- 相关推荐
冀教版六年级上《比例》教案2篇
作为一名为他人授业解惑的教育工作者,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。教案要怎么写呢?下面是小编帮大家整理的冀教版六年级上《比例》教案,希望能够帮助到大家。
冀教版六年级上《比例》教案1
教学内容:
比例尺(课本48-49页例1,“做一做”,练习八第1、2、3题)
教学目标:
1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。
2、认识数值比例尺和线段比例尺,能将二者进行互化。
3、会求一幅图的比例尺。
教学重点:
比例尺的意义。
教学难点:
将线段比例尺改写成数值比例尺。
教具准备:
多媒体课件或小黑板
教学方法:
先学后教,当堂训练,目标教学法和小组合作学习融合
学习过程:
一、板书课题
同学们,今天我们来学习“比例尺”(板书课题)一起来看学习目标。
二、出示学习目标
本节课我们的目标是
1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。
2、认识数值比例尺和线段比例尺,能将二者进行互化。
3、会求一幅图的比例尺。
同学们,有信心完成本节课的学习目标吗?为了能更好的完成学习目标,请看学习指导。
三、自研共探
1、看一看(自学探究)
认真看课本第48和第49页的内容,看图,看文字,重点看各色方框里的内容并思考
(1)什么是比例尺?求比例尺的方法是什么?
(2)看课本48页右图下面的线段比例尺,想:怎样把它转化成数值比例尺?
(3)比例尺一般写成什么形式?
师:生认真看书自学,师巡视,督促人人认真看书。
2、议一议(合作交流)
主要交流自学探究中的问题,先对子之间互说,最后小组内交流,统一答案或记录下没有解决的问题,以备下一步的展示。
3、说一说(汇报展示)
以小组为单位进行自学成果的汇报。针对自学探究中的问题,可以口答、板演、或提出问题。组间可以补充或质疑,教师尽可能的引导或解疑。
4、小结归纳
图上距离和实际距离的比叫做比例尺。
图上距离︰实际距离=比例尺
比例尺实际距离
图上距离
求比例尺时,需要注意单位的统一,同时,比例尺是一个比,不能带单位名称。为了计算方便,通常把比例尺写成前项或后项是1的比。
师:通过刚才的展示,老师发现各个小组的自学效果的确很好。到底同学们运用知识解决实际问题的能力怎么样呢?下面请看检测题,比一比谁发言最积极,谁解决问题的能力最强!
四、巩固提升
要求
1、独立完成,对子讨论。
学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论。
2、组内交流,整合答案。
学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。
3、分工合作,板演展示。
学法指导:由组长分工:板演、检查、预展(讲解者)
4、汇报讲解,补充评价。
学法指导:各个小组按抽签顺序讲解展示,讲解时可以组内补充,也可其他组补充或质疑。展示后,其他组或教师给予评价。
操作指导:教师在预展时巡视各小组,指导并帮助小组快速分工,让每个学生尽快参与其中,没有得到展示机会的小组安排课后自改或小组对改。
五、全课总结
同学们,今天我们学习了比例尺,求比例尺的方法是什么呢?
首先根据比例尺的'意义确定比的前项和后项,写出比,图上距离和实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。
下面我们就用今天所学的知识来做作业,比谁的课堂作业做得又对又快,字体又工整。
六、当堂训练
1、必做题:课本练习八的1、2、3题
2、选做题:一张精密仪器图纸,用8厘米的线段表示实际的8毫米长,则这幅图的比例尺是多少?
3、拓展题:在一幅比例尺是1︰2000000的地图上,量得甲乙两地相距8厘米。如果在比例尺是1︰8000000的地图上,这两地相距多少厘米?
板书设计:
比例尺
图上距离和实际距离的比叫做比例尺。
图上距离︰实际距离=比例尺
比例尺实际距离
图上距离
冀教版六年级上《比例》教案2
教学目标:
培养学生的观察能力、判断能力。
学法引导:
引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、回顾旧知,复习铺垫
同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。大家有没有信心?
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来
2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。
2:3 4.5:2.7 10:6
80:44:6 10:1/2
提问:你是怎样分类的?
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:612:16=3/5:4/580:4=10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)教学例题。
先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。
师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么?(两个比的比值相等)
教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式
2.4∶1.6=60∶40像这样由两个相等的比组成的式子我们把它叫做比例。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?
比例也可以写成分数形式:4.5/2.7=10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。
(2)引导概括比例的意义。
同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)
(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的`比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。
(4)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(5)反馈训练
用手势判断下面卡片上的两个比能不能组成比例。
6:3和12:6 35:7和45:9
20:5和16:8 0.8:0.4和4:2
2、教学比例的基本性质。
(1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。
(2)检查自学情况:指名说出黑板上各比例的内外项。
(3)探究比例的基本性质。
师:在比例的内外项之间,存在着一个有趣的特性(比例的基本性质),大家想不想研究?(板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书
两个外项的积是4.5×6=27
两个内项的积是2.7×10=27
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:4.5×6=2.7×10
(4)计算验证,达成共识。
师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。
(5)引导小结比例的基本性质。
师:通过计算,大家,谁能用一句话把这个规律概括出来?
教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6)“这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。
三、巩固深化,拓展思维。
(一)判断
1.两个比可以组成一个比例。()
2.比和比例都是表示两个数的倍数关系。()
3.8:2和1:4能组成比例。()
(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。
(1)6:9和9:12(2)14:2和7:1
(3)0.5:0.2和5:2(4)0.8:0.4和0.3:0.6
(三)填空
(1)一个比例的两个外项互为倒数,则两个内项的积是(),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。
(2)如果2:3=8:12,那么,()x()=()x()。
(3)写出比值是4的两个比是()、(),组成比例是()。
(4)如果5a=3b,那么,a:b=():()
(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。
2、3、4和6
拓展题:猜猜括号里可以填几?
5:2=10:()2:7=():0.71.2:2.5=():25
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、布置作业。
练习六2、3、5