圆柱和圆锥教案

时间:2023-03-08 15:23:51 教案 投诉 投稿

圆柱和圆锥教案

  作为一名人民教师,通常会被要求编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?下面是小编为大家整理的圆柱和圆锥教案,希望对大家有所帮助。

圆柱和圆锥教案

圆柱和圆锥教案1

  教学目标:

  1、使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图;认识圆柱和圆锥的底面、侧面和高,并会测量高。

  2、通过观察、操作、思考、讨论等活动,培养同学们发现问题、分析问题、解决问题的能力。

  3、从实际生活入手,通过解决实际问题,发展学生的空间观念。

  教学重点:

  认识圆柱和圆锥的高,并会测量高。

  教学过程:

  一、创设情境,引入新课。

  师:前面我们学习了一些平面图形和立体图形,(出示)这是一个长方形,请同学们动脑筋想一想,当它沿一条边旋转一周,会形成什么图形?

  师:这个三角形沿一条直角边旋转一周,会形成什么图形?(板书课题)

  二、探索尝试,解释交流。

  1、感知圆柱、圆锥。

  师:日常生活中,有很多圆柱、圆锥形状的物体,大家看,这个茶叶盒的形状就是圆柱,这个积木的形状就是圆锥。请同学们想一想,生活中还有哪些物体的形状是圆柱或者圆锥?师:老师也收集了一些圆柱、圆锥物体的画面,当去掉这些画面的颜色和图案,就得到了圆柱、圆锥的立体图形。

  师:圆柱、圆锥有什么特征呢?

  2、认识圆柱的各部分名称。

  师:我们先来研究圆柱有哪些特征?请同学们用看一看、摸一摸、量一量等方法来研究圆柱的特征,看哪个小组合作的好,发现的多。

  (1)哪个小组先来说一说你们的发现?

  (2)介绍圆柱各部分的名称,让学生结合圆柱各部分的名称再来说一说圆柱的.特征。

  (3)质疑:你是怎样知道两个底面相等的?侧面是粗细均匀的?

  (4)圆柱两个底面之间的距离叫圆柱的高。

  圆柱的高有多少条?这些高的长度有什么关系?

  (5)在日常生活中,硬币的高叫什么?钢管横着放高叫什么?圆柱形水井的高叫什么?

  (6)结合实物,师生一起整理圆柱的特征。

  (7)谁能结合板书,完整的说一说圆柱的特征。

  3、探究圆锥的特征。

  (1)我们已经知道了圆柱的特征,下面请同学们结合圆柱特征的研究方法,来研究圆锥有哪些特征?

  (2)哪个小组来说一说你们的发现?

  (3)说一说圆锥的特征。

  4、对比。

  师:我们已经知道了圆柱、圆锥的特征请同学们结合板书,想一想,圆柱、圆锥有什么相同点和不同点?

  三、拓宽应用。

  1。圆柱上下面是两个()的圆形,圆锥的底面是一个()形。

  2。圆柱有()个面是弯曲的,圆锥的侧面是一个()面。

  3。圆柱两个底面之间的距离叫圆柱的(),一个圆柱有()条高。

  4。从圆锥的()到()的距离是圆锥的高,一个圆锥有()条高。

  四、总结

  这节课你有什么收获?

圆柱和圆锥教案2

  教学内容:

  练习二第14页内容。

  教学目标:

  1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  教学重、难点:运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

  2、圆柱的表面积怎么求?(圆柱的'表面积=圆柱的侧面积+底面积×2)

  二、实际应用

  1、练习二第7题

  (1)学生通过读题理解题意,思考“需要白铁皮多少平方米”是求几个面的面积?(侧面积)

  (2)指名板演,其他学生独立完成于课堂练习本上。

  (3)集中分析评讲。

  2、练习二第8题

  学生独立完成这道题,集体订正。

  3、练习二第9题

  指名板演,其他学生独立完成于课堂练习本上。

  4、练习二第10题

  (1)学生读题理解题意。

  (2)提问:这个“博士帽”是由哪几部分组成?分别求哪些面的面积?

  (3)学生自主完成。

  (4)集体评讲,注重后进生辅导。

  5、练习二第11题

  (1)学生读题。

  (2)提问:要想求“这根花柱上一共有多少朵花必须先求什么?。

  (3)学生独立完成

  6、练习二第12题

  (1)学生读题。

  (2)引导思考。

  (3)集体练习

  7、练习二思考题(学有余力学生完成。)

  引导思考:截成3段截了几次?一共多了几个面?几个什么样的面?那么表面积增加了多少平方厘米呢?如果截成4段、5段会做吗?接下来学生练习。

  三、课堂小结

  通过今天的练习,你对圆柱的侧面积和表面积有了哪些新的认识?

  四、课堂作业

  基础训练。

圆柱和圆锥教案3

  教学目标

  1.联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。

  2.通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。

  教学重、难点

  理解并掌握圆柱、圆锥的基本特征。

  教学过程

  一、情境导入

  1.教师拿一根一头拴着一个小球的绳子甩动,问:你们看到了什么? 再让学生结合书第2页2、3题,想一想你发现了什么?

  最后总结出点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体的结论。

  2.教师出示一个袋子,里面装着各种物体(长方体、正方体、球、圆柱、圆锥、圆台)

  游戏规则:一人上台摸,并描述你摸到的这个物体的最典型的特征,使下面同学能在最短的时间内猜出你摸的这个物体的名称。

  师生共同活动。在摸出物体后,教师让学生回忆一下以前学过的长方体、正方体的特征。

  引出这节课要探究圆柱和圆锥。板书课题:圆柱和圆锥

  二、 探究圆柱和圆锥的特征

  1.从生活的实景图中发现圆柱和圆锥。

  从书第2页找一找的实景图,找出我们学过的立体图形,与同伴互相指一指,哪些是圆柱和圆锥,并指名回答。

  2.小组合作学习,探究圆柱、圆锥的特征。

  用各种方法,如摸、量、画等,观察带来的`圆柱、圆锥形实物,你们有哪些发现?用手中的工具验证你们的猜想。并填写小组合作学习的报告。

  小组合作学习表格:

  研究对象

  你们猜想它有哪些特征?

  你们是用怎样的方法验证你们的猜想的?把验证方法记录下来,与同学交流。

  3.小组汇报反馈。

  教师抓住几个关键点进行引导:

  圆柱的特征:

  ⑴两个底面、一个侧面。底面是由两个大小完全相等的圆组成。侧面是一个弯曲的面。

  ⑵认识圆柱的高,并会测量圆柱的高。如果没有学生探究这个问题,教师要示范两个底面大小差不多的圆柱,让学生观察它们的高不同,从而引导学生关注圆柱的高(圆柱两个底面的距离叫做高)。圆柱有无数条高,每条高的长度相等。

  圆锥的特征:

  ⑴由一个底面(圆)、一个侧面(曲面)组成。

  ⑵从圆锥的顶点到底面圆心的距离是圆锥的高。引导学生掌握测量圆锥的高的方法。

  小结:通过刚才的合作学习和交流,我们更进一步认识了圆柱和圆锥的特征。你能说一说你现在知道了圆柱和圆锥有哪些特征吗?

  4.说一说

  课本3页,让学生再次系统地看一看圆柱和圆锥各部分的名称。拿一个你准备好的圆柱和圆锥,同桌互相说一说它们各部分的名称。

  说一说,在生活中见到的哪些物体的形状像圆柱、圆锥?指名回答。

圆柱和圆锥教案4

  预设目标:

  使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,发展学生的空间观念。

  教学过程:

  教师:在这个单元里,我们学习了两种新的立体图形:圆柱、圆锥,知道了它们的特征、学会了如何求出它们的体积等知识。并学会运用这些知识解决一些简单的实际问题。

  一、复习圆柱

  1、圆柱的特征。

  ⑴圆柱有什么特点?⑵做第91页第1题的上半题。

  2、圆柱的侧面积和表面积。

  ⑴教师:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)

  圆柱的侧面积怎样计算?(底面的周长×高)

  为什么要这样计算?(底面的周长=长方形的长,高=长方形的宽)

  圆柱的表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)

  ⑵做第91页第2题的第⑴、⑵小题,第3题上半题求圆柱表面积部分。

  3、圆柱的体积。

  ⑴教师:圆柱的体积怎样计算?(底面积×高)计算的公式是怎样推导出来的? 圆柱体的体积计算的字母公式是什么?(v=sh)

  ⑵做第91页第3题的上半题求圆柱体积部分。

  二、复习圆锥

  ⑴圆锥有什么特点?

  ⑵做第91页第1题的下半题和第2题的第⑶小题。

  2、圆锥的体积。

  ⑴教师问:怎样计算圆锥的体积?计算圆锥体积的.字母公式是什么?

  这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)。

  ⑵做第91页第3题的下半题。

  三、课堂练习

  1、做练习二十三的第1题、第2题。

  学生独立做题,教师行间巡视,提醒学生看清题目后括号里的要求。

  四、创意作业。

  练习二十三的第3题。

圆柱和圆锥教案5

  教学内容

  教材第1819页的例1,完成第19页的练一练和练习五的第14题。

  教学目标

  1.使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图。

  2.认识圆柱和圆锥的底面、侧面和高,并会测量高。

  教学重点

  1.让学生从整体上体会圆柱和圆锥的特征,了解围成圆柱或圆锥的各个面。2.认识圆柱和圆锥的高,并会测量高。

  教学难点

  认识圆锥的高。

  教具准备:

  教师准备圆柱体、圆锥体的物体,让学生收集一些圆柱体、圆锥体的实物。同时让学生将教科书第125、127页上的图沿边剪下来做成圆柱体、圆锥体。

  一、激趣引新

  1、师出示准备的模型圆柱,圆锥,提问,这是什么形体?

  师指出:圆柱体简称圆柱,圆锥体简称圆锥。

  2、举例:你在生活中见过哪些物体的形状是圆柱,哪些物体的形状是圆锥?(学生举例)

  3、师出示挂图,提问,生活中的例子很多,你看这张图上哪些物体的形状是圆柱,哪些物体的形状是圆锥?

  4、揭题:今天我们就来研究这样的直圆柱和直圆锥。(板书课题:圆柱和圆锥的认识)

  二、自主探究,认识圆柱和圆锥的特征。

  1、认识圆柱

  ⑴谈话,请看挂图,刚我们看到的圆柱有大的,有小的,有高的,有矮的,还有这么扁的,同学们桌面上也有大小不一的圆柱,仔细观察这些圆柱,你发现这些大小不一的圆柱有什么共同点?(学生独立思考后同桌交流后自由发表意见,师根据学生回答适当板书)

  ⑵验证发现:上下面是两个完全相同的圆

  刚才同学说上下两个面是完全相同的圆,请你想办法证明一下,这个猜想是否正确?

  学生可能:a把茶叶筒的盖头拿下来比划b用线绕c用尺亮圆的直径

  侧面是弯曲的:把你手中的圆柱摸一摸,滚一滚,你发现它的这个面与桌面有什么不同?侧面滚一滚,滚出一个什么形状?

  ⑶师指出:这是沿着圆柱形物体的轮廓画下来的`圆柱的平面图

  圆柱上下两个面叫做圆柱的底面(板书底面,图中标出底面)

  围成圆柱的曲面叫做圆柱的侧面

  圆柱两个底面之间的距离叫做圆柱的高(板书,在图中标出)

  提问:圆柱的高有多少条?它们之间有什么关系?(师出示装满牙签的牙签盒让学生体会)

  验证圆柱的高都相等:把圆柱放在桌角量高,变换角度量高,量出的结果一样吗?

  ⑷练习:说说师手中的杯子,方便面碗是不是圆柱,为什么?指出自己手中圆柱的各部分名称,指出下列圆柱各部分名称

  2、认识圆锥

  ⑴谈话:某些建筑物的顶部,吃的蛋筒,这些物体的形状都是圆锥体,请你观察这些圆锥,说说它们有什么共同点?(学生自由交流,师适当板书)

  有一个顶点,底面是一个圆形,侧面是一个曲面

  ⑵看书对照你的发现是否正确

  ⑶师指出:图锥的底面是一个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。(边说边在图上标出来)

  提问,圆锥的高有几条?

  滚动圆锥,你有什么发现?

  辨析,这是圆锥的高吗?那你认为怎样测量圆锥的高?师出示图

  ⑷指出你手中圆锥各部分名称

  3、比较:观察圆柱和圆锥有什么不同之处?

  师可引导提问:圆柱和圆柱都有一个侧面,侧面都是一个曲面,为什么圆柱滚动侧面时与圆锥滚动侧面的感觉不一样?

  三、巩固练习

  1、练一练:判断哪些物体的形状是圆柱,哪些物体的形状是圆锥?

  2、练习五第二题,连一连。

  3、练习五第三题:先让学生根据题意转一转,想象一下,再交流。

  圆柱的底面半径与高与长方形小旗有什么关系?

  4、拿出硬纸做的圆柱和圆锥,想办法量出它们的底面直径和高,记录再自备本上,

  四、全课小结:这节课你有什么收获?

圆柱和圆锥教案6

  本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。

  全单元编排五道例题、四个练习,把内容分成四段教学。依次是圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积。在单元结束时,还安排了整理与练习以及实践活动《测量物体的体积》。

  1.通过观察、操作,认识圆柱和圆锥。

  学生在第一学段已经直观认识了圆柱,通过滚一滚、堆一堆、摸一摸等活动初步感受了圆柱的形状与长方体、正方体有不同之处。例1先教学认识圆柱,再教学认识圆锥,要让学生从整体上体会它们的特征,了解围成圆柱或圆锥的各个面,认识圆柱和圆锥的高,并会测量高。

  教学圆柱从识别圆柱形的物体开始,因为学生已有这样的能力。例1的图片里,有些物体是圆柱形的,有些物体的一部分是圆柱形的,也有些物体不是圆柱形的。而且,在圆柱形的物体中,有的高,有的矮,有的厚,有的薄,这就为认识圆柱提供了丰富的具体对象。

  认识圆柱的教学要引导学生进行观察、交流,同时教师要给予必要的讲解。让学生仔细观察圆柱,发现圆柱的上、下两个面是相同的圆形,圆柱的侧面是曲面,而且圆柱上下是一样粗的。前两点学生容易注意到,第三点往往会疏忽,在交流的时候,要引起学生的注意。在“练一练”里,教材安排了上、下两个底面大小不同的杯子和木桶,两个底面虽然相同但两底之间粗细不同的腰鼓,还有底面是正六边形的盒子,让学生指出这些物体都不是圆柱形,从而加强对圆柱特征的体验。在学生交流圆柱特征的过程中,教师可相机指出圆柱上、下两个面叫做底面,围成圆柱的曲面叫做侧面,及时出现圆柱的几何图形,在图形上标出圆柱的底面和侧面,这是建立圆柱概念的重要一步。同时指出圆柱两个底面之间的距离叫做高,并在圆柱的几何图形上标出高,既直观地表达高的意义,又能使学生想到测量圆柱高的方法。

  例题引导学生把认识圆柱的学习方法迁移到认识圆锥上来,在观察圆锥形物体的基础上抽象出圆锥的几何图形,在交流圆锥特征的过程中认识圆锥的顶点、底面和侧面。圆锥的高是教学的一个难点,因为圆锥的高是圆锥内部的一条线段的长。教材指出从圆锥的顶点到底面圆心的距离是圆锥的高,并在圆锥的几何图形上用虚线画出顶点到底面圆心的线段,帮助学生理解圆锥高的含义。

  练习五的设计重视空间观念的培养,都是动手操作的习题。第2题从正面、上面、侧面观察圆柱和圆锥,通过立体图形与平面图形、曲面与平面的相应转化,加强对圆柱、圆锥特征的体验,发展空间观念。第3题把长方形绕它的一条边旋转形成圆柱,把直角三角形绕它的一条直角边旋转形成圆锥,把半圆绕它的直径旋转形成球,让学生在动态中感受这些几何体,使已有的圆柱、圆锥概念得到深化。第5题利用教材附页里的图形做圆柱和圆锥,体会圆柱的侧面是长方形卷成的,圆锥的侧面是扇形卷成的,再次经历平面图形变成立体的过程。同时,做成一个圆柱要两个相同的圆,做成一个圆锥只要一个圆,再次体会圆柱与圆锥的特征。测量做成的圆柱、圆锥的底面直径和高,能巩固高的概念,培养测量能力。计算圆柱、圆锥的底面周长和底面积,复习了圆的知识,为继续教学圆柱的表面积,圆柱和圆锥的体积做好准备。

  2.在现实的情境中,探索圆柱表面积的计算方法。

  圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积是旧知识。为此,教材先在例2里教学圆柱的侧面积,再在例3里教学圆柱的表面积。

  例2计算圆柱形罐头盒侧面的商标纸的`面积,这个素材容易引发把商标纸剪开后看看、算算等教学活动。教材指导学生“沿着接缝剪开”,经历展开商标纸的活动,体会圆柱的侧面展开图是一个长方形。探索圆柱侧面积的计算方法,要研究展开后长方形的长、宽与圆柱的关系,让学生在侧面展开成长方形和长方形卷成侧面的活动中,发现长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。从长方形的面积计算公式,推导出圆柱侧面积的计算方法。在探索圆柱侧面积算法的过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  例3教学圆柱的表面积。教材先让学生思考底面直径2厘米、高2厘米的圆柱侧面沿高展开,得到的长方形长和宽各是多少厘米,两个底面是多大的圆,再在方格纸上画出这个圆柱的展开图。思考的过程能帮助正确地画图,画图则有助于体会表面积的含义。“侧面积与两个底面积的和”既是表面积的概念,也是计算表面积的方法。和长方体、正方体的表面积计算一样,圆柱的表面积计算不列出公式,让学生在理解的基础上掌握算法,避免了记忆公式的负担。由于圆柱的侧面积已在例2教学,计算底面积是旧知识,因此例3组织学生讨论算法并独立计算。

  练习六应用圆柱侧面积、表面积的知识解决实际问题。第1、2题的练习重点是把实际问题抽象成数学问题,求队鼓的铝皮面积就是计算圆柱的侧面积,求队鼓的羊皮面积是计算圆柱的两个底面积之和,求做一个铁桶用的铁皮是计算圆柱的表面积。第3题有整理知识的作用,通过计算既能区分圆柱的侧面积、底面积、表面积这三个不同的概念以及不同的算法,又能整理三者的关系,进一步理解表面积的意义和计算方法。第4~9题是灵活应用圆柱侧面积、表面积的知识,要联系实际判断所求问题需不需要计算底面积,要算几个底面积。

  3.通过猜想—验证探索圆柱、圆锥的体积公式。

  例4教学圆柱的体积计算,分两步进行。第一步认识底面积相等、高也相等(以下简称等底等高)的长方体、正方体和圆柱,第二步推导圆柱的体积公式。安排第一步教学要达到三个目的,一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。这些目的要在思考和讨论例题中第(1)、(2)两个问题时实现。第二步的教学主要设计了三个活动。第一,在形成把圆柱转化成长方体的探索思路后,展示转化活动。学生可以看教材里的插图,也可以通过操作学具,明确转化的方法与过程。第二,让学生明白,把圆柱的底面平均分成16份,切开后拼成的是一个近似于长方体的物体。如果圆柱的底面平均分的份数越多,切开后拼成的物体越接近长方体,渗透极限思想,发展想像能力。第三,让学生思考拼成的长方体与原来圆柱的关系,体会圆柱转化成长方体,体积不变,底面积不变、高也没有变。用“底面积乘高”算得的既是转化成的长方体的体积,也是原来圆柱的体积。这是形成圆柱体积公式的推理活动。

  例5教学圆锥的体积公式。教材首先出示等底等高的圆柱和圆锥,让学生直观估计圆锥的体积是圆柱的几分之几。进行这个估计是形成一个猜想,如果等底等高的圆柱和圆锥的体积之间存在确定的倍数关系,就可以利用圆柱的体积计算圆锥的体积。然后验证估计,探索等底等高的圆柱和圆锥的体积关系。例题把验证活动分三步进行。第一步指导学生选择实验器具:等底等高的圆柱形容器和圆锥形容器。左图把圆锥形容器放到圆柱形容器的上面,容易比出底面积是否相等。右图把圆柱形容器和圆锥形容器靠近着放在同一桌面上,容易比出高是否相等。第二步指导倒沙活动:在圆锥形容器里装满沙子,倒入圆柱形容器。从“3次正好倒满”证实圆柱形容器的容积是等底等高的圆锥形容器的3倍,也就是圆锥体积是等底等高的圆柱的1/3。第三步进行推理,把实验的结论用数学式子表示,最终得出圆锥的体积公式。

  猜想—验证是发现规律、创新知识的常用策略,教材从教学内容的特点和学生的实际能力出发,把圆柱和圆锥体积公式的教学设计成鼓励猜想—引导验证的过程,有利于培养学生的学习能力和科学态度。

  练习七和练习八里应用圆柱、圆锥的体积计算知识解决实际问题。计算圆柱的表面积,计算圆柱和圆锥的体积都要进行乘法计算。从过去的教学中我们发现,这一单元的计算学生经常出现错误。对此,教学应采取三点措施:一是营造良好的计算氛围,每次作业的题量不宜过多,给学生的时间要充分,在心理负担较轻的状态下能减少计算错误。保持安静,在无干扰的环境中专心计算也能减少错误。二是较繁的计算使用计算器,通常情况下,三位数乘一位数、三位数乘两位数可以采用笔算,位数更多的数的乘法计算可以用计算器。如果让学生进行过繁的四则计算,不仅容易出错,而且消耗了大量的精力和时间,没有必要。三是指导简便计算,在半径(或直径)的长度数是5、15、25,高的长度数是2、4、8时,经常可以应用乘法运算律使计算简便。

  4.测量形状不规则的物体的体积。

  长方体、正方体、圆柱和圆锥的体积都有计算公式,生活中还有大量不是这些形状的物体,它们的体积怎样测量呢?实践活动《测量物体的体积》引导学生研究这个问题。

  把土豆或铁块放入盛水的圆柱形容器里进行测量是一种方法,这种方法把不规则形体转化成规则形体,利用计算圆柱体积的方法解决了问题。通过质量除以比重(质量和体积的比值)求体积也是一种方法,这种方法不依赖体积计算公式。教材没有把两种方法直接告诉学生,而是安排操作活动,让学生在活动过程中想到和理解这些方法。对于第一种方法,要依次测量圆柱容器的底面积、放入土豆前的水面高度和放入土豆后的水面高度,直观体会容器中水面上升所形成的那段圆柱的体积就是土豆的体积,感悟“等积变形”的转化思想。利用这种方法测量土豆的体积以后,还要再测量两个铁块的体积,为第二种测量方法积累数据资料。对于第二种方法,两个铁块的体积已经测得,再用天平称出它们的质量就能填表。通过计算发现一个铁块的质量与体积的比值和另一个铁块的质量与体积的比值相等。如果测量和计算都正确,这个比值应该约是7.8。要让学生理解这个比值的具体意思是“1立方厘米铁块大约重7.8克”,这样,第三个铁块的体积就可以称出质量后用除法计算了。

圆柱和圆锥教案7

  教学目标

  1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

  2、使学生在活动中进一步积累立体图形的学习经验,增强空间观念,发展数学思维。

  教学重点

  1、在充分感知的基础上,探索圆柱和圆锥的特征。

  2、进一步体验立体图形玉生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

  教学难点

  圆柱和圆锥的特征。

  教学方法

  分析中归纳解题方法

  教具

  多媒体课件

  教学过程与内容设计

  一、复习导入

  二、新授

  1、拿出圆柱和圆锥,说说它门的特点。

  2、你能找出生活中有哪些物体是圆柱和圆锥形的吗?

  3、现在我们首先来研究圆柱。

  (1)请以小组为单位,仔细观察桌上的圆柱,看看它有哪些特点。(提示:从面、棱、顶点和高这几方面来研究。)

  (2)请一位同学代表你们组来说说你们发现了什么?

  (3)老师现在有问题要问大家:圆柱上下两个圆有什么关系,怎样验证?

  (4)我们称这两个圆为圆柱的底面,也就是说圆柱有两个底面,一个侧面。

  (5)圆柱的高指什么?你有办法测量吗?说明圆柱有多少条高,长度有说明关系?

  (6)谁能完整的说一下圆柱的特征。

  1、教师提问:现在找找请你们带来的东西中,哪些是圆柱?请把圆柱举起来。

  2、举出学生带来的东西中不是圆柱的例子。

  3、揭示实物图,出现圆柱几何图形。

  教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。

  出示高、低不同的两个圆柱。

  用直尺和三角板演示圆柱的'高。

  使学生明确:圆柱两个底面之间的距离叫做高。

  4、下面我们来认识另一个立体图形———圆锥。

  三、巩固练习

  四、全课总结。

  八、作业设计

  课本20页练习五4、

  欣赏一下生活中的圆柱和圆锥。

  九、板书设计

  圆柱和圆锥的认识

  圆柱的上、下两个面叫做底面、它们是两个完全相同的两个圆。

  圆柱的侧面,是一个曲面。

  圆锥,有一个顶点,底面是一个圆形,侧面一个曲面。

  教学反思

  本课时的内容较简单,但作为教师,我们并不能仅仅停留在教给学生有关圆柱和圆锥的特征这一层面上。研读教材,我发现教材力求体现让学生在主动探索的过程中感知圆柱和圆锥的特征,这与教师单纯地教给学生圆柱与圆锥的特征是有本质不同的。如果教师要教给学生这些知识的话,可能5分钟的时间就够了。但同样的,学生也可能很快就遗忘了。让我感到心有余而力不足的是,我很清楚自己在这节课中应该体现怎样的教学理念,应该怎样让学生主动参与新知识的学习,但实际操作时,却由于各种条件的限制没有很好地达成自己课前预设的教学效果。

  小学六年级数学《圆柱和圆锥》教学反思

  本节课中,学生不仅掌握了圆柱的特征,而且观察、比较、分析、归纳等能力也得到了培养。反思教学过程,我体会如下:

  在教法上能充分利用圆柱形实物,让学生自己去观察,认识了圆柱的特征,使学生对圆柱的特征有直观的认识,有利于学生对知识的理解和掌握。学生对新知识是好奇的,在教学新知识时,让学生亲自动手去做一做,采用小组合作,讨论,交流等形式,让学生多角度,多层面地表达自己的

  思维过程,整体地感知圆柱的特征。在讨论圆柱的侧面时,设置悬念,先让学生猜一猜圆柱的侧面展开会是什么图形,通过猜测再进行验证,认识到长方形与圆柱侧面积之间的关系。在练习阶段,我设计了针对性练习和发展性练习,在形式,难度,灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。

  在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。所以在教学中,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下了基础。

圆柱和圆锥教案8

  教学内容:

  第24页回顾与整理、练习与应用第1~6题。

  教学目标:

  1.使学生进一步认识圆柱、圆锥的特点。能判断一个物体或立体图形是不是圆柱或圆锥。

  2.使学生进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法,并提高灵活应用计算方法解决一些实际问题的能力。

  教学重点:

  进一步认识圆柱、圆锥的特点。

  教学难点:

  进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法。

  教学过程:

  一、揭示课题

  我们已经学完了圆柱和圆锥这一单元,今天开始复习圆柱和圆锥。(板书课题)通过复习,一方面,要进一步认识圆柱和圆锥的特征,熟悉圆柱和圆锥各部分的名称;另一方面,要进一步掌握圆柱表面积、圆柱和圆锥体积(包括容积)的汁算方法,提高解决实际问题的能力。

  二、复习特征

  1.说出物体名称。

  出示一些圆柱和圆锥的物体和模型,让学生说一说各是什么形体。

  2.复习特征。

  (1)同时出示圆柱和圆锥的图形。

  指名学生说出各图的名称。(板书:圆柱、圆锥)

  (2)提问:谁能拿出圆柱和圆锥,说出各部分的名称?(在图中板书)圆锥的高怎样测量,试着量一量你手里圆锥的高。

  (3)提问:哪位同学来说说圆柱有什么特征?哪位同学来说说圆锥有什么特征?

  三、复习计算

  1.练习与应用第1题。

  出示表格,说明要求,让学生计算,填在表格里。学生口答结果,老师板书填表。

  提问:圆柱的表面积怎样计算的`?(板书:圆柱表面积=侧面积+两个底面积)圆柱的侧面积怎样计算?为什么用底面周长乘以高? 这两题计算时有什么不同的地方?圆柱的体积怎样计算的,圆柱的体积计算公式是怎样得到的?(强调把个新知识转化成旧知识,得出新的结论)圆锥的体积怎样计算的?圆锥的体积计算公式又是怎样得到的?这两题计算过程完全一样吗?为什么不一样?

  2.练习与应用第2题。

  提问:压路机前轮是什么形状的?前轮滚动一周所形成的面的大小相当于前轮的哪一部分面积?接下来学生独立完成。

  3.练习与应用第3题。

  引导思考:水桶底部的铁箍大约长15.7分米就是圆柱的底面周长。求做这个水桶至少要用木板多少平方分米就是圆柱水桶的哪些面的面积之和。这个水桶能盛120升水吗?要拿什么和120升比较?学生自主完成。

  4.练习与应用第4题。

  联系实际解决问题,要求得数保留整数。

  四、课堂小结

  通过这节课的复习,你有哪些收获?

  五、课堂作业

  练习与应用第5~6题。

圆柱和圆锥教案9

  一、教学内容

  学生已经掌握了长方体和正方体的特征、表面积与体积的计算方法,还直观认识了圆柱。在这些知识的基础上,本单元教学圆柱和圆锥,主要内容有:圆柱和圆锥的特征,圆柱的侧面积与表面积,圆柱和圆锥的体积计算。

  全单元编排了5道例题、四个练习以及整理与练习,大致分成五段教学。

  例1、练习五,圆柱和圆锥的形状特征;

  例2、例3、练习六,圆柱的侧面积和表面积;

  例4、练习七,圆柱的体积;

  例5、练习八,圆锥的体积;

  整理与练习综合应用全单元的知识,实践活动扩展知识、开拓视眼。

  二、教材编写特点和教学建议

  1.按整体-部分-整体的线索,分别教学圆柱和圆锥的结构特点。

  学生认识几何体一般先整体感知形状,再仔细研究结构与特征,在此基础上归纳描述,建立形体概念。

  例1先教学圆柱的特征,再教学圆锥的特征。这是因为学生对圆柱已有直观感受,对圆锥比较陌生。圆柱和圆锥的形状虽然有明显的区别,但它们都有圆形底面、弯曲的侧面。先认识圆柱,有利于认识圆锥。

  在现实的情境中初步认识圆柱和圆锥。例题在图画里呈现许多圆柱、圆锥形状的物体,让学生从中找出圆柱形状物体,告诉他们有些物体的形状是圆锥,还要回忆生活中的其他例子,体会这两种形状的物体是比较常见的,为认识圆柱和圆锥的特征搜集了丰富的材料。

  观察交流,分别描述圆柱和圆锥的结构特点。教材要求学生仔细观察圆柱和圆锥,发现它们的特征。圆柱的特征突出三点:从上到下始终一样粗;两个底面是相同的圆形;侧面是一个曲面。圆锥的特征也突出三点;有一个顶点;一个底面是圆形;侧面是一个曲面。在学生交流的基础上,出现圆柱和圆锥的几何图形,图文结合指出圆柱和圆锥的底面侧面和高。这些都是与形状特征有关的概念,还是继续教学侧面积、表面积、体积必需的基础知识。

  圆柱与圆锥的高都是特定的概念,圆柱的高是它两个底面之间的距离,圆锥的高是它顶点到底面圆心的距离。教材在圆柱和圆锥的几何图形里用虚线画出了圆柱两个底面圆心间的线段,圆锥顶点到底面圆心的线段,还在图形外面标注高,让学生理解圆柱和圆锥的高分别是这两条线段的长,还暗示了测量圆柱、圆锥的高的方法。

  通过识别加强形体概念。第19页练一练找出圆柱形或圆锥形的物体,进一步突出圆柱和圆锥的特征,加强形体概念。有些物体的底面是多边形,不是圆形;有些物体的两个底面都是圆形,但大小不同;有些物体的两个底面虽然是相同的圆,但两底之间不一样粗,它们都不是圆柱形的物体。

  在练习里发展空间观念。练习五第1题巩固有关圆柱、圆锥特征的基础知识。第2题指出圆柱、圆锥的三视图,体会从正面、侧面看到的形状要用平面图形来表示。第3、4题体会形旋转成体,形的尺寸决定体的底面大小和高的长短。第5题利用教科书提供的材料制作圆柱、圆锥,体会侧面是平面图形卷成的曲面,学会测量底面直径和高的方法,计算底面周长和面积,复习圆的知识。学生的空间观念在观察、操作、制作的`过程中得到发展。

  2.展开圆柱的侧面、表面、研究侧面积和表面积的计算方法。

  例2教学圆柱的侧面积,例3教学圆柱的表面积。这样安排,符合知识间的关系,突出侧面积是认知的重点。

  指导展开圆柱侧面的方法,理解侧面展开后的形状。例2计算圆柱形罐头侧面的商标纸的面积,在问题情境里,学生知道商标纸是围到圆柱侧面上的,于是产生把商标纸展开的愿望。教材指导沿着接缝剪开,接缝的长是圆柱的高,沿着接缝剪就是沿着高剪,展开是一张长方形纸。学生在围-剪-展-围的活动中,体会了圆柱侧面展开是一个长方形。

  指点方向,探索侧面积的算法。计算长方形面积的方法是长宽,怎样利用圆柱的底面直径和高计算侧面积?需要解决的问题是长方形的长和宽与圆柱有什么关系。教材让学生研究这些关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高。这样,圆柱的侧面积就可以通过底面周长高计算。得出侧面积算法是推理的结果,在推理过程中,形象思维和抽象思维都得到锻炼,空间观念得到培养。

  画出表面展开图,研究表面积的算法。学生有计算长方体、正方体的表面积的经验,知道表面积是物体各个面的面积总和。例3教学圆柱的表面积,创造已有知识、经验迁移的氛围,要求学生在方格纸上画出一个圆柱的展开图。为了能顺利地画图,例题的第一个问题是沿高展开侧面,得到的长方形长和宽各是几厘米?指导学生应用圆柱侧面积知识,先画出侧面的展开图。第二个问题是两个底面分别是多大的圆?指导学生根据圆柱立体图形里的底面直径,画出两个底面圆。通过画图,看到圆柱的展开图是一个侧面(长方形)和两个底面(圆形)组成的,由此得出圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。在小组里讨论怎样计算圆柱的表面积,一要理出解决问题的思路和步骤,二要根据已知的圆柱的有关条件,说说侧面积与底面积的算法。由于圆柱表面积计算比较复杂,一般分步解答。

  灵活应用侧面积、表面积知识,解决实际问题。练习六是圆柱侧面积、表面积的实际应用,解答问题要重视数学化,把实际问题抽象成计算侧面积、底面积或表面积的数学问题。如第1题求铝皮面积是计算圆柱形队鼓的侧面积,计算羊皮面积是求圆柱形队鼓的两个底面积。再如通风管是没有底面的,彩纸糊的灯笼只有下底和侧面。另外,计算圆柱的侧面积和表面积,经常要进行繁琐的乘法运算。为此,本单元提倡学生使用计算器,把精力用于数学化上,用于规划解决问题的步骤上。

  3.应用转化策略,教学圆柱的体积计算公式。

  把未知转化成已知是解决新颖问题的常用策略,也是创新精神、实践能力的表现。教学圆柱的体积公式,运用了转化策略,分三步进行。

  建立等底等高概念,形成等积猜想。例4教学圆柱体积的计算方法,首先出示一个长方体、一个正方体、一个圆锥,图文结合指出它们的底面积相等、高也相等。因为圆柱的体积计算公式是转化成等底、等高的长方体后推导的,学生需要形成等底等高概念。然后从长方体、正方体的体积都可以底面积高计算,得到等底、等高的长方体与正方体的体积相等。由此猜想,圆柱的体积也与等底、等高的长方体相等,形成了研究圆柱体积算法的思路。

  割、拼圆柱,转化成长方体。圆柱的体积是否与等底、等高的长方体相等,要看它能不能转化成相应的长方体。学生有圆转化成长方形的经验,以此为基础,把圆柱的底面平均分成16份,切开后拼成了一个近似的长方体。这里讲近似,是因为拼成的物体的长是8段弧组成的曲线。由此想像,如果把圆柱的底面平均分成32份、64份......切开后拼成的物体的长越来越接近线段,拼成的物体越来越接近长方体。在切、拼操作以及想像中,实现了圆柱转化成长方体。

  通过推理,得到圆柱体积计算公式。切、拼把圆柱转化成长方体,圆柱的体积公式还要通过推理得到。教材先指导学生研究拼成的长方体与原来的圆柱的关系,看到两个物体的体积相等、底面积相等、高也相等。再体会底面积高既是计算长方体的体积,也算得了圆柱的体积。由此得出圆柱的体积公式,并用字母表示,便于记忆和应用。

  4.估计-验证探索圆锥的体积公式。

  就小学生现有的知识,把圆锥转化成体积相等的其他物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同

  认识等底、等高的圆锥与圆柱,估计圆锥体积是圆柱的几分之几。例5图示了一个圆柱和一个圆锥,指出它们的底面积相等,高也相等。从图画直观,学生能确定圆锥的体积比圆柱小,教材让学生估计这个圆锥的体积是圆柱的几分之几。这里的估计不要求准确,也不要求全体学生有相同的答案,说成、或其他分数都允许。估计要经过验证才能确认或修正,估计-验证是解决问题的一种策略。

  通过实验,发现等底等高的圆柱与圆锥的体积关系。首先准备器材,找等底等高的圆柱、圆锥容器各一个,教材图示了比较底面积和比较高的方法。然后在圆锥容器里装满沙子,倒入空的圆柱容器里,看看几次正好倒满。从倒沙子实验得出圆锥体积是等底等高圆柱体积的,确认或者修正原来的估计。

  利用圆柱体积算圆锥体积,推导圆锥的体积公式。上面实验的结论可以用数学式子表示:圆锥的体积=等底等高圆柱的体积。圆柱的体积通过底面积高计算,所以圆锥的体积=底面积高。

  编排等底等高圆柱与圆锥的体积关系的专项练习。掌握圆锥体积计算方法的关键在理解和应用等底等高圆锥、圆柱的体积关系,即圆柱的体积是等底等高圆锥的3倍,圆锥的体积是等底等高圆柱的。练习八里有这方面的专项训练,如第2题、第4题、第5题等。第2题在圆锥容器里注满水倒入等底等高的空圆柱容器,水只占圆柱容器空间的。因此,水面的高只是圆柱高的。第5题里的圆锥只与底面直径9厘米、高4厘米的圆柱的体积相等。圆锥与底面直径3厘米、高9厘米的圆柱的体积不相等,因为圆锥的底面积不是圆柱底面积的3倍。

  5.测量形状不规则的物体的体积。

  生活中有大量形状不规则的物体,它们的体积如何测量?实践活动《测量物体的体积》解决这个问题。

  转化成圆柱算体积。把土豆放入存水的圆柱容器,能测量体积。教材安排小组合作学习,先测量圆柱容器的底面积,以及放入土豆前的水面高度;再把土豆放进去,测量放土豆后的水面高度。学生能够从水面上升,体会那段圆柱的体积就是土豆的体积。进行这项活动要注意两点,一是在圆柱容器的里面测量它的底面直径和水面高度,并算出底面积。二是帮助学生理解水面高度变化与土豆体积的关系。

  利用质量与体积的比值算体积。同一种材料,物体的质量与体积的比值(即比重)是一定的,物体的质量除以比重的商是物体的体积。如铁的比重是每立方厘米7.8克,一块质量为780克的铁块的体积是7807.8=100(立方厘米)。这次实践活动的第二个内容就是应用这种关系算体积,分三步进行。第一步用测量土豆体积的方法分别测量两块铁块的体积,用天平称出这两块铁块的质量。第二步把两块铁块的体积和质量填入教材设计的表格,分别算出质量与体积的比值,发现比值是相同的。第三步用天平称出另一块铁块的质量,通过质量除以比重求出体积。开展这项活动也要注意两点,一是先测量的两块铁块的体积要尽量准确,否则,得不到质量与体积的比值一定。二是帮助学生理解质量除以比重的商是体积。

圆柱和圆锥教案10

  教学目标:

  1.使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图。

  2.认识圆柱和圆锥的底面、侧面和高,并会测量高。

  教学重点:

  1.让学生从整体上体会圆柱和圆锥的特征,了解围成圆柱或圆锥的各个面。

  2.认识圆柱和圆锥的高,并会测量高。

  教学难点:

  认识圆锥的高。

  教具准备:

  教师准备圆柱体、圆锥体的物体,让学生收集一些圆柱体、圆锥体的实物。同时让学生将教科书第125、127页上的图沿边剪下来做成圆柱体、圆锥体。

  一、前提准备

  1、出示圆柱,圆锥模型,提问,这是什么形体?

  指出:圆柱体简称圆柱,圆锥体简称圆锥。

  2、举例:在生活中见过哪些物体的形状是圆柱,哪些物体的形状是圆锥?(学生举例)

  3、师出示挂图,提问,生活中的例子很多,你看这张图上哪些物体的形状是圆柱,哪些物体的形状是圆锥?

  4、揭题:今天我们就来研究这样的直圆柱和直圆锥。(板书课题:圆柱和圆锥的认识)

  二、自主探究,认识圆柱和圆锥的.特征。

  1、认识圆柱

  ⑴谈话,请看挂图,仔细观察这些圆柱,你发现这些大小不一的圆柱有什么共同点? ⑵验证发现:上下面是两个完全相同的圆

  刚才同学说上下两个面是完全相同的圆,请你想办法证明一下,这个猜想是否正确?

  学生可能:用线绕、用尺量圆的直径

  侧面是弯曲的:把你手中的圆柱摸一摸,滚一滚,你发现它的这个面与桌面有什么不同?侧面滚一滚,滚出一个什么形状?

  ⑶师指出:这是沿着圆柱形物体的轮廓画下来的圆柱的平面图

  圆柱上下两个面叫做圆柱的底面 围成圆柱的曲面叫做圆柱的侧面

  圆柱两个底面之间的距离叫做圆柱的高 提问:圆柱的高有多少条?它们之间有什么关系?

  验证圆柱的高都相等:把圆柱放在桌角量高,变换角度量高,量出的结果一样吗?

  ⑷练习:说说师手中的杯子,方便面碗是不是圆柱,为什么?指出自己手中圆柱的各部分名称,指出下列圆柱各部分名称

  2、认识圆锥

  ⑴谈话:某些建筑物的顶部,吃的蛋筒,这些物体的形状都是圆锥体,请你观察这些圆锥,说说它们有什么共同点?(学生自由交流,师适当板书)

  有一个顶点,底面是一个圆形,侧面是一个曲面

  ⑵看书对照你的发现是否正确

  ⑶师指出:图锥的底面是一个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。(边说边在图上标出来)

  提问,圆锥的高有几条?

  滚动圆锥,你有什么发现?

  辨析,这是圆锥的高吗?那你认为怎样测量圆锥的高?师出示图

  ⑷指出你手中圆锥各部分名称

  3、比较:观察圆柱和圆锥有什么不同之处?

  师可引导提问:圆柱和圆柱都有一个侧面,侧面都是一个曲面,为什么圆柱滚动侧面时与圆锥滚动侧面的感觉不一样?

  三、拓展应用

  1、练一练:判断哪些物体的形状是圆柱,哪些物体的形状是圆锥?

  2、练习五第二题,连一连。

  3、练习五第三题:先让学生根据题意转一转,想象一下,再交流。

  圆柱的底面半径与高与长方形小旗有什么关系?

  4、拿出硬纸做的圆柱和圆锥,想办法量出它们的底面直径和高,记录再自备本上,

  四、总结评价

  这节课你有什么收获?

圆柱和圆锥教案11

  教学内容:教材第18-20页圆柱和圆锥、练一练以及练习五的全部习题。

  教学目标:

  1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。

  2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。

  3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。

  教具学具:

  1、 教师准备大小不同的圆柱和圆锥实物及模型。

  2、 学生准备圆柱和圆锥实物以及自制的圆柱和圆锥。

  3、 长方形、直角三角形和半圆形的小旗。

  教学过程:

  一、创设情境 导入新课

  出示一组图形(长方体、正方体、圆柱、圆锥)。

  提问学生:你能说出这些图形的名称吗?

  师说明:这些形体有些是我们已认识的长方体、正方体,还有就是我们今天要学习的新的立体图形:圆柱和圆锥体。 (板书课题)

  二、教学新课

  ㈠认识圆柱的特征。

  1、出示例1请同学们仔细观察上面哪些是圆柱形的?

  2、你还能举出其他例子吗?

  3、请你拿出自己准备好的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。

  4、集体交流:

  ⑴上下两个面是面积相等的圆,叫做圆柱的底面。

  ⑵有一个曲面叫做圆柱的侧面。

  ⑶上下两个底面之间的距离叫做圆柱的高。

  教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。

  5、让学生动手量圆柱的高。

  讨论:⑴怎样量更准确?

  ⑵如果我们换个地方量,它的高会变成多少?这说明什么?(圆柱的高有无数条)

  6、师小结圆柱的特征。

  ㈡认识圆锥的特征

  1、出示圆锥的实物,这些物体的形状是圆锥形的,简称圆锥。我们教材所讲的圆锥都是直圆锥。

  2、在日常生活中,你还见过哪些圆锥形的物体?

  3、利用学生课前做好的圆锥,让学生摸一摸、看一看、比一比,你有什么发现?将自己的.发现与同桌交流。

  4、集体交流:

  ⑴圆锥的底面是一个圆形,圆锥的侧面是一个曲面。

  ⑵从圆锥的顶点到底面圆心的距离是圆锥的高。

  5、测量圆锥的高。

  ⑴引导学生讨论:圆锥有几条高?

  ⑵用直尺和三角板如何测量圆柱的高。(学生自己操作)

  ㈢比较圆柱和圆锥

  生拿出课前准备好的圆柱和圆锥学具,指出它们的底面和侧面。(练习五第1题)

  三、巩固练习

  1、完成练一练。

  2、练习五第2题。从正面、上面和侧面看圆柱和圆锥,看到的是什么形状?充分让学生自己观察。

  3、开放练习,拓展延伸。

  ⑴将课前做的长方形、直角三角形和半圆形的小旗快速旋转一周,观察并想象一下各能成什么形状?

  ⑵师演示。

  ⑶自己设计小旗的形状,旋转小棒观察并想象一下所形成的形状,在小组内交流。

  四、课堂小结

  今天这节课你学到了哪些知识?圆锥体和圆柱体有哪些特征?

  《圆柱和圆锥的认识》的教学反思

  本课教学层次清楚,注重学生学法指导,注重联系生活实际,由实物抽象出几何形体,圆柱和圆锥,接着让学生举生活实例,你在周围见过哪些这样的物体?然后由学生自主交流,观察自带的圆柱和圆锥,引导学生发现特征,你发现了什么?由学生自己概括出特征.特别是教学圆柱的高有无数条,圆锥的高只有一条,这两个知识点时,由学生通过测量它们的高,并经过对比,得出结论.让学生亲生经历了知识的形成过程.

  但本节课也存在许多不足,

  (1)课前检查没有做,如果在课前花1分钟时间,让学生展示自己准备的立体图形,让学生体验成功的快乐,并把这种情绪带到新课的学习中,本节课的效果会更好。

  (2)作业设计不科学,偏重操作,思维密度不强,容易让学生产生思维疲劳。

圆柱和圆锥教案12

  教学目标:

  1、使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形.

  2、使学生会计算圆锥的侧面积或全面积.

  3、通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;

  4、通过圆锥的面积计算,培养学生正确迅速的运算能力;

  5、通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力.

  教学重点:

  (1)圆锥的形成过程和圆锥的轴、母线、高等概念及其性质;

  (2)会进行圆锥侧面展开图的计算,计算圆锥的表面积.

  教学难点:

  准确进行圆锥有关数据与展开图有关数据的转化.

  教学过程:

  一、新课引入:

  在小学,同学们除了学习圆柱之外还学习了一个几何体——圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“7.21圆锥的侧面展开图”所要研究的内容.

  和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为学习立体几何打基础.

  圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点.

  本课首先在小学已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算.

  二、新课讲解:

  [幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]

  前面屏幕上展示的物体都是什么几何体?[安排回忆起的学生回答:圆锥]在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?[安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的.距离是圆锥的高.]

  [教师边演示模型,边讲解]:大家观察rt△soa,绕直线so旋转一周得到的图形是什么?[安排中下生回答:圆锥.]大家观察圆锥的底面,它是rt△soa的哪条边旋转而成的?[安排中下生回答:oa]圆锥的侧面是rt△soa的什么边旋转而得的?[安排中下生回答,斜边],因圆锥是rt△soa绕直线so旋转一周得到的,与圆柱相类似,直线so应叫做圆锥的什么?[安排中下生回答:轴.]大家观察圆锥的轴so应具有什么性质?[安排学生稍加讨论,举手发言:圆锥的轴过底面圆的圆心,且与底面圆垂直,轴上连接圆锥顶点与底面圆心的线段就是圆锥的高.]圆锥的侧面是rt△soa的斜边绕直线so旋转一周得到的,同圆柱相类似,斜边sa应叫做圆锥的什么?[安排中下生回答:母线.]给一圆锥,如何找到它的母线?[安排中上生回答:连结圆锥顶点与底面圆任意一点的线段都是母线.]圆锥的母线应具有什么性质?[安排中下生回答:圆锥的母线长都相等.]

  [教师边演示模型,边启发提问]:现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,哪位同学发现这个展开图是什么图形?[安排中下生回答:扇形.]请同学们仔细观察:并回答:1.圆锥展示图——扇形的弧长l等于圆锥底面圆的什么?扇形的半径其实是圆锥的什么线段?[安排中下生回答:扇形的弧长是底面圆的周长,即l=2πr,扇形

  弧长已知,圆锥母线已知则展开图扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.

  [教师边演示模型,边启发提问]:如图7—183,现在将圆锥沿着它的轴剖开,哪位同学回答,经过轴的剖面是一个什么图形?[安排中下生回答:等腰三角形.]这个等腰三角形的腰与底分别是圆锥的什么?[安排中下生回答:腰是圆锥的母线,底是圆锥的直径.]这个等腰三角形的高也就是圆锥的什么?[安排中下生回答:高].这个经过轴的剖面,我们称之谓“轴截面”,在轴截面里包含了有关圆锥的所有元素:轴、高、母线,底面圆半径.这个等腰三角形的顶角,我们称之谓“锥角”,大家不难

  给定旋转一周得圆锥的那个直角三角形,当然给定半径、母线;圆锥侧面展开图——扇形的面积、圆心角可求、因此可以说有关圆锥的计算问题,其实质就是解这个直角三角形的问题.

  幻灯展示例题:如图7—184,圆锥形的烟囱帽的底面直径是80cm,母线长50cm,(1)计算这个展开图的圆心角及面积;(2)画出它的展开图.

  要计算展开图的面积,哪位同学知道展开图扇形的弧长是圆锥底面圆的什么?[安排中下生回答:周长.]展开图形的半径是圆锥的什么?[安排中下生回答:母线.]

  请同学们计算这个展开图的面积.[安排一中等生上黑板完成,其余学生在练习本上做].

  解:圆锥底面圆直径80cm,∴底面圆周长=80πcm,又母线长50cm

  =XXπ(cm2).

  哪位同学到前面计算一下这个扇形的圆心角?[安排一名中下生上前,其余在练习本上做].

  同学讨论一下这个扇形怎样画?[安排一中上学生回答:首先画一个

  弧的扇形,r就是所要画的展开图.]

  幻灯展开例题:图7—185中所示是一圆锥形的零件经过轴的剖面,它的腰长等于圆锥的母线长,底边长等于圆锥底面的直径,按图中标明的尺寸(单位mm),求:

  (1)圆锥形零件的母线长l;

  (2)锥角(即等腰三角形的顶角)α;

  (3)零件的表面积.

  图中给出等腰三角形的哪些尺寸?[安排中下生回答:高40,底边长34]哪位同学会计算圆锥形零件的母线长l?[安排一中等生上黑板,其余同学练习本上做][答案:l=43。5mm]锥角α打算如何求?[安排一中等

  ∠dsb的正切.]请同学们求出α.[安排一中等生上黑板,其余在练习本上做],[答案:α≈46°4′]

  零件的表面积等于什么?[安排中下生回答:圆锥的侧面积加上底面圆面积.]计算圆锥侧面积所需条件已具备了吗?计算底面圆面积所需条

  请同学们把表面积求出来.[s≈3230mm2]

  三、课堂小结:

  请同学们回顾一下,本堂课我们学了些什么知识?[可安排中下生相互补充完整:1.圆锥的特征;2.圆锥的形成及有关概念;3.圆锥的展示图;4.圆锥的轴截面.]

  四、布置作业

  教材p.198;练习1、2;p.200中5、6、7、8.

圆柱和圆锥教案13

  第二课时

  圆柱和圆锥

  教学目标:

  1、使学生学会通过假设和调整来解决问题,进一步的提升思维水平。

  2、在运用假设和调整来解决问题的过程中,体会假设与调整的多样性。

  3、在解决问题的`过程中,获得解决问题的成功经验,提高学好数学的信心。

  重点难点:

  学会假设和调整的策略来解决问题,并体会假设与调整的多样性。

  教学过程:

 一、谈话导入

  上节课我们学习了运用已学的多种策略来解决问题,通过对条件的进一步分析和转化,使一个问题多种思维、多种解法。今天我们继续来学习解决问题的策略。(板书课题:假设的策略)

  二、探究新知

  1、教学例2(课件出示例2)

  全班42人去公园划船,租10只船正好坐满。每只大船坐5人,每只小船坐3人。租的大船、小船各有多少只?

  提问:解决这个问题,你准备选择什么策略?

  学生小组讨论。

  画图法。

  先画10只大船坐50人,再去掉多的8人。

  列举法。

  从大船有9只、小船有1只开始,有序列举。并填写右表。

  (1) 列表假设。

  假设大船和小船同样多,那么我们要如何调整算出大船和小船各有多少只?

  ① 出示表格。

  ②借助表格调整。

  第一步:假设租5只大船和5只小船,就会比42人少2人。

  第二步:还少2人,也就是这2人还没有上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整?

  先想一想,再在小组里交流想法,然后在表中填一填。

  第三步:集体交流,得出方法

  引导思考:少了2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多坐2人,22=1(条),所以调整为小船4条,大船6条。

  ② 检验结果。学生口答检验方法。

三、巩固练习

  1、完成第29页练一练。

  (1)引导学生先用第一种方法,根据要求提示动手操作,独立完成。

  (2)用列表假设的方法再进行思考练习。

  学生交流,并汇报想法。

  2、完成练习五第4题。

  根据题中所给的假设学生自主调整,并汇报调整想法。

  四、课堂小结

  通过本节课的学习,我们知道了哪些解决问题的策略?你有哪些收获?

  五、课堂作业:练习五第5题。

圆柱和圆锥教案14

  圆柱、圆锥、圆台和球

  总 课 题

  空间几何体

  总课时

  第2课时

  分 课 题

  圆柱、圆锥、圆台和球

  分课时

  第2课时

  目标

  了解圆柱、圆锥、圆台和球的有关概念.认识圆柱、圆锥、圆台和球及其简单组合体的机构特征.

  重点难点

  圆柱、圆锥、圆台和球的概念的理解.

  1引入新课

  1.下面几何体有什么共同特点或生成规律?

  这些几何体都可看做是一个平面图形绕某一直线旋转而成的.

  2.圆柱、圆锥、圆台和球的有关概念.

  3.圆柱、圆锥、圆台和球的表示.

  4.旋转体的有关概念.

  1例题剖析

  例1

  如图,将直角梯形 绕 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?

  例2 指出图 、图 中的几何体是由哪些简单的几何体构成的.

  图 图

  例3

  直角三角形 中, ,将三角形 分别绕边 , , 三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?

  1巩固练习

  1.指出下列几何体分别由哪些简单几何体构成.

  2.如图,将平行四边形 绕 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?

  3.充满气的车轮内胎可以通过什么图形旋转生成?

  1课堂小结

  圆柱、圆锥、圆台和球的有关概念及图形特征.1课后训练

  一 基础题

  1.下列几何体中不是旋转体的是( )

  2.图中的几何体可由一平面图形绕轴旋转 形成,该平面图形是( )

  ABCD

  3.用平行与圆柱底面的平面截圆柱,截面是_____________________________________.

  4._____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体.

  5.用平行于圆锥底面的`一平面去截此圆锥,则底面和截面间的部分的名称是_________.

  6.如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的.

  二 提高题

  7.请指出图中的几何体是由哪些简单几何体构成的.

  三 能力题

  8.如图,将直角梯形 绕 、 边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?

  ADCB图1A图2DBC

圆柱和圆锥教案15

  教学目标:

  1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。

  2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。

  教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。

  教学过程:

  一、开门见山、温固引新。

  师:还记得哪些与圆柱圆锥有联系的计算公式?

  生:回答相联系的数学公式。

  师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?

  生:回忆基本知识。

  师:到底同学们掌握得怎样呢?老师想通过一个练习来检查同学们公式灵活运用的情况,愿意接受这次挑战吗?

  1、抢答练习,请说出你的思考过程。

  (1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?

  (2)一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?

  (3)一根圆柱形状的木料底面直径16厘米、高20厘米,沿着它的底面直径和高切成相等的两块,表面积增加多少平方厘米?

  学生抢答,并说出自己的思考过程,教师板书。

  2、解决数学问题:

  (1) 出示一圆柱图

  师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?

  竞赛的形式来解决,竞赛要求:

  1、时间3分钟。

  2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。

  (1) 学生独立完成;

  (2) 同桌互查;

  (3) 学生汇报;

  (半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)

  (4)如果出现问题下面改正。

  师:同学们数学只有在生活中才能体现它真正的价值,现在出现了一道生活中的数学问题大家愿意帮忙解决吗?

  二、解决实际问题:

  最佳设计方案。

  师:问题是这样的:面粉厂准备要招收仓库保管员,领导们打破了常规中只面试就招工的办法,而采用数学考试的方法,出了一道数学题。同学们有兴趣来应聘吗?

  有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)

  学生活动,老师巡视。小组成员汇报方案。

  三、深化应用。

  师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?

  四、课堂总结。

  师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的.应聘书呢?请来谈一谈你现在的心情及感受。

  其他同学,通过今天这节课的学习,谁来说一说你有哪些收获?你还存有疑惑或问题吗?

  五、补充题详见共享空间

  课前思考:

  潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。

  因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。

  下面补充这样几题:

  市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。

  1.

  (1)这个水池占地多少平方米?

  (2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?

  (3)这个水池装满水,最多能装多少立方米?

  (4)在池口围一圈栏杆,栏杆长多少米?

  2.一辆压路机的前轮是圆柱形,轮宽1.8米,直径是1.5米。如果车轮每分钟滚动5周,10分钟压路面多少平方米?压路机10分钟前进了多少米?

  3.一个圆锥形沙堆,底面半径3米,高2米,用这堆沙在5米宽的公路上铺10厘米厚的路面,能铺多长?

【圆柱和圆锥教案】相关文章:

圆柱和圆锥教案02-28

圆柱和圆锥教学反思02-19

《圆柱和圆锥的认识》的教学设计04-20

《圆柱与圆锥》教学反思04-13

《圆柱圆锥整理复习》教学反思04-27

小学六年级数学圆柱与圆锥教案07-18

《圆锥》教案01-23

小学六年级下册《圆柱与圆锥》教案优质通用10-28

认识圆柱体和球体大班教案11-19