圆的周长教案

时间:2023-03-25 14:20:46 教案 投诉 投稿

圆的周长教案(合集15篇)

  在教学工作者开展教学活动前,通常会被要求编写教案,教案有助于学生理解并掌握系统的知识。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的圆的周长教案,欢迎阅读与收藏。

圆的周长教案(合集15篇)

圆的周长教案1

  一、教学内容:

  《义务教育课程标准实验教科书数学》人教版六年级上册第62-64页《圆的周长》

  二、教材分析:

  本节课是学生在学习了长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识。这为学生认识、概括、归纳圆的周长提供了知识技能基础。在教法上,以“铺垫——探究新知——运用新知”为主线,又在各个环节中设置由浅入深、由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。

  三、设计理念:

  本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  四、教学目标:

  1. 让学生知道什么是圆的周长。

  2. 理解并掌握圆周率的意义和近似值。

  3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。

  4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。

  5. 结合圆周率的学习,对学生进行爱国主义教育。

  五、教学重点:推导圆周长的计算公式,准确计算圆的周长。

  六、教学难点:理解圆周率的意义。

  七、教学准备:老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等。学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  八、教学过程:

  (一)、创设情境,引起猜想

  1、激发兴趣,引出课题

  播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。

  问:同学们,你认为这样的比赛公平吗?

  2、认识圆的周长

  (1).回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  (2).认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  【设计理念】播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基础

  3、讨论正方形周长与其边长的关系

  (1).我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  (2).怎样才能知道这个正方形的周长?说说你是怎么想的?

  (3). 那就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  【设计理念】正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的.准备。

  4、讨论圆周长的测量方法

  (1).讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  (2).反馈:(基本情况)

  <1>.“滚动”——把实物圆沿直尺滚动一周;

  <3>.“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (3).小结各种测量方法:(板书)转化曲 直

  (4).创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  (5).明确课题:

  今天这节课我们就一起来研究圆周长的计算方法。 (板书课题:圆的周长)

  【设计理念】教师引导学生结合具体实物想到采用不同的方法进行测量,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间,又不断设置认知冲突,在遵循学生认知规律的前提下,有效地培养了学生思维的创造性。

  5、合理猜想,强化主体

  (1).请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论交流。

  (2).正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?向大家说一说你是怎么想的?

  (3).正方形的周长总是边长的4倍。再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  (4).小结并继续设疑

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  【设计理念】在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程中的主体地位。

  (二)、实际动手,发现规律

  1、分组合作测算

  (1).明确要求

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。(为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。)

  4、总结圆周长的计算公式

  (1). 如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长 =直径× 圆周率 用字母表示就是:C=πd

  (2). 如果知道圆的半径,又该怎样计算圆的周长呢 板书: C =2πr

  【设计理念】本环节选取一元硬币、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程,在理解圆周率意义的过程中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

  (三)、巩固练习,形成能力

  1.判断并说明理由:π =3.14 ()

  2.选择:大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确的是:()

  a.大圆的圆周率大于小圆的圆周率,大圆的圆周率小于小圆的圆周率;

  b.大圆的圆周率等于小圆的圆周率。

  3.实际问题:我家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,我至少需要准备多长的花边?

  (四)、小结:通过今天的学习,你有什么收获?

  【设计理念】练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题抓住了新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学、用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

  (五)、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆绕8字跑,谁跑的路程近

  附:板书设计

  圆的周长

  意义:围成圆的曲线的长度叫做圆的周长

  测量: 化曲为直法:滚动、拉直

  圆周率:(字母π);计算取值:3.14。

  公式: 因为c÷d=π 所以c=πd 或c=2πr

圆的周长教案2

  【教学内容

  教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。

  【教学目标

  1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

  2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

  【教学重、难点

  掌握并理解圆的周长计算公式及其推导过程。

  【教具、学具准备

  圆规、直尺、课件、圆纸片、线。

  【教学过程

  一、导入新课

  出示情境图:谁的铁环滚一圈的距离长一些?为什么?

  教师:铁环滚动一周的距离我们就叫做铁环的周长。

  教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。

  板书课题:圆的周长。

  二、感知圆的周长与直径的关系

  1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?

  学生指出并回答。(略)

  2.观察。

  课件演示右图:

  问题:这两个圆周长有什么关系?你是怎么知道的?

  小结:直径相等,圆的周长就相等。

  3.课件演示右图:

  问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

  4.小结。

  问题:通过刚才的观察,你有什么发现?

  学生:圆的周长和直径有关系。

  三、探究圆的周长与直径的倍数关系

  圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。

  1.小组讨论,制定探究步骤。

  出示探究建议:

  (1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。

  2.说明活动要求。

  每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。

  圆的直径圆的周长周长除以直径的商(保留两位小数)

  3.小组合作,进行探究。

  4.汇报交流。

  (1)交流测量的方法。

  提问:谁来介绍一下,你们组是怎样测量圆的周长的?

  学生汇报测量的方法。(绳绕法、滚动法……)

  教师:在这些方法中,最欣赏哪个组的方法?

  小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)

  (2)交流计算方法和结论。

  提问:观察这些计算结果,你有什么发现?你还有哪些了解?

  学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。

  5.介绍圆周率。

  圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的.第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到20xx亿位。

  6.总结圆周长的计算方法。

  问题:你怎样理解周长/直径=π?你还能知道什么?

  结论:c=πd,d=c/π,c =2πr,r=c/2π。

  说明:为了计算方便,我们把π近似的取为3.14。

  7.教学例2。

  让学生独立列式计算,提示用估算检查计算结果。

  [评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

  四、巩固练习

  (一)判断。

  1.π=3.14。()

  2.计算圆的周长必须知道圆的直径。()

  3.只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1.较大的圆的圆周率()较小的圆的圆周率。

  a.大于b.小于c.等于

  2.半圆的周长()圆周长。

  a.大于b.小于c.等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。

  五、课堂小结

  通过这堂课的学习,你有什么收获?你还有什么问题?

  六、课堂作业

  1.课堂活动第1、2题。

  将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。

  2.练习五第1~5题。

  在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。

  七、课后作业

  1.求下面各圆的周长。

  (1)d=2米(2)d=1.5厘米(3)d=4分米

  2.求下面各圆的周长。

  (1)r=6分米(2)r=1.5厘米(3)r=3米

  [评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]

圆的周长教案3

  教学内容:

  教学目标:

  1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。

  2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。

  3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。

  教学重点:理解圆周率,能计算圆的周长。

  教学难点:探索并理解圆的周长与直径的商为定值。

  教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。

  教学策略:自主探索、讨论交流、点拨与练习

  教学程序:

  一、激活目标

  出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?

  二、活动建构

  1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)

  2、介绍圆周率的由来。

  任意一个圆的周长与它的.直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。

  组织学生阅读资料,谈感受。

  3、推导出:c=πd或c=2πr

  4、计算花坛的周长,解决相关问题。

  圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?

  三、解释应用

  一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?

  四、反馈测评

  1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?

  15厘米

  A

  B

  2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?

  3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?

  五、课堂小结

  我的最大收获是什么?我有什么遗憾?我有什么疑问?

  希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。

圆的周长教案4

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第1112页圆的周长。

  【教学目标】

  1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

  2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

  3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

  【教学重、难点】

  1、探索发现圆的周长与直径的关系;

  2、运用圆周长的知识解决一些简单的实际问题。

  【教具、学具准备】

  1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

  2、课件1:阿凡提与国王比赛A、B

  课件2:圆的周长与直径的商的关系

  课件3:祖冲之有关资料

  【教学设计】

  【教学过程 】

  一、创设情境

  师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。 国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)

  50米

  师:同学们看,比赛开始了 紧张的比赛结束了。今天的比赛谁获胜了?

  生:国王的小花驴获得了胜利

  师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

  师:说说你是怎么想的?

  生:他们的小毛驴跑的路程不是一样长。

  师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

  生:量一量就知道了,

  师:谁能说说正方形的.周长和什么有关系,有怎样的关系?

  生:正方形的周长和边长有关系,周长是边长的4倍,

  师:也就是说只要测出正方形的一条边长就可以 知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢 ?

  师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

  得出:围成圆的曲线的长叫圆的周长。

  二 自主合作,探究新知

  (1)发现测量圆的周长的不同方法

  师:下面请同学们把准备的圆拿出来,那圆的周长指的是哪一部分的长,同桌互相比画一下。

  师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

  师:把你的好方法在小组内交流一下。

  (上台交流测量的方法)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,

  生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

  生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,

  生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以2,就可以求出圆的周长。

  师板:线绕、滚动、拉直 化曲为直

  (2)探究发现圆周率和圆的计算公式

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

  生:不行,圆太大了,测量不出来!

  师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

  生:有些圆的周长没办法用绕线和滚动的方法测量出来

  师: 那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

  师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,

  师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

  生:周长是直径的2倍, 生:他们一样长, 生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)

  师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

  生:动手量一量,算一算,

  师:说的真好,这可是解决问题的好办法动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。

  3、可以用科学计算器帮忙算一算周长和直径的商。

  师:好,现在我们来交流一下你们的实验结果。

  生:实物展台交流。

  师:大家仔细观察分析,看能发现什么?

  (厘米) 圆的直径

  (厘米) 周长与直径的商

  (保留两位小数)

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。

  生:所有圆的周长都是直径的3倍多一些,

  师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

  生:圆不论大小,它的周长都是直径的三倍多一些。

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,

  师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母表示。(板书:圆的周长直径=圆周率)

  师:关于圆周率,大家都知道什么?你说,

  生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,

  师:老师也收集了一些有关的资料,大家想看吗?

  看屏幕,这就是祖冲之,(课件介绍祖冲之 )

  师:我们通过圆的周长除以直径得到了也就是圆周率(板书:Cd=)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

  生回答、师板书:Cd= C= C=d

  d=2r C=2 C2=r

圆的周长教案5

  教学目标:

  ⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

  ⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

  ⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

  教学重点、难点

  教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

  教学过程设计

  一、创设情境,引发探究

  ⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

  ⒉揭示课题

  ⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

  ⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

  板书课题:圆的周长

  二、人人参与,探究新知

  (一)教具演示,直观感知,认识圆周长。

  教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

  (二)理解圆周率的意义

  活动一:测量圆的周长

  ⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

  ①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

  然后各组分工同桌合作,量出圆片的周长。

  ②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

  ⒉用"几何画板"《小球的轨迹》演示形成一个圆。

  提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

  ⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

  活动二:探究圆周长与直径的关系,认识圆周率。

  ⒈圆的周长与什么有关。

  ⑴启发思考

  正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

  ⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

  得出结论:圆的`周长与它的直径有关。

  ⒉圆的周长与直径有什么关系。

  ⑴学生动手测量,验证猜想。

  学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ⑵观察数据,对比发现。

  提问:观察一下,你发现了什么呢?

  (圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  ⑶出示"几何画板"《周长与直径的关系》演示。

  ⑷比较数据,揭示关系。

  正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

  ⒊认识圆周率

  ⑴揭示圆周率的概念。

  这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

  现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

  ⑵介绍π的读写法

  ⑶指导阅读,了解中国人引以为自豪的历史。

  提问:你知道了什么?

  (三)推导圆的周长计算公式。

  ⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

  请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

  ⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

  提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

  学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

  三、应用新知,解决问题

  1、和自己的伙伴一起解答例1和做一做

  2、说出这两题用哪个公式比较好?

  四、实践应用,拓展创新。

  ⒈基础性练习:

  (1)求下列各圆的周长(几何画板)

  r=3厘米 d=4厘米

  (2)、我们现在有办法求唐老鸭跑的路程吗?

  ⒉、判断

  ①圆的周长是直径的π倍。( )

  ②大圆的圆周率小于小圆圆周率。( )

  3、提高练习

  在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

  五、总结评价,体验成功

  1、你学到了什么? 2、你是怎么学到的?

圆的周长教案6

  教材内容:例1及“做一做”中的题目。

  教学目标:

  ⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

  ⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

  ⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

  教学重点:理解和掌握求圆周长的计算公式。

  教学难点:对圆周率π的认识。

  教学过程:

  一、创设情境,导入新课。

  ⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

  ⒉揭示课题

  ⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

  ⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

  板书课题:圆的周长

  二、引导探索,展开新课。

  ㈠引出圆周长的概念

  教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

  ㈡测量圆的`周长

  ⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

  ①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

  然后各组分工同桌合作,量出圆片的周长。

  ②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

  ⒉用“几何画板”《小球的轨迹》演示形成一个圆

  提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

  ⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

  ㈢探讨圆的周长与直径的关系

  ⒈圆的周长与什么有关。

  ⑴启发思考

  正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

  ⑵学生拿出自备的三个大小不同的圆。

  组织学生观察比较,A.哪个圆的周长长?B.圆的周长与它的什么有关?

  得出结论:圆的周长与它的直径有关。

  ⒉圆的周长与直径有什么关系。

  ⑴学生动手测量,验证猜想。

  学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ⑵观察数据,对比发现。

  提问:观察一下,你发现了什么呢?

  (圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  ⑶出示“几何画板”《周长与直径的关系》演示。

  ⑷比较数据,揭示关系。

  正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”《周长与直径的关系》中C1、C2、C3分别与直径的倍数关系,最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

  ⒊认识圆周率

  ⑴揭示圆周率的概念。

  这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

  现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

  ⑵介绍π的读写法

  ⑶指导阅读,了解中国人引以为自豪的历史。

  提问:你知道了什么?

  ⒋推导圆的周长计算公式。

  ⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

  请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

  ⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

  提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?

  三、初步运用,巩固新知

  ⒈完成教科书92页第1题的(1)、(3)题。

  ⒉判断

  ①圆的周长是直径的π倍。()

  ②大圆的圆周率小于小圆圆周率。()

  ⒊例1和“做一做”任选一题。

  ⒋看书质疑

  四、新知小结

  小结:要求圆的周长,一般需要它的直径或半径。知道圆的直径,怎样求周长?知道圆的半径,怎样来计算周长?

  五、新知运用,迁移拓展

  ㈠基础练习

  ⒈求下列各圆的周长(几何画板)

  ⒉一个圆形花坛,直径是8米,花坛的周长是多少?

  ⒊我们再来判断米老鼠、唐老鸭谁跑的路程多?为什么?

  ㈡提高练习

  在我们永和小学的校园外,有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

  六、反馈回授,课堂总结

  师:通过今天这节课学习,你有什么新的收获?

圆的周长教案7

  教学设想:

  利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。

  教学内容:

  小学数学义务教育教材十一册第137~138页“圆的周长”

  教学目标:

  1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2. 培养学生的观察、比较、分析、综合及动手操作能力;

  3.通过学习圆周率的历史发展,对学生进行爱国主义教育。

  教学重点:

  推导总结出圆周长的计算公式。

  教学难点:

  深入理解圆周率的意义。

  教学准备:

  电脑课件,圆形实物以及直尺、绸带,测量结果记录表。

  教学过程:

  一、创设情境,引起猜想

  (一)教师播放课件 激发学生兴趣

  黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周

  1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?

  师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)

  3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。

  4.反馈:你是用什么方法测出来的?

  生1:“滚动”——把实物圆沿直尺滚动一周;

  生2:“缠绕”——用绸带缠绕实物圆一周并打开;

  5.小结各种测量方法:(板书)化曲为直

  6.创设冲突,体会测量的局限性

  教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方

  (三)合理猜想,强化主体

  1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?

  生:我猜圆的周长跟直径有关。

  2.师课件演示:直径越大,周长越长;直径越小,周长越小。

  3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?

  (生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )

  4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  二、实际动手,发现规律

  (一)分组合作

  1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。

  2.反馈数据

  生1:我们小组算出圆的周长大约是直径的3.4倍。

  生2:我们小组算出圆的周长大约是直径的3.2倍。

  生3:我们小组算出圆的周长大约是直径的4倍。

  师:课件演示:圆的周长总是直径的三倍多一些。

  (二)介绍祖冲之

  这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  板书 :圆周率=圆的周长÷直径

  早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?

  这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的.份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4.理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  (三)总结圆周长的计算公式

  1. 如果知道圆的直径,你能计算圆的周长吗

  板书:圆的周长 = 直径× 圆周率

  C = πd

  2. 如果知道圆的半径,又该怎样计算圆的周长呢?

  板书: C = 2πr

  3.应用

  (1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。

  生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。

  (2)课题外的圆的直径是20厘米,用哪个公式计算?

  生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米

  (3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?

  三、巩固练习,形成能力

  1.判断

  (1)圆的周长是直径的π倍。 ( )

  (2)大圆的圆周率大于小圆的圆周率。( )

  (3)π=3.14 ( )

  2.出示例1,学生自己计算。

  3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?

  四、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  五、课外引申,拓展思维

  一个茶杯口的直径你有什么方法知道?

圆的周长教案8

  教学内容:

  义教六年制小学数学第十一册第110-112页例1。

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想

  新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

  教学具准备:

  多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

  教学过程:

  一、创设情境,提出问题

  1、创设情境。

  这节课,老师要和同学一起探讨一个有趣的数学问题。

  媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

  2、迁移类推。

  引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

  (1)要求唐老鸭所跑的路程实际就是求什么?

  (2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

  (3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

  3、提出问题。

  看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

  梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?

  二、自主参与,探究新知。

  1、实际感知圆的周长。

  让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

  2、明确圆周长的意义。

  引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

  (1)圆的周长是一条什么线?

  (2)这条曲线的长就是什么的长?

  (3)什么叫做圆的周长?

  学生讨论互补,概括出“围成圆的曲线的长叫做圆的`周长”(显示字幕)

  3、测量圆的周长。

  让学生讨论如何利用桌上的工具,探究圆周长的测量方法。

  小组内讨论、合作测量,然后一生向全班演示测量方法。

  (1)绳测法:用卷尺绕圆一周测量。

  (2)滚动法:媒体显示滚圆的动态。

  (3)设疑激趣:师甩动手中系线的小球转成圆,让学生测量此圆的周长。

  师:这就需要探讨一种求圆的周长的科学方法。

  4、引导学生探求圆的周长与直径的关系。

  (1)让学生观察、猜测圆的周长与什么有关系。

  媒体显示:大小不同的两个圆同时的滚动一周留下的轨迹。

  让学生观察这两个圆的周长与直径的长短。

  (2)圆的周长与直径有什么有关系。

  我们知道正方形周长是边长的4倍,那么圆的周长与直径是否也存在一定的倍数关系呢?这个问题让同学们自己去发现,请分组测量圆片,填好实验报告单。

  学生操作实验,小组分工合作,测量圆片的周长和直径,并用计算器计算出它们的比值,填好实验报告单。

  (3)小组汇报实验结果。投影学生报告单,引导观察数据,发现规律:无论大圆或小圆,圆的周长总是直径的3倍多一些。

  (4)媒体验证。屏幕上两个圆的直径分别去度量它们的周长。

  (5)概括结论。任何一个圆的周长都是它直径的3倍多一些。即圆的周长总是直径的3倍多一些。

  5、理解圆周率的意义。

  (1)让学生自学课本第111页第1、2自然段。

  (2)思考讨论:任何圆的周长和直径的比是一个什么数?它叫什么?用什么字母表示。

  (3)π的读写

  (4)介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。

  (5)认识圆周率数字特征和它的近似值。

  6、推导圆周长的计算公式

  (1)由圆周率的概念得到: 圆的周长÷直径=圆周率

  圆的周长=圆周率×直径

  c=πd或c=2πr

  (2)解疑,再现系线小球转成圆。现在会求它的周长吗?只要已知什么?

  三、应用新知,解决问题。

  1、尝试解答例1,点拔讲解规范书写格式。

  2、让学生提问,你对例1的解答有什么疑问。

  3、练习反馈,完成例1下面的做一做。

  四、实践应用,拓展创新。

  1、判断: ①π=3.14。( )

  ②圆的周长是它的直径的π倍。( )

  ③圆的直径越长,圆周率越大。( )

  2、求下圆的周长。

  3、应用公式解决实际问题

  (1)生试做

  (2)反馈

  (3)生完成P112做一做

  4、看平面图计算。(媒体显示课始呈现的唐老鸭与米老鼠跑步的画面):如果这个正方形的边长与圆的直径都是5米,你能判断出谁跑的路程多吗?怎样判断?

  五、总结评价,体验成功。

  1、你学到什么?(引导学生进行总结)

  2、怎么学到的?(评价总结,指出这些方法还可以用到今后的学习中去)。

  3、还有什么问题?(回顾本课想学到的知识都学到了没有)。

  六、作业

  1、独立作业:练习二十六第4、5、6题

  2、实践作业:

  3、课后思考题:(媒体显示)米老鼠沿着外圈跑,唐老鸭沿着“∞”字形跑,谁跑的路程多一些?

圆的周长教案9

  【教学内容】

  《义务教育课程标准实验教材 数学》六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义。

  2.通过对比分析掌握圆周长的计算公式。

  3.能用圆的周长的计算公式解决一些简单的数学问题。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:推导圆的周长的计算公式,准确计算圆的周长。

  难点:理解圆周率的意义。

  【教学过程】

  一、情景引入

  出示一块钟表

  问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

  学生猜想。

  教师演示小秒针的运动过程,证实学生的猜想是否正确。

  问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

  生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

  师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

  (设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  二、动手量一量

  学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

  物品名称

  周长

  直径

  1号圆

  2号圆

  3号圆

  4号圆

  教师评价学生小组合作的情况。

  (设计目的:强调学生的小组合作意识)

  师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。

  学生展示小组的成果。

  (设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)

  三、对比分析

  师:观察一下我们得到的几组数据,你发现什么规律了吗?

  学生自由谈。

  学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。

  师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。

  课件展示圆的周长的测量方法。

  (设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

  课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

  (设计目的:通过课件展示,让学生得到结论——圆的周长和直径的`比值是一个定值,顺利得到圆周率的值)

  小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

  你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

  学生自由谈。

  我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计目的:通过学生讲故事渗透爱国主义思想)

  小结2:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  圆的周长(用字母C表示)计算公式:C=πd或C=2πr

  四、动手做一做

  下面我们来看看怎样应用圆的周长计算公式来解决问题。

  1.计算圆的周长

  实物投影展示学生的解题过程

  (设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

  2.一个圆形喷水池的半径是5m,它的周长是多少米?

  (设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

  3.小组交流错误原因。(可让其他学生避免同样的错误)

  (设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

  4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

  (设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

  五.你能说说在这一节课中你有什么收获吗?

  可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

  六、课外合作:

  小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

  (设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

圆的周长教案10

  一,教学目标

  1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。

  2,培养学生的观察,比较,概括和动手操作能力。

  3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

  二,教学重点

  掌握并理解圆的周长,公式推导过程。

  三,教学难点

  理解圆周率的意义。

  四,教学过程

  一,创设情境,提出问题

  1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。

  2,你们知道这圈花边的边长是什么 (生:圆的周长。)

  3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法

  二,师生共同提出假设

  1,请学生回忆正方形周长和边长的关系。(边长×4)

  2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢

  生:半径,直径……

  3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么

  学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。

  4,师:你估计圆的周长是其直径的几倍

  生猜想:3倍左右。

  5,师:你有办法验证吗 生讨论

  教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。

  三,合作交流,发现规律

  1,学生思考后可能出现的以下办法:

  ⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。

  ⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。

  师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢

  ⑶ 学生在小组内动手操作,测量进行验证。

  直径(cm) 周长(cm) 周长是直径的几倍

  2 6。2 3倍多一点

  3 9。1 3倍多一点

  4 12。9 3倍多一点

  2,

  a,”圆的周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3。14159……是一个无限不循环小数,我们在计算时通常取3。14,用字母π表示(请学生写一写)

  b,结合圆周率进行爱国注意教育。

  c,师生共同推导计算圆的周长公式。

  教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的`发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。

  四,实践应用,拓展新知

  1,学生尝试求圆的周长

  d=2cm r=3。5cm d=10cm

  2,圆形花坛的直径是20cm,它的周长是多少m

  3,请同学们画一个周长是15cm的圆。

  教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。

  五,,体验成功

  1,通过这节课的学习,你学会了什么

  2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm

  板书设计:

  圆的周长

  围成圆的曲线的长叫做圆的周长。

  c=πd c=2πr

圆的周长教案11

  教学目标:

  1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。

  2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。

  3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  教学重点:

  理解并掌握圆的周长的计算公式。

  教学难点:

  理解圆的周长与直径之间的关系。

  教学准备:

  圆规、剪刀、绳子、尺子。

  教学过程:

  一、复习旧知,引入新知

  1.教师在黑板上画圆。

  (1)提问:你对圆有哪些了解?

  (2)指名回答,同学之间相互补充。

  (3)你还想了解什么?

  2.通过学生的回答,引出:这节课我们就起来研究圆的周长。(板书:圆的周长)

  二、合作交流,探究新知

  1.认识周长的含义。

  (1)师:你能指出黑板上这个圆的周长吗?

  (2)从实物中指出圆的周长。

  (3)用语言表述圆的周长。

  学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。

  2.教学例4。

  (1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指

  轮胎的直径。

  (2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?

  (3)比较这三个车轮的直径和周长,你又有什么发现?

  (4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。

  3.教学例5。

  (1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?

  (2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。

  (3)明确要求

  ①画三个大小不同的圆。

  ②用尺子量出直径。

  ③用线围出圆的周长并用尺子挞出长度。

  ④边操作边填好表格。

  周长/cm 直径/cm 周长除以直径的商

  (保留两位小数)

  (4)学生分组按要求操作,要求分工明确。

  (5)整理学生的测量结果,汇总。

  (6)观察表格,说说有什么发现。

  学生回答后,小结:一个圆的周长总是直径的.3倍多一些。

  4.认识圆周率。

  (1)介绍圆周率,并板书: 3.14

  (2)阅读教材第102页的你知道吗内容。

  5.推导得出圆的周长计算公式及其字母公式。

  板书: 或

  三、巩固练习,加深理解

  1.完成试一试。

  (l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。

  (2)指名说说计算方法。

  2.完成练一练。

  (l)学生独立完成计算。

  (2)汇报交流。

  3.完成练习十四第1题。

  (1)学生看图,说说题目中的已知条件。

  (2)学生独立完成计算。

  (3)交流计算方法。

  4.作业:练习十四第2、3、4题。

  四、课堂小结

  师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有

  哪些收获?

  板书设计:

  圆的周长

  周长/cm 直径/cm 周长除以直径的商

  (保留两位小数)

圆的周长教案12

  【教学目标】

  1、让学生知道什么是圆的周长。

  2、理解并掌握圆周率的意义和近似值。

  3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

  5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  6、培养学生的观察、比较、分析、综合及动手操作能力。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备图片。

  【教学过程】

  一、引课

  (课件出示特克斯八卦城图片)同学们,你们知道这是哪吗?

  对,这就是我们伊犁美丽的特克斯县的八卦城。它因八卦布局而闻名,是世界上最大、最完整的八卦城,同学们有机会一定要去看一看。

  今年夏天,老师有辛来到了这里,照片上的就是八卦城中心广场的太极坛,老师绕太极坛的第一外环走了一圈,要想知道老师走这一圈是多少米?你们知道是要求什么吗?

  对,圆的周长,那么究竟什么是圆的周长,怎样求圆的周长?这节课我们就来研究这个问题。(板书课题)

  二、认识周长

  1、请大家看,老师手里有一个圆,你知道圆的周长是指哪一部分吗?谁能给大家摸一摸(指名学生摸一摸)

  师:摸的时候我们要注意确定一个点,从哪里开始到哪里结束。

  2、那你们说说,什么是圆的周长?(生:圆一周的长度是圆的周长)看他多勇敢,谁还能说一说

  3、那你们想圆是由什么线围成的呢?(曲线)

  师:那我们可以说围成圆一周的曲线的长,就是圆的周长。

  4、那谁有测量圆周长的方法?(绕线发,滚动法)

  5、小组合作

  请同学们拿出准备好的学具,现在请大家自己选择方法来测量这些圆的周长,好吗?

  要求:

  1)不管你用什么样的办法,只要你能得到圆的周长就可以,请一律用厘米做单位。

  2)每个小组还有一个小表格,请同学们将测量好的结果填写在表格中的.第一栏里,只需要完成第一栏就可以,不用写单位。

  3)请同学们小组分工,合作完成(3分30秒)

  6、我想问问大家,你们是怎样得到圆的周长的?

  谁愿意到前面来给大家讲一讲,拿着你手里的圆

  生1、用卷尺测量(直接用带刻度的卷尺,绕圆一周进行测量)

  生2、用绳子测量(通过测量绳子的长度,来得到圆的周长)

  生3、直尺滚动(在圆上做一个标记,再在直尺上滚动一周,可以得到圆的周长)

  7、小结:那刚才我们同学不论是用尺子去量,还是把圆放在尺子上滚动,你最后得到的都是什么长度?(周长)这是一条什么呢?(直线)最后得到的都是一条直线。但是我们一开始我们研究了圆的周长实际上是一条什么的长?(曲线)说明我们可以把一条曲线化成一条直的线段来测量圆的周长(板书:化曲为直)在数学里,我们把这种思想称为化曲为直。

  8、那是不是所有的圆,都能用我们刚才的方法来测量周长,想一想。

  (生;非常大的和非常小的都不可以)

  9、老师手中有一个绳,绳的一端有一个小球,当我挥动这个绳的时候,你想这个小球的运动轨迹会是一个什么图形?(圆)

  其实,我们大家都做过这个实验是不是?看好了!(转动小球)

  10、那我想问大家,刚才在空中旋转的这个圆,能通过刚才我们的方法来测量它的周长吗?(不能)

  三、探究周长与直径的关系

  1、那看来我们刚才找到的这些方法都有一定的局限。看来,我们也需要像研究长方形、正方形的周长一样,来找到一种做为普遍的一种公式,能够直接计算圆的周长

  2、那现在请大家想一个问题,圆的周长到底和什么有关系?(半径、直径)

  有说半径,有说直径,能说说你的理由吗?(指名说一说)

  同学们都觉得和半径或直径有关系。

  3、课件:请同学们认真的看大屏

  这是一个圆,闪动的是圆的直径。仔细看(展开)这条线段是谁?(周长)

  对,是这个直径是1分米的圆的周长。

  再看(展开直径是0.8、0.6分米圆的周长)

  4、通过刚才这3幅图,你发现什么了?(直径越长,他的周长就越长)

  那看来确实直径可以决定圆的周长,是这样吗?

  5、那现在请同学们继续我们刚才的测量,刚才我们只得到了圆的周长,对吗?现在就需要你再测量出手中这个圆的直径,那么你想找周长和直径之间的什么关系呢?(倍数)

  6、为什么找倍数关系?(因为正方形的周长是边长的4倍)

  你们同意吗?那咱们现在就按照同学所说的来继续刚才的活动,好吗?当你用周长除以直径时,一定要把结果除不尽的保留两位小数。

  (这个小组非常好,有人测量,有人记录,有人计算,分工明确)

  填完之后,互相说一说你发现了什么。

  7、展示一个小组的数据

  1)其他组也计算出来了是吧,我们不再往黑板上写了。

  2)有没有算出来和黑板上不一样的?

  3)是我们算错了吗?正方形的周长是边长的四倍,可以得到一个整数的结果。(结果有误差)

  四、圆周率

  1、那你们讨论出周长和直径的关系了吗?(3倍多一些)

  2、那是不是所有的圆的周长都是圆的直径的3倍多呢?(看课件)

  这是我们刚才得到的3个直径不同的圆的周长,那我们看一看他们之间是不是也有刚才我们同学所说的这种关系

  3、怎么样?看来我们同学们得到的结论是正确的。确实,每个圆的周长都是它直径的3倍多一些。(板书)

  4、那这3倍多一些说明什么?(圆的周长和直径之间确实有倍数关系)

  5、我们说这3倍多一些就是固定不变的数,我们把它叫做圆周率,用字母 来表示

  6、老师这里有一个关于圆周率的资料,请大家仔细的看,认真的听。

  通过刚才的资料你有什么收获?( 取3.14、无限不循环小数)

  7、师:刘徽:也是研究出了圆周率的关系

  祖冲之:这是祖冲之,你们知道吗,1967年国际天文学家联合会把月球上的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之星”你们知道为什么吗?

  8、板书:圆周率用希腊字母 来表示,一般保留两位小数(3.14)

  那现在谁知道怎么计算圆的周长?能得出什么样的公式?

  字母公式:C=d

  知道半径怎么求周长?C=2r

  小结:这两个公式都可以计算出圆的周长,那现在咱们要做一些有关的练习,你们愿意做吗?

圆的周长教案13

  第一单元圆的周长和面积

  一.本单元的基础知识

  本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的.基础上进行教学的。

  二.本单元的教学内容

  P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

  三.本单元的教学目标

  1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

  2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。

  四.本单元重难点和关键

  1.教学重点:求圆的周长与面积。

  2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

  3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

  五.本单元的教学课时

  13课时

圆的周长教案14

  教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。

  教学目标:

  1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。

  2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。

  3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。

  教学设计思想:

  复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的.目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。

  教学过程:

  一、创设情境,揭示课题。

  二、回顾整理,讨论交流。

  1、怎样求圆的周长?求圆的面积有几种情况?

  2、圆的周长和面积公式是怎样推导出来的?

  3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)

  4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)

  5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?

  三、发现生活中的数学问题

  教师结合图片演示,让学生提出有关圆的周长和面积的问题。

  图片内容:农村的喷灌、碾子、拴在木桩上的小羊。

  四、走进美丽的图形世界

  教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。

  五、开心词典

  以开心词典的形式,让学生做六道选择题。

  六、走进生活,解决问题

  1、小猴子骑独轮车走钢丝。求车轮要转多少周。

  2、用绳子绕树干10周,求横截面的直径。

  3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?

  4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?

  七、思考生活中的数学问题

  1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?

  2、阅读关于400米标准跑道的小资料。

  课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答

圆的周长教案15

  一、教学目标

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、结合圆周率的学习,对学生进行爱国主义教育。

  二、教学准备

  一元硬币、圆形纸片等实物以及直尺,测量结果记录表、

  三、教学过程:

  <一>、创设情境,引起猜想:

  (一)激发兴趣

  小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1、回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2、认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币,互相指一指这些圆的周长。

  (三)讨论正方形周长与其边长的关系

  1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  2、怎样才能知道这个正方形的周长?说说你是怎么想的?

  3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  (四)讨论圆周长的测量方法

  1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  2、反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)初步明确运用各种方法进行测量时应该注意的问题。

  3、小结各种测量方法:(板书)

  化曲为直

  4、创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?

  5、明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

  (五)合理猜想,强化主体:

  1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的.4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答。

  2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

  向大家说一说你是怎么想的。

  3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍。)

  4、小结并继续设疑:

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗?

  <二>、实际动手,发现规律:

  (一)分组合作测算

  1、明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

  提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

  测量对象:圆的周长(厘米)、圆的直径(厘米)、周长与直径的关系。

  2、生利用学具动手操作,师巡视指导、收集信息。

  3、集体反馈数据(选取3~4组实验结果,黑板板书展示。)

  (二)发现规律,初步认识圆周率

  1、看了几组同学的测算结果,你有什么发现?

  2、虽然倍数不大一样,但周长大多是直径的几倍?

  板书:圆的周长总是直径的三倍多一些。

  (三)介绍祖冲之,认识圆周率

  1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

  3、这个倍数究竟是多少呢?我们来看一段资料。

  (祖冲之是我国南北朝时期,河北省涞源县人。祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在与之间,精确到小数点后第七位。不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4、理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  5、解答开始的问题

  现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗?

  (四)总结圆周长的计算公式

  1、如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长=直径×圆周率

  C=πd

  2、如果知道圆的半径,又该怎样计算圆的周长呢?

  板书:C=2πr

  追问:那也就是说,圆的周长总是半径的多少倍。

  <三>、巩固练习,形成能力

  1、判断并说明理由:π=

  2、选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米、那么,下列说法正确是……

  a、大圆的圆周率大于小圆的圆周率;

  b、大圆的圆周率小于小圆的圆周率;

  c、大圆的圆周率等于小圆的圆周率。

  3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  <四>、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆。

  绕8字跑,谁跑的路程近。

【圆的周长教案】相关文章:

圆的周长教案01-01

《圆的周长》教案02-06

关于圆的周长教案01-15

【精选】圆的周长教案三篇01-18

圆的周长教案15篇01-01

圆的周长教案(精选15篇)02-23

《圆的周长》教案15篇02-26

圆的周长教案精选15篇03-13

圆的周长教案(精选20篇)11-28

圆的周长教案(15篇)01-10