五年级数学下册教案

时间:2023-04-01 14:58:17 教案 投诉 投稿

五年级数学下册教案(汇编15篇)

  作为一名教学工作者,常常要写一份优秀的教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么应当如何写教案呢?下面是小编帮大家整理的五年级数学下册教案,希望能够帮助到大家。

五年级数学下册教案(汇编15篇)

五年级数学下册教案1

  教学目标

  1.理解质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数。

  2.引导学生通过动手操作、观察比较、猜想验证、归纳总结出质数、合数的含义。

  3.培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认知发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  教学重难点

  1.掌握质数与合数的概念。

  2.熟练记忆100以内的质数。

  教学过程:

  一、复习导入

  1.什么叫奇数?什么叫做偶数?

  是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。最小的奇数是1,最小的偶数是0。

  2.请说一说20和5的因数各有哪些?

  有的.数的因数个数多,有的数因数个数少。一个数最小的因数是1,最大的因数是它本身。

  【设计意图】

  通过练习找一个数的因数,让学生明白一个数的因数的个数是有多有少的,初步让学生知道按因数的个数分类怎么分。

  二、探究新知

  1.找出1~10各数的因数。

  1的因数有:1。

  2的因数有:1,2。

  3的因数有:1,3。

  4的因数有:1,2,4。

  5的因数有:1,5。

  6的因数有:1,2,3,6。

  7的因数有:1,7。

  8的因数有:1,2,4,8。

  9的因数有:1,3,9。

  10的因数有:1,2,5,10。

  2.按因数的个数分,你可以分成几类?

  只有一个因数:1

  只有两个因数:2、3、5、7

  有两个以上个因数:4、6、8、9、10

  3.明确概念:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。如2,3,5,7都是质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。4,6,15,49都是合数。

  注意:

  1不是质数,也不是合数。

  4.100以内的质数表。

  5.100以内质数顺口溜。

  2和3,5和7,11、13又17,

  19、23、29、31,37和41,

  43、47、53、59、61,67和71,

  73、79、83、89、97.

  【设计意图】

  通过质数表和顺口溜让学生熟练记住100以内的质数。

  6.想一想:最小的质数和最小的合数分别是多少?

  三、课堂练习

  1.判断下面说法是否正确?

  (1)所有的偶数都是合数。

  (2)所有的奇数都是质数。

  (3)3的所有倍数都是合数。

  (4)一个合数,最少有3个因数。

  (5)1既不是质数,也不是合数。

  2.将下面各数分别填入指定的圈里。

  2737415861738395

  11143347576287999

  3.思维训练。

  两个质数,和是9,积是多少?

  四、课堂总结

  通过本节课学习你有哪些收获?

  教后思考:

五年级数学下册教案2

  课题:简单的土石方计算

  教学目标:

  1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

  2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

  3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

  教学重点:

  熟练运用长方体和正方体的体积计算公式解决实际问题。

  教学难点:

  长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

  教学过程:

  一、巧设情境,激趣引思。

  同学们,前面几节课我们学习了体积的`有关内容,请大家思考以下问题。

  (1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

  (2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

  (3)学生分组讨论,指名回答问题。

  这节课我们运用体积的有关知识,解决实际生活中的问题

  二、自主互动,探究新知。

  课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的结果。

  教师介绍“方”,让学生用方描述挖出的土。

  课件出示例题及拦河坝的和示意图。

  让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

  怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。

  让学生尝试解决问题,并交流计算的方法和结果。

  三、应用拓展,反思交流。

  1、应用:

  (1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

  (2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

  第3、4题,让学生先说一说,要解决问题,先要求出什么?

  2、拓展:

  练一练5 板书设计:

  简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

  横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级数学下册教案3

  【教学内容】

  教科书第1~2页的例1以及相关的练习。

  【教学目标】

  1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

  2?培养学生的分析能力和归纳概括能力。

  3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

  【教具准备】

  多媒体课件和视频展示台。

  【教学过程】

  一、复习引入

  师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

  等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

  二、教学新课

  1?教学例1,理解单位“1”

  师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

  师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

  等学生分好后,抽一个学生分的小圆在视频展示台上展示。

  师:这时,小华的爸爸又提出了问题。

  课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

  引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

  师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

  多媒体课件演示下面的月饼图:

  引导学生理解两个1/4代表的数量不一样。

  师:为什么会出现这种现象呢?

  引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

  师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

  让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

  师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

  师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

  请分一分,并填空。

  课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

  引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

  师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

  板书单位“1”的'含义。

  师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

  2?理解并归纳分数的意义

  师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

  学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

  师:想想自己操作的过程,你能说一说什么是分数吗?

  学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

  师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

  归纳并板书分数的意义,板书课题。

  试一试:涂色部分占整个图形的几分之几?

  师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

  生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

  师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

  3?说生活中的分数

  师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

  学生说生活中的分数。

  三、课堂小结

  (略)

  四、课堂作业

  1?第4页课堂活动第2题。

  2?练习一第1,2,3,4题。

  分数的意义

  师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

  课件出示如下的题目:

  (1)把一个月饼平均分成4份,其中的1份是这个月饼的();

  (2)把一张手工纸

五年级数学下册教案4

  教学内容:教科书第62页,例1、练一练,练习十一第4~7题。

  教学目标:

  1、使学生进一步理解分数的基本性质,会运用分数的基本性质进行约分,掌握约分的含义和一般方法,认识最简分数。

  2、使学生在探索合作交流过程中,体验成功的愉悦,在知识的运用中体现数字价值。

  教学过程:

  一、复习引入

  1、在下面的括号里填商适当的数。

  8/20=()/515/18=5/()21/27=()/9

  独立完成,说说是怎么想的?每组中的分数一样大,哪个看起来更简单一些?为什么?

  2、今天在学习了分数的基本性质的基础上,学习新的知识,看看应用分数的基本性质可以帮助我们干什么?

  二、教学新课

  1、教学例3。

  (1)出示例3。

  (2)你能写出和12/18相等,两分子、分母都比较小的分数吗?在小组中交流自己的想法。汇报交流。说说怎么得到这个分数的?还有分子比2还小,分母比3还小但是与12/18一样大的分数吗?也就是12/18=2/3。

  (3)结合图说说,12/18与2/3为什么相等?

  (4)你们知道刚才分子、分母同时除以的2、3、6与分子、分母有什么关系吗?(板书:分子、分母的公因数)

  (5)把这个分数化成同它相等,而分子、分母都比较小的分数,叫做约分。板书课题:约分。

  (6)演示一步一步约分的过程。依次除以分子、分母的公因数。强调:每次约分后得到的数写在分子、分母的正上方、正下方。2/3的分子、分母还有除了1以外的公因数吗?因为2/3的分子和分母只有公因数1,这样的分数叫最简分数。约分时一般要约分到最简分数为止。

  (7)还有什么方法可以更快的约分呢?(直接除以分子、分母的最大公因数)演示直接约分的过程。如果你不能直接找到最大公因数,可以一步一步约分。

  (8)。在小组中互相说说约分的.方法。你愿意采用什么方法来约分呢?

  2、完成练一练。

  (1)第1题。独立完成,汇报交流。6/4为什么不是最简分数?分子、分母还有公因数几?10/7为什么是最简分数?你是怎么想的?

  (2)第2题。独立完成,展示作业。60/45怎样约分的?还有什么方法?(分子、分母直接除以15)为什么分子、分母可以直接除以15?说说约分时有什么要注意的?

  三、巩固练习

  1、完成练习十一第4题。读题,理解题意。怎样判断分子和分母有没有公因数2、3、5?汇报交流。

  2、完成第5题。独立完成。你是怎么看出它们不是最简分数的?指出:有的分数的分子、分母的最大公因数较大,判断时要仔细。

  3、完成第6题。怎样连线比较快?独立完成,集体核对。

  4、完成第7题。独立完成,汇报交流。

  四、课堂

  今天学习了什么?你有哪些收获?互相说说什么是约分?什么是最简分数?约分的方法是什么?你愿意使用那种约分的方法?

五年级数学下册教案5

  设计说明

  分数除法问题的解决是本单元教学中的一个难点。为了突破这个难点,鼓励学生用方程解决分数除法问题,本节课的教学设计重视发挥学生的主体作用,让学生自己发现问题,亲自感受题中数量之间的关系,并在讨论、交流的学习活动中发现规律,从而让学生体会并归纳出用方程解决分数除法应用题的关键,即从题目的关键句中找出数量之间的相等关系,进而帮助学生学会用方程的方法解决有关分数除法的问题。

  苏霍姆林斯基曾说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者,而在儿童的精神世界中,这种需要特别强烈。”因此,本节课的教学设计给学生提供了充分的探究空间,先让学生独立思考,探究解题方法,再在学生独立探究的基础上,让学生小组合作讨论、交流,探究不同的解题方法,使学生对分数除法问题的数量关系及解法有清晰的.理解,为进入更深层次的学习做好充分的准备。

  课前准备

  教师准备 PPT课件

  教学过程

  第1课时 分数除法(三)(1)

  ⊙创设情境,激趣导入

  1.谈话激趣。

  师:我们学校的春季运动会快要开始了,同学们喜欢开运动会吗?为什么喜欢开运动会呢?(学生思考后汇报)

  师:大家都喜欢哪些项目?(学生举手,教师进行统计)

  2.体会等量关系。

  师:咱们班喜欢跑步的人真多呀,大约是全班人数的。你们能说一说这个信息中存在着什么样的等量关系吗?(学生思考后汇报:全班人数×=喜欢跑步的人数)

  3.导入。

  师:不仅我们学校这个时候开运动会,淘气所在的学校也准备开运动会,而且他们学校的学生都在积极地参加训练,争取在运动会上夺得冠军,为班级争光。

  ⊙合作交流,探究新知

  问题。

  师:(出示课件)这是他们训练时的情境,请同学们仔细观察,从这幅图中你能发现哪些数学信息?

  (学生观察后汇报:有6名同学在跳绳,是操场上参加活动总人数的)

  师:同学们观察得真仔细,那么你们能根据这些数学信息提出问题吗?(学生自由提问题)

  设计意图:兴趣是学习的内动力,为了激发学生学习的兴趣,充分利用情境图,鼓励学生根据信息大胆地提出数学问题,不仅能使学生的思维活跃,热情高涨,还能使学生主动地投入到学习活动中来。

  师:同学们提的问题都非常好,老师这里也有一个问题,你们愿意解答吗?(愿意)

  出示问题:操场上参加活动的总人数是多少?说一说,你是怎么想的?

  (学生先独立思考,然后与同桌说一说自己的想法)

  2.解决问题。

  (1)画图解决问题。

  师:你们能说一说题中所表示的意义吗?试一试,能不能通过画图来解决这个问题呢?

  (学生先交流题中所表示的意义,然后尝试通过画图解决问题并汇报)

  预设

  生:通过画图,我知道是6人,是3人,这样推算下来,操场上参加活动的总人数是27人。(如果学生采用其他画图方法来解决,教师也要给予肯定)

  (2)用方程法解决问题。

  ①分析题中的等量关系。

  师:你知道题中的关键句是哪句话吗?这句话蕴涵了什么样的等量关系?(学生交流,得出:参加活动总人数×=跳绳人数)

  ②自由解决问题。

  师:根据这样的等量关系,你能列方程解决问题吗?快来试一试吧!(学生思考,独立解决问题,教师巡视指导)

  ③汇报。

  师:同学们,谁能说说你是怎样解决这个问题的?

  预设

  生:我是根据“参加活动总人数×=跳绳人数”列方程解决问题的。

  解:设操场上有x人参加活动。

五年级数学下册教案6

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

  2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

  3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

  4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

  教学重点:

  初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

  教学难点:

  通过探索,自主推算出相邻体积单位间的进率。

  教学准备:

  多媒体课件、体积单位模型、彩泥、魔方等。

  教学过程:

  一、创设情境,引发思考

  师:上一节课,我们认识了体积,什么是物体的体积?

  问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

  师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

  二、合作学习,探究新知

  (一)探寻学生已有知识:

  问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

  (预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

  【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

  (二)建立1cm3、1dm3、1m3的空间观念

  1、建立1立方厘米的空间观念:

  (1)初步感知1cm3有多大:

  问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

  【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

  <<<123>>>

  (2)触类旁通,定义1 cm3的大小:

  师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

  【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

  (3)进一步感知1cm3的'大小:

  做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

  (4)想一想,填一填:

  师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

  2、建立1立方分米、1立方米的空间观念:

  (1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

  【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

  (2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

  【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

  (3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

  【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

  3、练习(用合适的体积单位表示下面物体):

  一块橡皮的体积约是8( )。

  一台录音机的体积约是10( )。

  运货集装箱的体积约是40( )。

  一本新华字典的体积约是0.4( )。

  一个西瓜的体积约是5( )。

  一间教室的体积约是180( )。

  (三)继续类比,探究相邻体积单位间的进率:

  1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

  2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

  【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

  3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

  【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

  4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

  5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

  【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

  三、动手操作,质疑反思:(机动,也可作为课后拓展)

  学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

  1、用4个小正方体可以摆成一个大正方体吗?

  2、最少要用多少个小正方体才可以摆成一个大正方体?

  3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

  【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

  四、总结全课,感悟学习方法:

  师:通过今天的学习,你有哪些新的收获?(生生互动)

  小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级数学下册教案7

  【教学内容】

  教科书第58页综合应用:设计长方体的包装方案。

  【教学目标】

  1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

  2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

  3、培养学生的创新意识、策略意识、实践能力和空间观念。

  【教学重点】

  让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

  【教具学具】

  为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

  【教学过程】

  一、课前引入

  师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

  生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

  师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

  二、设想与摆放

  1、设想与摆放

  设想:

  (1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

  (2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

  (3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

  2、记录与计算

  (1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

  生:摆成的大长方体的'表面积越大,所用的包装纸越多,反之就少。

  (2)究竟哪种摆法会更节约包装纸呢?

  师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

  (3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

  为什么这种方案的用纸量会最少?在全班进行交流。

  三、交流与比较

  比一比谁的方案用纸少,并分析出用纸量不同的原因。

  重点思考并讨论:

  为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

  四、发现与思考

  通过本次包装设计,你有什么发现?

  1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

  2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

  五、知识拓展

  师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

  师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

  六、课堂小结

  这节课我们学习了什么?你有什么收获?说一说。

五年级数学下册教案8

  教学目标:

  1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3.学生初步感知了什么变了而什么却没有变的概念。

  4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一):1.师:在我们在学习这个新的.内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

  3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)、教学新知。

  1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

  2.学生操作,教师巡视并特别提醒学生注意“平均分”。

  3.展示学生的作业。

  4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

  6.引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7.课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

  8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级数学下册教案9

  教学目标

  1、知识与技能

  让学生在条形统计图的基础上认识折线统计图,进一步体会统计在现实生活中的作用,体会数学与生活实际的密切关系。

  2、过程与方法

  使学生认识折线统计图的特点,会看折线统计图,并能根据数据进行合理分析,培养学生的合作意识和实践能力。

  3、情感态度与价值观

  能从统计图中发现数学问题、解决问题,并能体会统计知识在生活中的意义和作用。

  教学过程

  (一)情境引入

  师:同学们都喜欢机器人吗?同学们可以自己制作,锻炼动手能力。我们了解到xx~xx中国青少年机器人参赛队伍的参赛队伍支数情况,于是做了一份统计图。出示条形统计图。你能从中获得什么信息?回忆条形统计图的特点。

  (二)探究新知

  1、为了更明显的看出各年参观科技馆的人数增减情况,我们来学习一种新的统计图。

  出示折线统计图(板书标题:折线统计图)

  说一说它的横轴、纵轴分别表示什么?

  统计图上的各点又表示什么意思?

  2、分析折线统计图

  小组讨论:

  (1)中国青少年机器人参赛队伍的数量有什么变化?你有什么感想?

  (2)折线统计图有什么特点?

  小组交流汇报讨论结果。

  师带领学生从点和线两方面分析总结折线统计图的特点。

  师问:在折线统计图中我们是用什么来表示数据?(板书:点表示数量的多少)

  我们明明用点来表示数量的多少,而它却叫做折线统计图你,说明这些线段中肯定藏着一些奥秘。

  师问:观察一下折线统计图里面的各条线段,它们有什么作用?

  (板书:线表示数量的增减变化)

  3、中国已经进入老龄化社会,尤其是上海,早在20世纪70年代末就进入了老龄化。出生人口数和死亡人口数是重要的影响因素。下面是一个小组调查的xx—xx年上海出生人口和。小组讨论:如果要看出生人口数和死亡人口数变化情况,该怎么办?

  分别出示上海出生人口数和死亡人口数统计图。

  4、提问:请比较出生人口数和死亡人口数变化情况。怎样才能更方便地比较呢?

  (1)出示复式折线统计图,指出复式折线统计图的标题和图例在制图中一定要有。

  (2)复式折线统计图与单式折线统计图与什么不同?

  复式折现统计图可以更方便的分析两个数量增减变化情况。

  5、根据复式折线统计图回答问题

  (1)观察复式折线统计图,你说说上海出生人口数、死亡人口数的变化趋势吗?

  (2)每年的出生人口数和死亡人口数之间存在什么关系?

  (3)结合全国xx—xx年出生人口数和死亡人口数统计表,你能发现什么共同的规律吗?(如下表)

  年份

  xx

  xx

  xx

  xx

  xx

  xx

  xx

  xx

  xx

  xx

  出生人口数/万人

  1708

  1652

  1604

  1598

  1621

  1589

  1599

  1612

  1619

  1596

  死亡人口数/万人

  821

  823

  827

  835

  851

  895

  916

  938

  942

  953

  三、知识巩固

  1、甲乙两地月平均气温见如下统计图。

  (1)根据统计图,你能判断一年气温变化的趋势吗?

  1、2月份气温最低,从3月份气温上升,5~8月份气温最高,从8月份开始,气温下降。

  (2)有一种树莓的生长期为5个月,最适宜的生长温度为7~10之间,这种植物适合在哪个地方种植?

  这种植物在甲地种植比较合适。

  2、陈明每年生日时都测量体重。下图是他8~14岁之间测量的体重与全国同龄男生标准体重对比的统计图。

  (1)陈明的`体重在哪一年比上一年增长的幅度最大?

  14岁比13岁增长的幅度最大。

  (2)说一说陈明的体重与标准体重比变化的情况。

  四、课堂小结

  重点:了解折线统计图的特点,会看折线统计图,能根据折线统计图对数据进行简单的分析。

  难点:弄清条形统计图与折线统计图的区别。

五年级数学下册教案10

  教学目标:

  1.在观察、讨论、判断等活动中,经历初步认识扇形的过程。

  2.知道扇形,初步了解扇形的特征,能在圆中画出扇形。

  3.体会扇形和圆的关系,感受扇形图与名称的联系。,

  教学重点:

  认识扇形以及圆心角和弧。

  教学难点:

  认识扇形以及圆心角和弧。

  教学准备:

  教师准备两把折扇(其中一把圆形扇)、画有教材中四幅图的小黑板;学生准备水彩笔、量角器、直尺。

  教学过程:

  一、导入新课

  师:(用折扇作为导入新课的.道具)同学们对折扇并不陌生,能说说你们对它的认识吗?

  像折扇打开形状(教师打开折扇演示)的平面图形,在数学上,我们称之为扇形。(出示课题:认识扇形)对扇形你想了解哪些知识呢?

  学生自由讨论,指名交流汇报。

  教师:同学们说的这些知识,我们今天一起来解决。

  二、探究新知

  师:请同学们仔细观察下图,圆中的涂色部分与圆有什么关系?

  它们是圆的一部分,扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。形象地说,就是两条线段和一段弧(曲线)围成了扇形。

  1.认识圆心角。

  出示例3图。

  教师在右图的基础上标出1,指出:像1这样,顶点在圆心上的角叫作圆心角。

  提问:圆心角是由什么组成的?顶点在什么上?

  使学生认识到:圆心角是由两条半径和圆心组成的,所以圆心角的顶点在圆心上。

  教师可以在黑板上画出几个角,让学生判断哪些是圆心角。

  教师接着在黑板上画一个圆,在圆上分别画出圆心角是 、 、 、 的扇形,让学生比较这些扇形的大小。使学生明确:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形就越大。可以再次演示折扇,同一把扇子,张开程度不同,扇面的大小就不同。

  2.认识弧。

  教师拿出圆规和直尺,先画一个虚线圆,在圆上取A、B两点,再用实线A、B两点间的部分。(弧是圆上的一部分,这样处理易于理解)

  师:请同学们观察一下,这两点间的实线部分是在什么上画出来的?

五年级数学下册教案11

  教学内容:

  人教版《义务教育课程标准实验教科书数学》五年级下册第122~125页的内容。

  教学目标:

  1.使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

  2.能根据具体的问题,选择适当的统计量表示数据的不同特征。体验事物的多面性与学会全面分析问题的必要性,培养独立思考,勇于创新,小组协作的能力。

  3.培养学生的实践能力、创新意识和求真的科学态度,渗透一组数据的对称美,揭示数学中美的因素。

  教学重点:

  认识众数,理解众数的意义及作用。

  教学难点:

  能在具体情境中灵活选择适当的统计量表示一组数据的特点,并能根据统计量进行简单的.预测或做出决策。

  教学用具:

  课件。

  教学设计:

  一、 复习旧知

  1.情境引入。

  请学生观看一则新闻“李叔叔求职记”。

  2.让学生利用计算器算一算,想一想,经理是否欺骗了李叔叔?

  3.请学生想一想用什么数来反映工资水平比较合适呢?

  [设计意图:本环节通过李叔叔在找工作时遇到的实际问题,激发学生的兴趣,使学生在帮助李叔叔的过程中感受到在这里平均数和中位数不能真实反映员工的工资水平,初步感受众数产生的必要性。]

  二、学习新知

  1.提问:李叔叔最有可能挣到多少钱?

  2.揭示:这里的“600”就是这组数据的众数,并请学生猜猜是哪个“zhong”字。

  [设计意图:本环节提出这样的问题,旨在使学生通过工资表中出现次数最多的“600”理解“众”的含义,进而理解众数的意义。]

  3.小练习:找出下面两组数据的众数。

  4.请学生试着说说众数的意义,然后教师小结板书。

  三、解决问题

  (一)完成例1

  1.出示例题:

  五(2)班要选10名同学组队参加集体舞比赛。下面是15名候选队员的身高情况(单位:米)

  1.41 1.41 1.41 1.44 1.45 1.47 1.48 1.49

  1.51 1.51 1.51 1.51 1.52 1.54 1.54

  你认为参赛队员的身高是多少比较合适?

  2.学生小组合作选择6名队员。

  3.根据学生汇报,老师课件随机演示选择结果。

  4.小结:以众数1.51为标准选择队员身高会比较均匀。

  [设计意图:本环节通过小组活动给学生提供参与数学活动的机会,使他们在思考、探究、讨论、交流中充分发表自己的意见,利用多媒体的演示使学生从直观上进一步充分理解众数的实际意义,感受和体会数学中美的因素。]

  (二)分析数据,尝试统计决策

  1.根据提供的工资表,帮助李叔叔做决策。

  2.根据射击队员的成绩,帮助射击队选择合适的参赛队员。

  [设计意图:通过一组练习,使学生能灵活选择适当的统计量表示一组数据的特点,并能根据统计量进行简单的预测或做出决策。使学生充分感受到数学与生活的联系,并从解决问题中体会到成功的喜悦,从而更加热爱数学。]

  3.生活中的数学。

  四、全课小结

  学生畅谈收获。

五年级数学下册教案12

  一、教学目标

  通过这个综合应用,让学生进一步体会数学与生活的密 切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。

  二、编排思想

  1.探索最优方案(每个人都不空闲)。

  2.发现规律(第n分钟接到电话的人数是前n-1分钟接到电话的学生总数加1(老师),前n分钟接到电话的学生总数是2的n次方减1)。

  3.应用规律。

  三、教学建议

  1.小组合作学习,教师指导,全班汇报交流。

  2.提示学生利用画图表的直观形式解决问题。

  3.数学模型是一种理想化的理论,要事先设计好具体通知方案(包括每人的通知对象)和流程图。

  综合应用 粉刷墙壁

  一、教学目标

  巩固有关表面积等方面的知识,加强数学知识在实际生活中的应用,而且还可以培养学生收集 、整理 、分析信息的意识和能力。

  二、活动步骤

  1.明确设计方案需要做的工作。

  2.收集数据。

  3.整理数据、分析与比较信息。

  4.书面呈现粉刷围墙方案。

  三、教学建议

  1.因本实践活动会涉及实地的'测量与调查,教学活动可以采取室内教学和室外教学相结合的形式。

  2.室内教学时,教师可引导学生讨论并思考,应该如何整理分析收集到的相关数学信息。

  3.展示方案的过程中,教师可以引导学生比一比,看看哪组的方案更合理、更有实际效益,激发学生之间的互评,使学生在交流中理解并接纳别人较好的方法。

  4.活动结束之后,也可鼓励学生将自已设计的方案投给学校相关部门,为学校的建设提出一定的建议,使学生体会到数学的价值,体会到自己劳动的价值。

五年级数学下册教案13

  教学目标:

  1.知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。

  2.过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。

  3.情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的过程。

  教学重点:

  学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

  教学难点:

  学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

  教学准备:

  小黑板

  教学过程:

  一、复习

  1.口算

  15 x=5 34 x=6 3x=910

  5x=1011 12 x=89 23 x=67

  2.口答下列各题的数量关系式。

  ⑴某数的35 是36。

  ⑵全厂人数的58 是210人。

  ⑶完成了300个,刚好是计划的14 。

  ⑷一个数的3倍是1225 。

  3.解答:小营村全村有耕地75公顷,其中棉田占35 。 小营村的棉田有多少公顷?

  生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?

  二、探究新知

  师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49 ,一共用了多少个气球?

  师:指名读题,谁能找出这道题的`已知条件和所求问题。

  师:题中"总数的49 "这个条件你是怎样理解的?

  师:边画图边理解

  师:请同学们看图说说题里的已知条件和问题。

  师:观察图示,你发现数量间有怎样的相等关系。

  师:你是根据什么列出等量关系的?(同桌讨论)

  师:在这个等量关系中,哪个量是已知的?哪个量是未知的?

  师:未知的可以设为X,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)

  师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?

  师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占X的 49 ,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。

  师:回顾例题的学习过程,你认为解题关键是什么?

  师:同学们真聪明!自己不但能学懂知识,还能学以致用,解决实际问题。

  师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23 ,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)

  指名板演,其他自练。

  三、巩固练习

  试一试

  四、全课

  师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。

  五、作业

  教学后记:

  找准单位"1"的量,掌握题中的数量关系是解答分数问题的关键,教学例题时。我先让学生找单位,写出数量关系,让他们根据数量关系列方程,掌握还不错。

五年级数学下册教案14

  教学理念:

  数学来源于生活,又回归于生活 。课堂创设动手活动,积累学生的感性认知 。

  教学目标:

  1、使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。

  2、掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。

  3、感受升和毫升的实际意义,能应用所学知识解决生活中的简单问题。

  教学重点:

  理解容积意义;掌握容积和体积的联系与区别。

  教学难点:

  理解容积意义;感受升和毫升的实际意义

  教学准备:

  教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,8个1升量杯, 10ml钙铁锌口服液,5ml注射器8支

  学生:2瓶自己带瓶装水,贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。

  教学过程:

  一、导课

  师:老师想送朋友一个生日礼物?(出示长方体礼盒)大家想知道是什么礼物吗?

  生:想

  师:是一个生日蛋糕

  师:如果老师告诉你这个礼盒长3分米,宽3分米,高1分米,这个礼盒的体积是多少?

  生:9立方米

  师:猜猜,这个长方体礼盒所容纳蛋糕的体积是多少?

  生:9立方米,8立方米,7.5立方米等(学生很快否定9立方米)

  师:(打开纸盒,露出蛋糕)是你所预料到的吗?如果你过生日收到这样的生日礼物会有何感想?

  生:(试说)太小了

  师:我买了这么大个礼物还小?

  学生:盒子里面太小了

  师: 盒子里面太小了,说的真到位。盒子里所容纳的蛋糕的体积叫盒子的容积。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

  (设计意图):学生通过求长方体的体积,并估算出长方体里所能容纳面包的体积,当老师打开礼品后,学生会发现与自己所估算的差别太大,突出容积的表象认知)

  二、理解容积的意义

  1、举例,感知容积意义

  出示墨水瓶:指出墨水瓶所能容纳墨水的体积叫做墨水瓶的容积。

  出示茶叶筒:茶叶筒所能容纳茶叶的体积叫做茶叶筒的容积

  2、理解容积的意义

  利用你准备的学具来说说,什么是它们的容积

  【出示课件(第2张幻灯片)】:集装箱、油漆桶(指名说出他们的容积)

  3、归纳概括容积意义

  像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。(学生齐读,老师板书)

  (设计意图:学生在充分的感性实例中积累容积的本质内涵,丰富的积累为学生归纳总结容积意义打下扎实基础)

  4、容积和体积的区别与联系。

  ①区别两者数据给出的不同

  师:同学们,我们继续来看这个长方体礼盒。礼盒放在空间,自身有什么?

  生:体积

  师:打开礼盒,礼盒里面又有什么?

  生:容积

  师:已知礼盒的长、宽、高,能求出礼盒的容积吗?

  生:不能

  师:想求出礼盒的容积,必须要知道(老师边比划边问学生)什么?

  生:礼盒里面空间的长、宽、高

  师:如果老师告诉你礼盒里面的空间是一个棱长为1分米的正方体,你能求出蛋糕的体积吗?

  生:能,1立方分米

  师:蛋糕的体积就是礼盒的容积

  (设计意图:通过学生对直观长方体礼盒的体积与容积的计算,突破求容积需要已知容器里面的数据这一难点)

  ②区别两者本质的不同

  师:【出示课件(第3张幻灯片)】:一个较小的实心长方体;一个较大的空心长方体)问题:谁的体积大;谁有容积?

  学生:指名回答

  ③小组讨论,交流汇报两者异同点(课件出示第4、5张幻灯片)

  师:同学们,体积与容积一字之差,他们有什么区别与联系呢?(小组讨论,交流汇报)

  联系:求的都是物体的体积。

  区别:体积求的是物体占空间的大小。(外部)

  容积求的是物体所能容纳空间的大小。(内部)

  (设计意图:多角度的区分容积与体积的不同,从而使学生较为全面的理解容积的意义,突破容积意义这一教学难点)

  三、教学容积单位

  1、计量容积一般用体积单位。

  常用的体积单位有:立方厘米、立方分米、立方米(学生边说,老师边板书)

  2、认识升和毫升。

  ①观察学具,看看你所带的饮料瓶上所标示的净含量,你发现了什么?(小组交流汇报:发现它们的单位都是L 、 ml而且这些饮料瓶里装的是液体。)

  ②在计量液体的体积时,常用容积单位升(L)和毫升(ml)。当遇到液体体积很大时,例如:计量蓄水池、游泳池里的水的体积,就用立方米。(板书)

  3、感知1L

  ①介绍量杯,观察1L的刻度线,

  ②组长负责,将桌面上的瓶装水倒入1L的量杯中水,其他人仔细观察

  ③生活中,我们常用杯子喝水,组长负责将1L倒入纸杯大小,观察1升水大约几纸杯

  ④ 谈谈,对1L水你有什么感受?

  ⑤生活中那些物品用升做容积单位?(生:油桶、水桶、大瓶饮料瓶的容积)

  4、感知1ml

  (整队纪律,老师将在每组中找一名最快坐好的同学,负责下一个活动。给每组发一个5ml注射器)

  ① 桌面上有一杯有颜色的水,组长负责,用针管吸入1ml水,让大家看看

  ② 再将这1ml水注入一个空纸杯,再让大家看看

  ③ 谈谈,你对1ml水有什么感受?

  ④ 你准备的学具中那些标有毫升,是多少毫升?(举例:眼药水5ml、钙口服液10ml等)

  (设计意图:学生通过吸入1ml带蓝色的水,在注入纸杯的过程中感受1ml的多少,突破学生对1ml由感性认知到理性认知的'突破)

  5、1L与1ml的关系

  师:通过前面几个活动,大家了解了1L 、1ml。那么1L 与1ml有怎样的关系呢?仔细观察桌面上的量杯,你就能找到答案

  生:齐答1L =1000ml(板书)

  6、升与立方分米、毫升与立方厘米的关系

  师:计量容积,一般用体积单位,但计量液体的体积时,常用的体积单位是升与毫升。这两者之间有没有关系呢?老师想请一位同学和老师一起做个实验。

  (拿出准备1立方分米的透明正方体,1升有颜色水)

  师:老师会做好你的助手,拿稳盒子,你放心大胆的到,开始!(此个环节老师要装作很神秘,学生在整个过程中很兴奋)

  生:(全场一片惊讶)得出:1升=1立方分米

  师:看来他们之间真有联系,谁能用黑板上的关系推算出1毫升等于多少?

  生:观察得出: 1毫升=1立方厘米

  (设计意图:学生通过这个活动,突破1升=1立方分米的教学难点)

  四、小结

  通过前面有趣的动手操作,闭上眼睛体会:升一般用于计量油桶、水桶、大瓶饮料瓶等的容积;毫升一般用于计量眼药水、药水、小瓶饮料瓶等的容积;而计量、集装箱容积;蓄水池、游泳池里的水的体积,就用立方米。

  五、练习巩固【课件出示(第6、7、8张幻灯片)练习题】

  1、填一填

  一瓶钢笔水的容积是60( ) 摩托车油箱的容积是8( )一瓶矿泉水的容积是600( )

  运货集装箱的容积约是40( )微波炉的容积是45( )

  (集体订正、纠错。)

  2、填出合适的数

  4L =( )ml4800 ml =( )L2.4 L =( )ml785 ml=( )L752cm3=( )dm37.5 L=( )ml36 dm3=( )cm38.04 dm3=( )cm32750ml =( )L

  (引导学生说出每道题是怎么换算的思路)

  3、联系实际【课件出示(第6、7、8张幻灯片)】

  出示生活中用到本节知识的图片(喝水、潜水艇、献血等图片)

  (设计意图:练习有层次,有代表性。由知识题型过度到生活实际,使学生理解数学来源于生活又应用于生活)

  六、结课

  今天我们所学的知识与生活联系非常紧密,大家下去后在生活中找找与我们这节课有关的内容,下节课我们将进一步学习容积的知识。

  板书设计:

  容 积 和 容 积 单 位

  像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。

  一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)

  计量液体:升(L)、毫升(ml)、立方米(m3)

  它们间的关系:1L= 1dm3

  1 ml=1 cm3

  1L=1000 ml

五年级数学下册教案15

  教学内容:

  教材58~59“分数混合运算(二)”

  教学目标:

  1.在观察比较中,体会整数运算变律在分数运算中同样适用。

  2.利用分数加、减、乘、除法解决日常生活中的实际问题,发展应用意识。

  教学重难点:

  1.能体会整数运算律在分数运算中同样适用。

  2.能解决日常生活中的实际问题。

  教学过程:

  一、创设情景 激趣揭题

  1.计算。

  2.引入新课分数混合运

  二、扶放结合探究新知

  1.出示“第十届动物车展”情景图,从情悦图中,找出有关信息及问题,并估一估第二天的成交量是多少?

  2.理解题意,用图来表示题目中数量之间的关系。

  3.解决问题

  ①统计图,让学生理解“第二天成交量此第一天增加了1/5” 这句话的意思是第二天增加的是第一天的1/5。

  ②用线段图来表示第二天和第一天成交的汽车辆数之间的'关系。

  4.把握算法之间的联系。

  三、反馈矫正落实双基

  1.做教材第59页“试一试”第一题。总结:整数运算律在分数运算中同样适用。

  2.做教材第59页“试一试”第二题。引导学生分析问题的条件及解决问题的方法。

  四、小结评价布置预习

  1.这节课你学会了什么?有什么收获?在学习中遇到了什么没有得到解决的问题?

  2.预习分数混合运算(三)

  板书设计:

  分数混合运算(二)

  整数的运算律在分数运算中同样适用。

【五年级数学下册教案】相关文章:

五年级数学下册教案07-07

人教版五年级数学下册教案11-26

五年级下册数学教案11-09

青岛版五年级数学下册教案07-28

五年级下册数学教案优秀02-23

五年级数学下册教案15篇02-27

五年级数学下册教案(15篇)03-02

新人教版五年级数学下册教案03-03

五年级数学下册《整数除以分数》教案02-10

五年级下册数学教案教学反思10-19

Copyright©2013-2024duanmeiwen.com版权所有