因数和倍数的教案
作为一名为他人授业解惑的教育工作者,时常需要用到教案,教案是备课向课堂教学转化的关节点。教案应该怎么写才好呢?以下是小编收集整理的因数和倍数的教案,希望对大家有所帮助。
因数和倍数的教案1
课前准备
教师准备 多媒体课件
学生准备 100以内的数表
教学过程
⊙谈话引入,揭示目标
师:上节课我们把数进行了分类整理,这节课我们就一起来复习因数和倍数的相关知识。
⊙回顾与整理
1.回顾旧知,构建知识网络。
(1)回顾:因数和倍数这部分知识有哪些概念?
(因数、倍数、质数、合数、奇数、偶数等)
(2)讨论:各概念之间的关系是怎样的?
(组内交流)
(3)梳理:小组合作,用自己喜欢的方法进行知识梳理。
(4)汇报:各自的知识梳理方法。
(课件展示学生的梳理方法,肯定其优点后,引导其完善树状知识网络图)
2.复习、理解相关概念。
(1)因数和倍数。
①在数学上,关于“因数”和“倍数”是怎么定义的?
[整数A除以整数B(B≠0),除得的商是整数且没有余数,我们就说整数A能被整数B整除,或者说整数B能整除整数A。
如果整数A能被整数B(B≠0)整除,整数A就叫作整数B的倍数,整数B就叫作整数A的因数。倍数和因数是相互依存的。
如45能被9整除,所以45是9的倍数,9是45的因数]
师:为了方便,在研究因数和倍数时,所说的数指的是非零整数。
②举例说明因数和倍数各有什么特征。
预设
生1:一个数的因数的个数是有限的,其中最小的是1,最大的是它本身。如20的因数有1,2,4,5,10,20。共6个。
生2:一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的倍数。如4的倍数有4,8,12,…
生3:一个数最大的因数等于它最小的倍数。
……
(2)质数与合数。
根据一个数所含因数的个数的不同,还可以得到质数与合数的概念。
①什么是质数?最小的质数是什么?
[一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数),最小的质数是2]
②什么是合数?最小的`合数是什么?
(一个数,如果除了1和它本身还有别的因数,这样的数叫作合数,最小的合数是4)
(3)公因数和公倍数。
①什么叫公因数?什么叫最大公因数?
(几个数公有的因数,叫作这几个数的公因数。其中最大的一个叫作这几个数的最大公因数)
②什么叫公倍数?什么叫最小公倍数?请举例说明。
预设
生:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。如2的倍数有2,4,6,8,10,12,14,16,18,…3的倍数有3,6,9,12,15,18,…其中6,12,18,…是2和3的公倍数,6是它们的最小公倍数。
因数和倍数的教案2
教学内容
教材第6页例3及练习二第3~8题及思考题。
教学目标
1.通过学习,使学生能自主探究,找出求一个数的倍数的方法。
2.结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。
3.初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。
教学重难点
重点:掌握求一个数的倍数的方法。
难点:理解因数和倍数两者之间的关系。
教学过程
一、 复习导入
10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?
二、新课讲授
1.探索找倍数的方法。(教学例3)
出示例3:2的倍数有哪些?
师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!
师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。
师:大家都是用的什么方法呢?
生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。
生2:我也是用乘法,用2去乘1、乘2……
师:哪些同学也是用乘法做的?
师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?www.xkb1.com
生3:我用的是除法,用2÷2=1,4÷2=2 ,6÷2=3,……依次除下去。
师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?(不能)
师:为什么?(因为2的倍数有无数个)
师:怎么办?(用省略号)
师:通过交流,你有什么发现?
引导学生初步体会2的倍数的个数是无限的。
追问:你能用集合图表示2的倍数吗?
学生填完后,教师组织学生进行核对。
(4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。
4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?
先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:
(1)一个数的最小因数是1,最大因数是它本身。
(2)一个数的最小倍数是它本身,没有最大倍数。
(3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
三、课堂作业
1.指导学生完成教材第7~8页练习二第3~8题及思考题。
学生独立完成全部练习后教师组织学生进行集体订正。
集体订正时,教师着重引导学生认识以下几点:
(1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。
(2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。
(3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的'倍数,即如果两数都是n的倍数,它的和也是n的倍数。
2.利用求倍数的方法解决生活中的实际问题
出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?
理解题意,分析解答。
教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5个地数,也正好数完,说明西瓜的个数是5的倍数,所以西瓜的个数同时是2和5的倍数。
交流汇报:2的倍数有2,4,6,8,10,12,14,16,18,20,…
5的倍数有5,10,15,20,25,30,…
2和5共同的倍数有10,20,…所以2和5共同的倍数最小的是10。
答:这些西瓜最少有10个。
四、课堂小结
1.师:通过本节课的学习,你有什么收获?(学生交流)
2.让学生自学“你知道吗?”
板书设计
因数和倍数
2×1=2 2÷2=1
2×2=4 4÷2=2
2×3=6 6÷2=3
2×4=8 8÷2=4
2的倍数有2,4,6,……
一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
因数和倍数的教案3
刘浩中心小学许夏敏
教学目标:1进一步加深学生对方程意义的理解,巩固用等式的性质解简易方程的方法,理解简单实际问题中数量关系,并能根据等量关系解决实际问题。
2进一步理解公倍数和公因数,最小公倍数和最大公因数的意义,掌握求最大公因数和最小公倍数的方法。
3通过小组合作交流,培养学生的数学交流能力和合作能力。
教学重点:理解方程的意义,巩固解方程的方法,进一步掌握求最小公倍数和最大公因数的方法。
教学难点:理解实际问题中的数量关系,根据数量关系列方程解答。
教学实施:一、疏通概念
1、同学们,本学期的内容已经全部学完了。从今天开始,我们要对所有的知识进行与复习。首先让我们一起走进“数的世界”,在十个单元中哪些是与数打交道呢?根据学生回答板书方程
公倍数与公因数
认识分数
分数的基本性质
分数的加减法
2、揭题
今天这节课我们先来复习方程,公倍数与公因数(出示课题)
3、讨论与思考:本学期学习了方程的哪些知识?
什么是公倍数与公因数?
怎样求两个数的最小公倍数和最大公因数?
二、专项练习
1、方程的复习
⑴与练习第1题,在方程下面打√,集体汇报时说出为什么不是方程?
等式
方程
X+2.5<828-12=165a分别叫什么?你觉得方程与等式有什么关系?你能用一副图来表示吗?
⑵与复习第2题
提问:根据什么来解方程?指名4人板演,校对时说说是怎么想的?
出示练一练,找出括号中方程的解
①3x=1.5(x=0.5x=2)
②x-210=30(x=240x=180)
③x÷5=120(x=24x=600)
⑶列方程解决实际问题
?米11.7平方米?米
2.7米
6.9米3.9米
学生独立完成,集体订正时说说根据什么数量关系式列方程的?
教师,用方程计算可以使很多问题变的简单,容易解决。
⑷与复习第4题学生读题后独立用方程解决。
2、公倍数和公因数的复习
对公倍数和公因数你有那些了解?怎样求两个数的最小公倍数和最大公因数呢?
出示练习①写出每组数的最小公倍数
6和94和82和3
②写出每组数的最大公因数
18和2415和602和3
请做得快的同学介绍经验
三、全课
今天我们复习了什么,你有哪些收获?
四、课堂作业
与复习第3题、第5题、第6题。
教学反思
这是一堂复习课,主要复习方程、公倍数和公因数两个单元的'内容。由于课堂时间有限,因此对知识的回顾与还不是很系统。特别是对潜能生而言,教师的提问不能及时沟起他们对知识概念的回忆,因此跟基础较好的同学相比就形成了鲜明的落差。
在列方程解决实际问题时,正确掌握题中的数量关系是关键,也是学生理解中的难点。大部分学生在列方程时,因为没能找出题中的数量关系而把方程列错,或者方程列到了,却不能把方程抽象成数量关系式。诸如这些现象,主要是学生的抽象能力还不够完善,分析问题的能力还不够仔细,深入,有待进一步的发展。
在公倍数和公因数一单元中,问题不大,主要是求两个数的最小公倍数和最大公因数。对较大的两个数,如求100以内两个数的最小公倍数和最大公因数,出错率较大。因此课后还应多补充一些相应的练习。
因数和倍数的教案4
在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。全单元的教学内容分三部分编排。
第22~25页教学公倍数。主要是两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。
第26~31页教学公因数。包括两个数的公因数、最大公因数的意义,求最大公因数的方法。在练习五里还安排了最小公倍数与最大公因数的比较。
第32~36页实践与综合应用。利用邮政编码、身份证号码等实例,教学用数字编码表示信息。
在“你知道吗”里,介绍了我国古代曾经用“辗转相除法”求最大公因数,也介绍了现代人们经常用“短除法”求两个数的最大公因数和最小公倍数。在阅读这材料后,如果学生愿意用短除法求两个数的最大公因数或最小公倍数,是允许的。但是,不要求全体学生掌握和使用短除法。编排的一道思考题,是可以用公因数知识解决的实际问题。
1?在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的含义。
例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。
例1先用长3厘米、宽2厘米的长方形纸片,分别铺边长6厘米和8厘米的正方形,发现正好铺满边长6厘米的正方形,不能正好铺满边长8厘米的正方形,并从长方形纸片的长、宽和正方形边长的关系,对铺满和不能铺满的原因作出解释。再想像这张长方形纸片还能正好铺满哪些正方形,从倍数的角度规律,为形成新的数学概念积累丰富的感性材料。然后揭示公倍数与最小公倍数的含义,把感性认识提升成理性认识。
教材选择长方形纸片铺正方形的活动教学公倍数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同一张长方形纸片铺两个不同的正方形,面对出现的两种结果,会提出“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着正方形的边铺长方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究正方形边长和长方形长、宽之间关系的愿望。
分析正方形的边长和长方形长、宽之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系 铺的过程与结果,从两个正方形的边长除以长方形的长、宽没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据正好铺满边长6厘米的正方形、不能正好铺满边长8厘米的正方形的经验,联想还能正好铺满边长是几厘米的正方形。先找到这些正方形,把它们的边长从小到大排列,知道这样的正方形有无数多个。再用“既是2的倍数,又是3的倍数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。
让学生在现实情境中,通过活动领悟公倍数的含义,不仅体现在例题的教学中,还落实到练习里。第23页“练一练”在2的倍数上画“?”,在5的倍数上画“○”。从数表里的10、20、30三个数既画了“?”又画了“○”,体会它们既是2的倍数,又是5的倍数,是2和5的公倍数。练习四第4、7、8题都是与公倍数有关的实际问题,让学生通过涂颜色、填表格、圈日期等活动体会公倍数的含义。
例3教学公因数、最大公因数的含义,也通过“铺”的活动组织教学。与例1不同的是,例3用2张边长不同的正方形纸片分别去铺同一个长方形,是形成公因数概念的需要。例题编写和练习编排与教学公倍数相似,这里不再重复。
2?突出概念的内涵、外延,让学生准确理解概念。
概念的内涵是指这个概念所反映的一切对象的共同的本质属性。公倍数是几个数公有的倍数,公因数是几个数公有的因数,可见“几个数公有的”是公倍数和公因数这两个概念的本质属性。在倍数、因数的基础上教学公倍数、公因数,关键在于突出“公有”的含义。
教材用“既是……又是……”的描述,让学生理解“公有”的意思。例1先联系长3厘米、宽2厘米的长方形纸片正好铺满边长6厘米、12厘米、24厘米……的正方形这些现象,从正方形的边长分别除以长方形纸的长和宽都没有余数,得出正方形的边长“既是2的倍数,又是3的倍数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后在“6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数”这句话里把“既是……又是……”进一步概括为“公倍数”,形成公倍数的概念。
集合图能直观形象地显示公倍数、公因数的含义。第23页把6的倍数与9的倍数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是6的倍数,也是9的倍数,是6和9的公倍数。先观察这个集合图,再填写第24页的集合图,学生能进一步体会公倍数的含义。
概念的外延是指这个概念包括的一切对象。对具体事例是否属于概念作出判断,就是识别概念的外延,加强对概念的认识。例1在揭示2和3的公倍数的概念,指出它们的公倍数是6、12、18、24……后,提出“8是2和3的公倍数吗”这个问题,利用反例凸现公倍数的含义。让学生明白8只是2的倍数,不是3的倍数,从而进一步明确公倍数的概念。练习四第4题先在表格里分别写出4、5、6的倍数,再寻找4和5、5和6、4和6的公倍数,也有助于学生识别概念的外延。
3?运用数学概念,让学生探索找两个数的最小公倍数、最大公因数的方法。
本单元只教学两个数的公倍数、最小公倍数和两个数的公因数、最大公因数。因为这些是最基础的数学知识,在约分和通分时应用最多。只要这些基础知识扎实,即使遇到三个分数的通分,学生也能灵活处理。不编排例题教学短除法求最小公倍数和最大公因数,而是采用写出两个数的倍数或因数,找出它们的最小公倍数或最大公因数的方法。这样安排的目的是,在运用概念解决问题的过程中,进一步加强数学概念的教学。
例2教学求两个数的最小公倍数,出现了多种解决问题的方法,这些方法的思路都公倍数和最小公倍数的概念,从6和9的公倍数、最小公倍数的意义引发出来。学生可能先分别写出6和9的倍数,再找出它们的公倍数和最小公倍数。由于倍数需一个一个地写,还要逐个逐个地比,所以得出公倍数和最小公倍数比较慢。学生也可能在9的倍数里找6的倍数,只要依次想出9的倍数(即9×1、9×2、9×3……的.积),逐一判断是不是6的倍数,操作比较方便。尤其求两个较小数(不超过10)的最小公倍数时,更能显出这种方法的优点。当然,在6的倍数里找9的倍数,也是一种方法,但没有9的倍数里找6的倍数快捷。教材安排学生在交流中体会各种方法,首先是理解各种方法的共同点,都在寻找既是6的倍数、又是9的倍数,而且是尽量小的那个数。然后是理解各种方法的个性特点,从中作己的选择。
例4求两个数的最大公因数,教学方法和例2相似。求8和12的最大公因数的几种方法中,教材呈现的第一种方法比较适宜多数学生。因为一个数的因数的个数是有限的,先写出两个数的全部因数,再找出最大公因数,操作不麻烦。第二种方法从小到大依次想较小数的因数,稍不留心就会遗漏某一个因数。练习五编排第3题的意图就在于此。
练习四第5题在初步学会求两个数的最小公倍数之后安排,两个色块分别呈现最小公倍数的两种特殊情况。左边的色块里,每组的两个数之间有倍数与因数关系,它们的最小公倍数是较大的那个数。右边的色块里,每组两个数的最小公倍数是它们的乘积。练习五第6题是初步会求两个数的最大公因数后安排的。左边色块里,每组的两个数之间也有倍数与因数的关系,它们的最大公因数是较小的那个数。右边色块里,每组两个数的最大公因数是1。这些特殊情况,在通分和约分时会经常出现。教学时可以按色块进行,先分别求出同一色块四组数的最小公倍数或最大公因数,再找出相同的特点,通过交流内化成求最小公倍数和最大公因数的技能。要注意的是,学生有倍数与因数的知识,能够理解同组两个数之间的倍数、因数关系,以及它们的最小公倍数和最大公因数的规律。由于新教材不讲互质数,也不教短除法,所以两个互质数的最小公倍数是它们的乘积、最大公因数是1,这些特殊情况,只能在具体对象中感受,不宜深入研究原因,更不要出结语让学生记忆。第9题分别写出1、2、3、4……20这些数与3、2、4、5的最大公因数,在发现有趣规律的同时,也在感受两个数的最大公因数的两种特殊情况。
因数和倍数的教案5
本单元安排在学生已经掌握了许多自然数的知识之后,系统地教学分数的意义和性质之前,可以使学生进一步丰富自然数的知识,了解自然数之间存在的倍数与因数关系,体会自然数都有因数,而且不同自然数的因数个数是不同的。这些内容还能为以后教学分数知识作必要的准备。研究倍数与因数一般在非零自然数范围内进行,可以减少不必要的麻烦。因此,教材在底注中给予明确的规定。教学内容分四部分编排。
第70~73页教学相关的自然数之间的倍数与因数关系,求一个数的倍数或因数的方法。
第74~77页教学5、2、3的倍数的特点,以及偶数、奇数等知识。
第78~79页教学素数与合数的概念和判断方法。
第80~82页整理全单元的知识并组织综合练习。
编写的你知道吗介绍哥德巴赫猜想和我国数学家研究这一猜想取得的显著成就。两道思考题让学生利用所学的数学概念探索有挑战性的问题。
1? 联系实际体会自然数之间的倍数、因数关系,探索找一个数的倍数与因数的方法。
教材的第一部分先教学倍数、因数关系,再教学求倍数与因数的方法。前者是形成数学概念,后者是应用概念。
(1) 第70页的例题从12个相同的正方形拼长方形开始教学,学生对这个活动已经很熟悉,几乎人人都知道有不同的拼法,都能顺利地拼出三种不同的长方形。教材根据各种拼法中每行正方形的个数与行数,把三种拼法分别表示成43=12、62=12和121=12。以43=12为例讲了12是4的倍数,也是3的倍数,4和3都是12的因数。又让学生说出62=12、121=12里存在的倍数、因数关系。这道例题有两个编写特点: 第一个特点是作为研究对象的三个数学式子都从具体的操作活动中提取出来,有助于学生联系现实情境和实际经验体会倍数与因数的含义;第二个特点是给学生举一反三的机会,用43=12里学到的倍数、因数知识解释62=12、121=12这两个式子里的倍数与因数关系,充分地调动了学生的积极性和主动性。教学这道例题要注意,倍数与因数是一种关系,客观存在于两个具体的自然数之间。因此,要通过完整的语言表达关系,让学生体会这种关系,如4是12的因数、12是4的倍数,不能说成4是因数、12是倍数。
(2) 第71页的两道例题分别是教学找一个数的倍数和找一个数的因数的方法,虽然内容不同,教学方法都非常相似。即利用初步建立的倍数与因数的概念,联系已经掌握的乘除法口算,让学生在探索中找到方法。
找3的倍数,采用的思路是3和任何非零自然数的乘积都是3的倍数。这一思路容易理解、容易操作,与建立倍数、因数概念的大背景保持一致。教学时要引导学生从3的倍数是怎样的数想起,先形成找3的倍数的思路,然后从小到大一个一个地找,并按顺序写出来。还要理解例题在写出3的倍数时为什么用了省略号。试一试独立找2和5的倍数,一方面巩固找一个数的倍数的方法,另一方面通过3、2、5的倍数可以发现有关倍数的一些规律。如一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数等。在若干个实例中寻找共同特点,总结成规律,虽然仍旧是不完全归纳,但对小学生来说已经是比较科学的方法了。
在找36的因数时,如果沿乘积是36的自然数都是36的因数这个思路就能得出想乘法算式这种方法,这条思路容易形成,在操作时往往不大顺畅。如果按36除以哪些自然数没有余数?这个思路想就能得出想除法算式这种方法,这条思路一旦形成,方法易于操作。因此,例题从因数的概念出发,利用()()=36这个式子先让学生明白,找36的因数就是写出这个式子的因数。然后联系除法的意义,引导学生利用除法求36的因数。
在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。教学要承认学生实际,允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中相互评价,删去重复的,补上遗漏的,并组织学生认真讨论怎样找才能不重复不遗漏,体会过程、总结方法、提升水平,学会有序地思考和寻找。
还有一点需要指出,《标准》要求学生能够写出10以内自然数的倍数、100以内自然数的因数。教材在编写时认真落实了这些规定,在想想做做里没有编排找较大自然数的倍数的练习题。适量出现一些稍大的数(如30),写出它的全部因数。
2? 在找百以内5的倍数、2的倍数、3的倍数的活动中,认识这些数的特点。
教材第二部分教学5、2、3的倍数的特点。判断一个数是不是5的倍数,是不是2的倍数都是看这个数的个位上是几,方法是一致的。判断一个数是不是3的倍数要看它各位上数的和是不是3的倍数,特征与判断方法与5的倍数、2的倍数完全不同。所以这部分教材分两段编写,把5和2的倍数的特点合并在一道例题里教学,把3的倍数的特点安排在另一段里教学。两段教材都是寻找特点利用特点判断的教学线索,给学生很大的自主活动空间。
(1) 第74页例题先在百数表里5的倍数上画△、2的倍数上画○,于是表里出现两列画△的数和五列画○的数,其中一列数上画△也画○。这些符号有利于学生分别观察5的倍数和2的倍数,发现表现在个位上的特点。也便于发现哪些数既是2的倍数,又是5的倍数。结合2的倍数,联系以前讲过的双数和单数,列举了哪些数是偶数、哪些数是奇数。这道例题安排的操作活动和提出的问题难度都不大,教学时要尽量让学生通过自主探索和合作交流建构自己的认识。
想想做做的安排很有层次。第1、2题是简单的判断,初步应用2的倍数与5的倍数的特点,起巩固知识的作用。第3、4题按要求组数,第3题组成的是两位数,没有明确每名学生都要全部、有序地写出符合要求的数,可以通过交流达到全部、有序的要求。第4题组成的是三位数,你排出了哪几种这个问题对有条件的学生要求有序思考并排出所有的数,对少数有困难的学生应尽量多排出几种,并向同伴学习有序的思考方法。第5题通过在数表中涂色,体会4的倍数一定是2的倍数,2的倍数不都是4的倍数。
(2) 发现3的倍数的特点比较难,第76页例题充分研究学生的思维习惯和学习需要,作了五步安排:
第一步在百数表里3的倍数上画○,这项活动让学生看到3的倍数与2的倍数、5的倍数不同,分散在表的各行各列里。由此产生猜想,3的倍数的特点可能与2、5的倍数不同。
第二步提出个位上是3、6、9的数都是3的倍数吗这个问题,学生可以在百数表上看到画○的数的个位上并不都是3、6或9,还有其他数。许多个位上是3、6、9的数上没有画○,它们都不是3的倍数。学生还可以任意写出一些个位上是3、6、9的数,逐一检验是否是3的倍数。这一步的目的是让学生更清楚地知道,3的倍数的特点不表现在它的个位上。
第三步为学生指点新的探索方向。把3的倍数用计数器的算珠表示,看看用几颗珠。先找较小些的两位数,再找更大的数。通过计算表示各个数所用算珠的颗数,初步发现算珠的颗数总是3、6、9、12等,这几个数都是3的倍数。这一步对发现3的倍数的特点关系很大,学生也乐意进行,要适当多安排一点时间。
第四步把算珠的颗数转化成各位上数的和,发现3的倍数的特点,这一步是教学难点。要引导学生从数的某一位上是几,计数器的那一位上就拨几颗珠这一事实理解计数器上算珠的总颗数就是这个数各位上数的和。从算珠的颗数是3的倍数推理出各位上数的和是3的倍数。
第五步是试一试,通过不是3的倍数的数,各位上数的和不是3的倍数的研究,从另一个角度验证上面发现的规律是正确的。
教材设计的五步教学过程是连贯的`,步步深入、逐渐逼近数学的本质内容。既有对例证的细致研究,又有反例作验证,是科学而严密的过程。
想想做做里的习题数学思考的含量都比较高,除了第1题利用3的倍数的特点进行简单判断外,其他习题都需要仔细地想一想。如第2题要准确理解题意,除以3有余数即不是3的倍数的意思。第3题在方框里填数字的时候,要依据3的倍数的特征进行推理,而且答案是多样的,在每个方框里都有3个数字可填。第5题是组成三位数,首先要从四张数字卡片中选择3张,而且3张数字卡片之和必须是3的倍数,有两种选择,分别是5、6、7和0、5、7。然后再有序地把选出来的卡片排一排,组成三位数。前一种选择能排出6个不同的三位数,后一种选择只能排出4个不同的三位数。这些习题不要急于得出答案和结论,要注重过程,提供充分的时间,鼓励学生自主探索或合作学习。
3? 通过写因数、比因数个数等活动,建立素数和合数的概念。
第三部分教学素数和合数,教学活动的线索是: 分别找到2、3、5、6、8、9等自然数的因数按因数的个数把这些自然数分类接受素数、合数等数学概念应用数学概念判断50以内的自然数是素数还是合数。这些活动难度都不大,学生都能进行。在按因数的个数把、2、3、5、6、8、9分类时,可能需要稍微点拨,明确分类的标准。在讲述素数、合数概念时,语言必须准确。
这部分教材有三个特点: 一是在写2、3、5、6、8、9的因数时充分利用学生的已有能力,让他们在独立写因数的过程中体会这些数的因数个数不同;二是用填空形式引导学生把2、3、5、6、8、9按因数的个数分类,避免教学中出现不必要的枝节;三是主要使用素数这个名词,质数只是带了一带。这对学生无所谓,教师在开始阶段可能不习惯。
想想做做第1题利用11~20各数,让学生再次经历认识素数和合数的过程。要通过例题、试一试和这道题,让学生记住20以内的八个素数: 2、3、5、7、11、13、17、19。至于更大的素数就不要求记忆了。
4? 练习六整理和应用全单元教学的数学知识。
本单元教学了许多数学概念,是按下图的线索展开的。
乘法算式倍数2、5、3的倍数的特征偶数与奇数因数素数与合数
为了帮助学生进一步清晰地认识概念,提升应用数学知识的水平,练习六把上面的结构图分成四块组织整理。
(1) 扩大倍数与因数概念的背景。
倍数与因数的概念是在自然数(一般不包括0)的乘法算式上教学的。在一道乘法算式中,学生明白了倍数关系和因数关系。练习六第1题继续在除法算式中理解被除数是除数和商的倍数,除数和商都是被除数的因数。这样,学生对倍数关系和因数关系的认识得到深入,对用除法找一个数的因数的方法有进一步的体会。做到这一点并不困难,有除法的意义和乘、除法的关系为基础。
(2) 数学问题和实际问题并举,综合应用2、5、3的倍数特征的知识。
第2~4题练习2、5、3的倍数的特征,其中两道题是数学问题,一道题是实际问题。数学问题的形式容易引起对有关数学知识的回忆,实际问题的形式反映了数学内容在现实生活中的存在和应用。先安排数学问题,再安排实际问题,有助于学生在解决实际问题时运用有关的数学知识。第4题有一定的综合性,能发展思维的条理性,培养全面考虑问题的能力。
(3) 对容易混淆的概念,进行比较和区分。
学生对奇数与素数、偶数与合数往往混淆不清,第6题是为了区分这些概念而设计的。先在1~20各数中用○圈出素数、用△圈出偶数,回忆素数的意义和偶数的意义;再回答题中的两个问题,体会它们是不同的概念。要注意的是,两个问题都是看着表格呈现的现象回答的。其中的2既画了○,又画了△,这就表明素数里有偶数,偶数里有素数。教学时既要引导学生主动区分不同的概念,正确回答问题,又不要对这些问题进行抽象的,甚至文字游戏式的机械操练。
(4) 紧扣基础知识探索数学现象的内在规律。
第7题对学生来讲有两个特点: 一是涉及了几个数学概念,有连续的自然数、连续的奇数、3的倍数等,二是两个问题都是微型课题,题目中的找一找、算一算指点了研究方法。
第10题把五个数分别写成两个素数相加的形式。这五个数都是偶数,其实任何一个大于2的偶数都可以写成两个素数相加的形式。如果学生有兴趣,可以继续尝试。
因数和倍数的教案6
教材分析:
以乘、除法知识拓展方式,引入对“因数与倍数”知识的学习。有利于沟通新旧知识之间的联系,分散难点,便于学生理解和掌握知识。
教学目标:
①在具体的情境中,借助乘法算式认识因数和倍数。
②掌握求一个数的因数和倍数的方法,知道一个数的因数及倍数的特点。
重点难点突破:
为了突出重点、突破难点,特设计以下三个环节进行教学:
① 以学生的贴画为素材,通过不同的贴法引出不同的乘法算式,以乘法算式引出因数
和倍数的意义。
②引导学生自主找一个数的因数,以此加深对因数的理解。
③引导学生自主找一个数的倍数,以此加深对倍数的理解。
组内教师讨论要点:
①找一个数的.因数时,一定要放手,且给学生足够的时间让他们去同位之间、小组内交流,如何能快速且没有遗漏的找全。
②及时的练习巩固也是很有必要的,在多个练习的基础之上让学生发现一个数因数的特点。
③找一个数的因数也反映出学生的口算水平的高低。
④找一个数的倍数时,以找2、3、5的倍数为主,让学生发现一个数倍数的特征。
因数和倍数的教案7
【教学内容】
认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。
【教学目标】
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
【重点难点】
理解因数和倍数的含义。
【复习导入】
1. 教师用课件出示口算题。
10÷5= 16÷2=
12÷3= 100÷25=
220÷4= 18×4=
25×4= 24×3=
150×4= 20×86=
学生口算
2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。
(板书课题:因数和倍数(1)
【新课讲授】
1.学习因数和倍数的概念
(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。
学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。
教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。
谁来说一说其他的式子?
学生回答。
教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?
学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?
学生回答,教师板书:倍数与因数是相互依存的。
2.举例概括
教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。
教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。
教师同时板书。
教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?
引导学生根据“用字母表示数”的知识表述因数与倍数的关系。
如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。
A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。
你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?
3、9、15、21、36
学生独立思考并回答。
【课堂作业】
1.完成教材第5页“做一做”。
2.完成教材第7页练习二第1题。
3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5
4.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
【课堂小结】
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
因数和倍数(1)
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
因数和倍数一般指的是自然数,而且其中不包括0。
倍数与因数是相互依存的。
本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的`,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。
因数和倍数(2)
【教学内容】
一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。
【教学目标】
1.通过学习使学生掌握找一个数的因数,倍数的方法;
2.学生能了解一个数的因数是有限的,倍数是无限的;
3.能熟练地找一个数的因数和倍数;
4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。
【重点难点】
掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。
【复习导入】
说出下列各式中谁是谁的因数?谁是谁的倍数?
20÷4=5 6×3=18
在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。
(板书课题:因数和倍数(2))
【新课讲授】
(一)找因数:
1.出示例1:18的因数有哪几个?
一个数的因数还不止一个,我们一起找找18的因数有哪些?
学生尝试完成后汇报
(18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2.用这样的方法,请你再找一找36的因数有哪些?
小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36
教师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
教师板书:一个数的最小因数是1,最大因数是它本身。
3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1.我们一起找到了18的因数,那2的倍数你能找出来吗?
小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……
教师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?
2.让学生完成做一做1、2小题:找3和5的倍数。汇报
3的倍数有:3,6,9,12
教师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……)
5的倍数有:5,10,15,20,……
教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。
教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】
1.完成课本第7页练习二第2~5题。
2.完成教材第8页练习二第6~8题。
【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
因数和倍数(2)
一个数的因数的个数是有限的,,最小的是1,最大的是它本身.
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.
本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。
因数和倍数的教案8
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养同学自主探索、独立考虑、合作交流的能力。
3、培养同学敢于探索科学之谜的精神,充沛展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:区分奇数、质数、偶数、合数。
教学过程:
一、探究发现,总结概念:
1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的'长方形?
同学独立考虑,然后全班交流。
2、师:这样的四个小正方形能拼出几个不同的长方形?
同学各自独立考虑,想像后举手回答。
3、师:同学们再想一下,假如有12个这样的小正方形,你能拼出几个不同的长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)
4、师:同学们,假如给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
同学几乎是异口同声地说:会越多。
师:确定吗?(引导同学展开讨论。)
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。
先让同学小组讨论,然后全班交流,师根据同学的回答板书。
师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?
同学独立考虑后,在小组内进行交流,然后再全班交流。
引导同学总结质数和合数的概念,结合同学回答,教师板书:(略)
6、让同学举例说说哪些数是质数,哪些数是合数,并说出理由。
7、师:那你们认为“1”是什么数?
让同学独立考虑,后展开讨论。
二、动手操作,制质数表。
1、师出示:73。让同学考虑着它是不是质数。
师:要想马上知道73是什么数还真不容易。假如有质数表可查就方便了。(同学们都说“是呀”。)
师:这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想方法找出100以内的质数,制成质数表?谁来说说自身的想法?(让同学充沛发表自身的想法。)
2、让同学动手制作质数表。
3、集体交流方法。
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在激烈的讨论中有什么收获?
因数和倍数的教案9
一、教学内容
教材分两段:
例1教学公倍数和最小公倍数的认识,例2教学求两个自然数的公倍数和最小公倍数;
例3教学公因数和最大公因数的认识,例4教学求两个自然数的公因数和最大公因数。
安排了实践与综合应用“数字与信息”。
二、教材编写特点和教学建议
1.借助操作活动,经历概念的形成过程。
以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。以公倍数为例,教学时应让学生经历下面几个环节:第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是“既是……又是……”即“公有”。第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。在此基础上,教材注意借助直观的'集合图显示公倍数的意义。公因数的教学同样如此。
为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。
2.提倡思考方法多样化,找公倍数和公因数。
课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。以求8和12的公因数为例,学生可能会分别写出8和12的所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或着先找出12的因数,再从中找出8的因数。
在找出公倍数或公因数之后,还应引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的数表示的意义,体会初步的集合思想。
对于两个数有特殊关系时的最小公倍数和最大公因数,教材在练习中安排,引导学生探索简单的规律。由于教材不讲互质数,所以两个互质数的最小公倍数是它们的乘积,最大公因数是1这样的结论不要出现,只要求学生在具体的对象中感受。
为了拓宽学生对求最小公倍数和最大公因数方法的认识,教材在“你知道吗”栏目里介绍了“辗转相除法”求最大公因数和用短除法求最大公因数和最小公倍数,并介绍了两个数的最大公因数和最小公倍数的符号表示。教学时,可以让学生结合阅读进行思考。必要时,教师可以进行简单的讲解。
3.通过调查、交流和尝试,感受数在表达信息中的作用。
教学“数字与信息”这一实践与综合应用时,应注意引导学生通过调查和交流参与活动,感受数字在表达信息中的作用。课前调查的内容有:(1)110、112、114、120等特殊电话号码是什么号码;(2)自己所在学校和家庭居住地的邮政编码;(3)自己家庭成员的出生日期和身份证号码;(4)生活中用常见的数字编码表达信息的例子;(5)自己学籍卡上的学籍号。课后调查的内容有:(1)去邮局调查有关邮政编码的其他信息;(2)生活中还有哪些常见的数字编码。教学时,应引导学生充分开展交流活动:比如,为什么有些编号的开头是0?怎样从身份证中看出一个人出生的日期?身份证上的数字编码有哪些用处?等等。
在此基础上,教材在“做一做”中让学生结合实际问题,尝试用数字编码表达信息。比如,为某宾馆的两幢客房大楼的房间编号,为一年级新生编号,还安排了与方位和距离联系的问题,用编码表示家大约在学校的什么位置。
教学时,可以根据需要和时间情况,灵活安排教学时间。
因数和倍数的教案10
教学目标:
1.结合整数乘、除法运算初步认识倍数和因数的含义;
2.自主探索求一个数的倍数或因数的方法;
3.在认识倍数和因数以及探索一个数的倍数或因数的过程中,感知因数和倍数的依存关系,进一步体会数学知识之间的内在联系。
教学重点:
理解因数和倍数的含义。
教学难点:
自主探索并初步总结找一个数的倍数和因数的方法。
教学过程:
一、课前谈话:(略)
二、新课引入:
1.师:同学们的桌上都放着12个同样大的正方形,请你每次用这12个正方形拼成一个长方形,注意你不同的摆法?(每排摆几个?摆了几排?)看谁的方法多?速度快?会用算式表示你的摆法吗?
学生交流几种不同的摆法。随着学生交流屏幕上一一演示。2.进行交流:
如:每排摆了几个,摆了几排?你会用算式表示吗?
师:12个同样大小的正方形能摆3种不同的的长方形,可以用乘法算式或除法算式来表示,千万别小看这些算式,今天我们研究的内容就在这里。我们以第一道乘法算式为例。(屏幕出示)
43=12,
师:在这个算式中,你认为4、3、12有什么关系呢?
我们一起来读一读:
因为:43=12,
所以:12是4的倍数,12也是3的倍数,
4是12的因数,3也是12的因数,
读读看,能读懂吗?
继续出示:因为:62=12 ,所以
因为:121=12 ,所以
谁也来出个乘法算式说一说。(略)
三、探索研究:
1.师:我们刚才初步认识了因数和倍数,下面要进一步来研究因数和倍数。(出示课题:因数 倍数)
屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?
4、5、18、20、36
师:老师在听的时候发现4、18都是36的因数,你也发现了吗?
师:4、18、都是36的因数。
师:36的因数只有这2个吗?
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数全部找出来(既不重复又不遗漏)?请你选择你喜欢的方式,可以同桌合作,也可以独立完成,找出36的所有因数。如果能把怎么找到的方法写在纸上更好。
学生填写时师巡视搜集作业。
2.交流作业。(略)
板书:36的因数:1、2、3、4、6、9、12、18、36。
师:通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?试一个。
15的因数有 再试一个:
16的因数有
观察36、15、16的所有因数,你有什么发现吗?
边交流边板书:
个数 最小 最大
因数 1 它本身
倍数
3.师:找一个数的因数掌握的不错,会找一个数的倍数吗?
3的倍数:(找不完怎么办?) 有小巧门吗? (略)
板书:3的倍数:3、6、9、12、15
找出7的倍数:7、14、21、28、35
交流方法。在找一个数倍数时发现:板书:
个数 最小 最大
因数 有限的 1 它本身
倍数 无限的 它本身 (没有的)
30以内5的倍数:(注意反馈)5、10、15、20、25、30
4.判断:(下面的说法是不是正确?)
⑴ 12是4的倍数,12也是6的倍数。
⑵ 8是16的因数,8又是4的倍数。
⑶ 1没有因数。
⑷ 5是倍数。
小结:倍数或因数都是指两个数之间的关系,不能单独说
我们在研究倍数和因数时,所说的.数一般指不是0的自然数。
板书完整: 不是0的自然数
四、实践应用
师:因数和倍数的知识在实际生活中有很多运用。
1.春游。
乘坐小艇每人应付4元,你能把下表填写完整吗?
24个同学表演团体操,把队伍的排列情况填写完整。2.做操。
表中的排数和每排人数与24都有怎样的关系?反馈:表中的应付元数都有什么共同特点?(都是4的倍数)
排数是24的因数。每排的人数呢?(也都是24的因数。为什么?)
3.存钱。
有一位青年志愿者要省下30元生活费,买学习用品送给生活困难的同学。他每天存出一样的钱数,请问有几种存法?
(30的因数:1、2、3、5、6、10、15、30)
师:看来因数倍数大量存在于我们的生活中。
五、课堂小结。
刚才我们一起研究、认识了倍数和因数,你学得怎样?
因数和倍数的教案11
课前考虑:
1.概念揭示变“逻辑演绎”为“活动建构”。因数和倍数,保守教材是按数学知识的逻辑系统(除法整除约数和倍数)来布置的,这种概念的揭示,从笼统到笼统,没有同学亲身经历的过程,也无须同学借助原有经验的自主建构,同学获得的概念是刻板、冰冷的。假如能借助同学的操作和想象活动,唤起同学的“因倍意识”,自主建构起“因数和倍数”的意义,那么同学获得的概念必定是生动的、有意义的。
2.解决问题变“关注结果”为“对话生成”。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉同学,迫切地寻求结果,还是给同学充沛的探究时间,让他们通过独立考虑、交流讨论,从而发现问题、解决问题呢?很多胜利的教学标明,在教学中为同学营造出一个“对话场”,在生生、师生多角度、多层面的对话中,能让师生相互分享经验、沟通考虑,生成新的看法。
3.教学宗旨变“关注知识”为”启迪智慧”。“知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。”从知识课堂走向智慧课堂,为同学的智慧生长而教,应成为我们数学教学的倾心追求。怎样通过对“因数和倍数”内涵的深度挖掘,在教给同学数学知识的同时,更教会他们数学考虑的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计“因数和倍数”这堂课的宗旨所在。
教学目标:
1.通过“活动建构”,使同学领会因数和倍数的意义;通过独立考虑、交流谈论,初步掌握求一个数所有因数的`方法。
2.在解决问题的过程中,培养同学思维的有序性、条理性,增强同学的探究意识和求索精神。
3.通过教学,让同学从中感受到数学考虑的魅力,体验到数学学习的乐趣。
教学准备:
练习纸、学号卡等。
教学重、难点:
掌握求一个数的所有因数的方法,学会有序地进行考虑。
因数和倍数的教案12
【教学内容】
内容:冀教版小学数学四年级上册第51-52页的《2和5的倍数的特征》
本节内容位于冀教版小学数学四年级上册的第五单元第三个课时,这部分内容在掌握倍数概念的基础上进行教学的。这部分内容将为以后学习3的倍数打下基础,同时它也是学习分解质因数、通分和约分的重要基础知识。因此,掌握本节课的内容至关重要。
【学情分析】
从学生年龄特点看,学生的归纳概括能力还比较弱。而本节课的内容比较抽象,对于四年级的学生来说有一定的难度,因此在讲授这节课时,要鼓励学生从多角度思考问题,调动学生的学习积极性。让学生自己去观察自己去思考。
【教学目标】
1.经历自主探索5和2的倍数的特征的过程。
2.知道2和5的倍数的特征,会判断一个自然数是否是2或5的倍数。
3.积极参与探索活动,愿意与同学交流自己发现的结论,并尝试用语言描述2和5的倍数的特征。
【教学重点】
归纳、概括2和5的倍数特征。
【教学难点】
通过探索2和5的倍数特征,判断一个数是否是2、5的倍数。
【教学准备】
课件、数位表纸片
【课时安排】
1课时
【教学过程】
一、旧知铺垫
1.说出1到30以内2所有的倍数(点名让学生回答)。
2、4、6、8、10、12、14、16、18、20、22、24、26、28、30
二、探索新知
(一).2的倍数的特征。
1.2、4、6、8、10、12、14、16、18、20、22、24、26、28、30(30以内的数)
师:同学们,2的这些有倍数有哪些特征?(用红颜色把个位上的数字强调出来,方便学生更清楚观察出来)
生:这些数的个位上是0、2、4、6、8。
师:那同学们这些数都是什么数?
生:这是数都是偶数。
师:不是2的倍数的数是什么数?
生:不是2的倍数的数是奇数。
2.师总结:(板书)
2的倍数特征l个位上是0、2、4、6、8的数都是2的倍数。
l2的倍数都是偶数,不是2的倍数就是奇数。
3.课件出示数字卡片;
例一:在1~100的自然数中,找出2的所有倍数,用黑笔圈出来
师:不用计算,谁能快速说出来?并且向大家分享一下你的方法(点名让学生回答)
生:(说出具体数字)我是根据2的倍数特征的`得出来的。
(二)5的倍数的特征:
1.师:同学们学完2的倍数特征,我们再来一起探讨一下5的倍数有哪些特征?请同学们拿出练习本,写出50以内5所有的倍数。
师(点名让学生分享自己写出的数)
生:5、10、15、20、25、30、35、40、45、50
师:这些数字有哪些规律?(把个位上的数字用红颜色表示出来,方便学生观察)
生:这些数的末尾不是0就是5。
2.教师总结:(板书)
5的倍数特征个位数上是0或5的数都是5的倍数。
3.课件出示数字表
例二,在同一张数字表上(2的倍数已经在例一的时候圈出),圈出5的倍数
师:提出要求,不计算,快速准确的圈出来,并且分享方法。
生:根据5的倍数特征,快速准确的圈出来。
4.师:同学们,在这张数字表上有哪些数比较特殊?为什么它们同时拥有两个圈?
生:因为它们既是2的倍数,同时又是5的倍数。
(三)2和5共同的倍数特征:
师:这些数有哪些特征?生:这些数的末尾是0.师总结:板书2和5共同的倍数特征:末尾是0。
三、巩固练习,学习课堂检测。
1.圈出2的倍数。
3246938035772.圈出5的倍数9099651305212853.说出2和5共同的倍数。
243567909915607510613052128
四、进入游戏环节,此阶段共分两个游戏:
第一个游戏:
请四位同学上台,每人拿一个数位,每人说出一个不大于9的自然数,让其他同学判断是不是2的倍数,或者是不是5的倍数。(此游戏主要是加深学生对于判断是否是2和5的倍数时,个位的重要意义。)
第二个游戏:
找三名同学,一名同学出题,一个同学答题,最后一名同学来判断答题人答题是否正确,出题人考察的知识点。(加深学生对知识点的认识)
【作业布置】
课本“练一练”3、4题。
【板书设计】
2和5的倍数的特征
1.2的倍数特征:
1)个位上是0、2、4、6、8的数都是2的倍数。
2)2的倍数都是偶数,不是2的倍数就是奇数。
2.5的倍数特征:个位数上是0或5的数都是5的倍数
3.个位上是0的数,既是2的倍数,又是5的倍数。
【教学反思】
通过整节课的观察和实际,我发现大部分学生都能根据自己的观察发现其中的规律,但是语言组织能力较弱,不能完全和准确的表达出来。对游戏环节的设计,深受学生的喜欢,调到了学生的学习积极性,在以后教学中要多增加此类环节。
因数和倍数的教案13
教学内容:教科书第30页,练习五第12~14题、思考题。
教学目标:
1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。
2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。
教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。
教学难点:弄清公倍数和公因数联系与区别。
教学过程:
一、揭示课题
今天我们继续完成一些公因数、公倍数的有关练习。
二、基础训练
1.写出36和24的公因数,最大公因数是多少?
2.写出100以内10和6的公倍数,最小公倍数是多少?
学生独立完成,汇报交流。
说说自己是用什么方法找到的?
三、综合练习
1.完成练习五第12题。
谁能说说什么数是两个数的公倍数?两个数的公因数指什么?
在书上完成连线后汇报方法。
你是怎样找出24和16的公因数的?你是怎样找到2和5的公倍数的?
2.完成第13题。
独立完成。交流各自方法。
3.完成第14题。
独立完成。交流各自方法。
求最大公因数和最小公倍数的'方法有什么相同和不同?
什么情况下可以直接写出两个数的最大公因数?什么情况下可以直接写出两个数的最小公倍数?
4.完成思考题。
(1)小组讨论方法。
(2)指导解法。
把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。
5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法
四、课堂
大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。
因数和倍数的教案14
教学内容:
义务教育课程标准小学数学五年级下册第二章《因数和倍数》第1节例1(教材第13页)及练习二的第2题,第四题的前部分。
教材分析:
本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。
教学目标:
1、应用尝试教学法鼓励学生自主尝试探究求一个数的因数的方法及规律特点,并能熟练找全一个数的因数;
2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。
教学重点:
探究求一个数的.因数的方法及规律特点。
教学难点:
用求一个数的因数的方法熟练找全一个数的因数。
教具准备:
投影仪、小黑板、卡片
教学课时:一课时
教学设想:
运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。
教学过程:
一、复习旧知
师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?
生:(预设)可以!
师:出示小黑板。
1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。
21和7 2×7=14 30÷6=5
2、判断。
(1)12是倍数,2是因数。 ( )
(2)1是14的因数,14是1的倍数。 ( )
(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。( )
教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……
二、新课教学
过程一:尝试训练。
(一)出示问题
师:同学们,老师有一个新问题,想请大家帮助解决,行吗?
生:行!(预设)
尝试题:14的因数有哪几个?
(二)学生解决问题,教师巡视并根据实际适时辅导学困生。
(三)信息反馈。
板书:
1×14
14 2×7
14÷2
14的因数有:1,2,7,14
过程二:自学课本(P13例1)。
(一)学生自学例1。
教师提出自学要求(投影):
1、18有哪些因数?
2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。
3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。
(二)信息反馈
1、反馈自学要求情况;
板书:
1×18
18 2×9
3×6
18的因数有1,2,3,6,9,18。
还可以这样表示: 18的因数
2、知识对比,探索发现规律。
(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:
投影出示问题:
思考一:你用什么方法找出?
(2)学生思考,教师适时引导。
(3)同桌交流思考结果。
(4)师生互动。总结方法、点出课题。
求一个数的因数的方法:用乘法计算或除法计算(整除)
过程三:尝试练习
(一)用小黑板出示练习题
1、找出30的因数有哪些?36的因数有哪些?
2、结合14、18、30、36的因数个数,请你谈谈一个数的因数有什么特点?〖提示:一个数的最小因数是( ),的因数是( )。〗
(二)信息反馈:师生互动总结特点。
板书:
一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。
三、课堂作业
练习二第2题和第4题前半部分。
四、课堂延伸
猜一猜:(卡片)只有一个因数的数是谁?
五、课堂小结
师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?
生:……
板书设计:
求一个数的因数的方法
1×14
14 2×7 方法:用乘法计算或除法计算(整除)
14÷2
14的因数有:1,2,7,14
1×18
18 2×9
3×6
18的因数有:1,2,3,6,9,18 特点:一个数的因数的个数是有限的。
还可以表示为:
它的最小因数是1,的因数是它本身。
因数和倍数的教案15
一、教学内容
教材第30~51页的“例1~例12”以及练习五~七。
二、教材分析
本单元主要教学因数和倍数,以及公因数和公倍数等内容。本单元内容大体分三段安排:第一段,认识因数和倍数,学习在1~100的自然数中有序地找出10以内某个数的所有倍数,以及100以内某个数的所有因数;探索2、5、和3的倍数的特征,学习判断一个数是不是2、5或3的倍数,同时认识奇数和偶数。第二段,认识质数、合数和质因数,学习把一个合数分解质因数。第三段,认识公因数和最大公因数,探索求两个数的最大公因数的方法;认识公倍数和最小公倍数,探索求两个数的最小公倍数的方法。最后,安排了全单元内容的整理与练习。
三、学情分析
本单元内容是在学生已经认识了亿以内的数,以及学习了整数四则运算的基础上进行教学的。学习本单元内容,又为后续学习分数的基本性质、约分和通分,以及分数四则运算打下基础。
四、教学目标
1.使学生经历探索非0自然数的有关特征的活动,知道因数和倍数的含义;能找出100以内某个自然数的所有因数,能在1~100的自然数中找出10以内某个数的所有倍数;知道2、5和3的倍数的特征,能判断一个数是不是2、5或3的倍数;了解奇数和偶数、质数和合数的含义,会分解质因数。
2.使学生通过具体的操作和交流活动,认识公因数与最大公因数、公倍数与最小公倍数;会求100以内两个数的最大公因数和10以内两个数的最小公倍数。
3.使学生在探索和发现数学知识的过程中,积累数学活动的经验,培养观察、比较、分析和归纳的能力,感受一些简单的数学思想,进一步发展数感。
4.使学生在参与学习活动的`过程中,培养主动与他人合作交流的意识,体验数学学习活动的乐趣,增强对数学学习的自信心。
五、教学重、难点
教学重点:掌握倍数和倍数、质数和合数、最大公因数和最小公倍数等概念的联系和区别,掌握求两个数最大公因数和最小公倍数的基本方法。
教学难点:根据数的特点合理灵活地确定两个数的最大公因数和最小公倍数,以及根据对最大公因数和最小公倍数的理解正确解答相关的实际问题。
六、课时安排
因数和倍数…………………………………………1课时
2和5的倍数的特征………………………………1课时
3的倍数的特征……………………………………1课时
因数和倍数练习……………………………………1课时
质数和和合数………………………………………1课时
分解质因数…………………………………………1课时
公因数和最大公因数………………………………2课时
公倍数和最小公倍数………………………………2课时
因数与倍数整理与练习……………………………2课时
和与积的奇偶性……………………………………1课时
【因数和倍数的教案】相关文章:
公倍数和公因数教案03-03
因数与倍数教案11-25
《倍数与因数》教案03-14
因数和倍数公开课教案09-16
《因数和倍数》教学反思02-06
倍数和因数教学反思01-16
《因数和倍数》教学设计07-28
《倍数和因数》教学反思04-11
因数和倍数教学反思10-27