法和除法教案09-18
小数乘法教案(精选3篇)03-19
小数乘法教案范文(通用5篇)04-02
有趣的小数乘法日记04-05
小数乘法教学反思10-01
《小数乘法》教学反思04-02
《小数乘法》教学设计05-29
小数乘法教学设计03-17
小数乘法的教学反思02-01