圆的周长教案模板集锦十篇
作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么你有了解过教案吗?以下是小编为大家整理的圆的周长教案10篇,希望能够帮助到大家。
圆的周长教案 篇1
教学目标
1.使学生认识圆的周长,初步理解圆周率的意义。
2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点和难点
推导圆周长的计算公式。理解圆周率的意义。
教学过程设计
(一)复习准备
上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?
(二)学习新课
我们这节课就来研究圆的周长。(板书:圆的周长)
我想问问同学,你们都带了哪些圆形实物?
两人互相指指圆的周长在哪儿?
谁愿意到前面来指一指老师手里这个圆的周长。
谁跟他指得不一佯?为什么这样指不行?
老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?
老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?
哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。
请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。
(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)
请小组代表汇报本组的实验过程和实验结果。
同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)
(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。
看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。
想一想,以前我们学过哪些几何图形的周长?
长方形的周长和谁有关系?有什么关系?
正方形的周长和谁有关系?有什么关系?
圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。
(用电脑演示三个滚动的.圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)
我们得出了圆的周长和直径有关系。
(板书:圆的周长 直径)
这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?
(学生分小组讨论。)
通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)
是不是这样呢?我们来验证一下。
(电脑演示:圆的周长是直径的3倍多一些。)
这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)
谁能说说圆周率是怎么得来的?
请同学们看书上是怎么说的?
早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。
(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)
约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。
我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)
圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)
既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)
现在我们能不能计算黑板上这个圆的周长?
什么条件不知道?(直径。)
谁来测直径,用分米作单位。(板书:分米)
如果直径是2分米,半径就是几分米?
用半径能不能求圆周长?
现在我们试着用直径或半径来求黑板上圆的周长。
谁用直径求出圆的周长?
(板书:3.142=6.28(分米))
为什么这样列式?
(板书:圆的周长=直径圆周率)
如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?
(板书:C=d)
谁能用半径求圆的周长?为什么这样做?
如果用字母r表示半径,字母公式怎么表示?
(板书:C=2r)
(三)巩固反馈
1.求出下面各圆的周长。(单位:厘米)
2.判断,你认为正确画,错误画。
(1)一个圆的周长总是它的直径的倍。( )
(2)圆的周长是6.28厘米,它的半径是2厘米。 ( )
(3)圆周长的一半与半个圆的周长相等。( )
3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的[ ]
①半径
②直径
③周长
(2)圆形水池的直径是4米,绕池一周长 [ ]
①25.12米
②12.56米
③12.56平方米
(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]
①A圆大
②B圆大
③一样大
4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?
(四)总结全课
这节课你学会了什么?(引导学生总结本课所学的知识。)
课堂教学设计说明
本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。
圆的周长教案 篇2
教学内容:
教学目标:
1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。
2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。
3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。
教学重点:理解圆周率,能计算圆的周长。
教学难点:探索并理解圆的周长与直径的商为定值。
教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。
教学策略:自主探索、讨论交流、点拨与练习
教学程序:
一、激活目标
出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的'周长?
二、活动建构
1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)
2、介绍圆周率的由来。
任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
组织学生阅读资料,谈感受。
3、推导出:c=πd或c=2πr
4、计算花坛的周长,解决相关问题。
圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?
三、解释应用
一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?
四、反馈测评
1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?
15厘米
A
B
2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?
3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?
五、课堂小结
我的最大收获是什么?我有什么遗憾?我有什么疑问?
希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。
圆的周长教案 篇3
教学目标:
用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。
教学过程:
一、探究解决问题的方法。
⑴出示情境图。
⑵介绍解决方法。
1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。
2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。
⑶沟通两种方法间的联系。
师生一起解方程:x=251.2÷3.14,x=80。
观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。
⑷联想。
想:算出圆的直径有什么价值。
可以算出半径,80÷2=40米;还可以算圆的'面积;根据圆的直径找出圆心;画出圆。
二、多种练习,内化知识。
⑴独立完成试一试和练一练。
⑵解答练习十八第6题。
独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。
⑶解答练习十八第8题。
学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。
三、作业,练习十八第7题。
圆的周长教案 篇4
教材分析:
圆的周长是在学生学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步来学习的。从生活实际入手,利用学生掌握的有关圆的知识,通过实验得出结论。
学情分析:
本单元第一部分通过对圆的研究,使学生初步认识了研究曲线图形的基本方法,也渗透了曲线图形与直线图形的内在联系。前期的学习和认识都为学生学习研究“圆的周长”奠定了良好的知识、方法基础和铺垫。“圆的周长”教学部分,教材在编排上加强了启发性和探索性,注重让学生动手操作,使学生在实践活动中通过交流、思考来探究,逐步导出和掌握计算公式。教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径、半径的关系,验证猜测等过程理解并掌握圆的周长计算方法。
教学目标:
知识与技能:知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。
过程与方法:通过对圆周长的测量和计算公式的探讨,培养学生的观察、猜测、比较、分析、综合和主动研究、探索解决问题方法的能力。
情感态度与价值观:初步学会透过现象看本质的辩证思想方法,渗透“化曲为直”的数学思想,培养爱国主义情感,激发民族自豪感。
教学过程:
(一) 创设情景,导入课题。
1、创设情境。
(1)、教师出示熊大和光头强跑步比赛,请同学判断比赛的公平性并说明原因。
师:学习新知识之前,老师想邀请大家一起来看一场比赛,每个同学都是裁判,有没有兴趣?比赛开始!
(2)、师:看到这儿,你对这个比赛有什么看法?
学生判断比赛的公平性并说明原因。
学生发表看法,可能的回答如下
生1:不公平,因为光头强沿着正方形跑,熊大沿着圆形跑。
生2:不公平,因为正方形的周长比圆形的周长要长。
……
(3)、教师小结,引出本节课题。
师:看来,这个比赛与跑道的周长有关系。上节课同学们已经认识了圆,这节课我们就一起来研究圆的周长。(板书课题)
设计意图:通过熊大和光头强比赛的情景创设,一方面是激发学生的学习兴趣和参与研究的主动性,体会数学与生活的密切联系;另一方面通过两种图形路程的不同,引出新课。
2、认识圆的周长 。
(1)、师:什么是圆的周长?怎样求圆的周长?
(2)、教师出示圆形纸片。师:谁能上来指一指,哪个长度是这个圆形纸片的周长。
(3)、教师在大屏幕上用flash动画出示圆环框架并小结。
师:同学们说的很好,围成圆的曲线的长就是指圆的周长。
设计意图:本环节的设计是让学生初步感知本课的知识范围,做好心理铺垫;老师展示的目的是为下面“化曲为直”的方法打基础。
3、讨论圆的周长的测量方法。
(1)师:要想测量这个圆的周长,能用直尺直接测量吗?为什么呢?
(2)、师:你们有没有办法来测量它的周长?把你的方法在小组内交流一下。
学生分组讨论,小组代表发言:
生1:不能,因为圆的周长是一条曲线,而直尺是直的!
生2:把圆片放在直尺上滚动一周,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准另一刻度线,这时圆正好滚动一周。圆滚动一周的长就是圆的周长。(滚动法)
生3:用一条长线把圆绕一周,捏紧这两个正好连接的端点,把线拉直,这两点之间的线的长就是圆的周长。(绕线法)
(3)、教师跟随小组代表发言,用边演示边总结测量方法。
教师小结:看来,同学们不论是用绕线法也好,滚动法也罢,都是非常巧妙地将曲线转化成了直直的一条线段再来测量,也就是一种化曲为直的方法,你们真是太棒了!
师:(出示一个很大的圆形摩天轮)你能用这两种方法测量它的周长吗?
看来,这两种测量的方法还是有一定的局限性的,那你们有什么好办法?
设计意图:通过尝试性的动手测量,使学生较为牢固地掌握了周长的概念,也很好地培养了学生的动手操作能力,在这个过程中使学生切身体会到“化曲为直”的转化思想。
(二) 自主学习,探究新知。
1、猜测。
师:正方形的周长与它的边长有关,那么,请你大胆猜想,圆的的周长与什么有关呢?(播放)
2、探讨圆的周长与直径的关系。
师:圆的周长和直径到底有什么样的倍数关系呢?现在我们就以小组为单位,测量3个大小不同的圆片的周长与直径,并通过合作的方式完成实验报告单,各组组长要 分工明确。(出示操作要求并播放轻音乐)
圆的名称
直径
周长
周长÷直径的商
我们的结论:
圆的周长是直径的(3)倍(多)一些。
设计意图:训练了学生的思考习惯,也为下面学习找准方向,充分尊重了学生的主体地位。 本环节重在加强学生小组合作、合理分工、条理思考、大胆推理与清楚表达的指导,旨在为每一位学生的自主学习创造机会与条件,使每一位学生在自己的参与、思考与经历中获得经验认识,培养学生良好的数学学习方法、习惯和数学思考能力。
3、 共同发现 。
师:同学们,和大家分享一下你们测量的数据和计算结果,好吗?仔细观察实验报告单上的计算结果,你们有什么发现?
生:我发现圆的周长都是直径的3倍多一些。
每个小组汇报完后,把实验报告单粘贴在黑板上)
4、 介绍圆周率。
师:你们可真了不起,刚才,同学们测量了大大小小不同的圆,但却有着相同的发现,那就是任何圆的周长都是它直径的3倍多一些。其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是3倍多一些。这个倍数是一个固定不变的数,我们它叫做圆周率(板书)。(介绍误差)用字母π来表示。读法与写法。
师:其实,有关圆周率的知识还有很多,那么我们就一起走进兔博士网站了解一下圆周率的由来。(播放)
师:看完这些资料,你有何感想?
设计意图:通过播放有关祖冲之的`资料,引导学生发表感触,及时激励学生,对学生进行爱国教育,增强民族自豪感!
5、推导圆的周长公式 。
师:在计算时为了方便,我们只取它的近似值,π≈3.14,你能根据我们的结论推导出圆的周长公式吗?
生:因为圆的周长总是它直径 的π倍。所以圆的周长=直径X圆周率。如果用C表示圆的周长,那么C=πd或C=2πr
C=πd或C=2πr(板书)
(三)、运用知识,解决问题。
(1)出示图形题。
师:你这样列式分别应用了哪个公式?
(2)我是小法官。
1、π=3.14 ( )
2、大圆的圆周率大于小圆的圆周率。( )
3、圆的周长总是直径的π倍。 ( )
(3)走进生活,解决生活问题
1、一面圆镜的镜面直径是25厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米 ?
2、车轮转动一周,哪号车走得远?为什么?
车轮转动一周走的距离和什么有关系?
(4)运用今天所学知识,解决课开始的跑步比赛的公平性!
设计意图:本环节主要为了检验学生利用知识解决问题的能力,第4题的设计为了照应开头;拓展延伸设计旨在提高学生对数学新知的应用能力和灵活变通能力,激发学生再创造的愿望和热情,真正提高学生的数学素养。
(三)课堂小结。
通过我们今天的学习,你们都有哪些收获?生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收获更多的快乐!
(四)布置作业。
1、课后习题1—3题。
2、在数学日记中叙述一下你对圆周率的理解。
圆的周长教案 篇5
教学目标:
1.让学生经历已知一个圆的周长求这个圆的直径或半径的过程,体会解题策略的多样性。
2.进一步理解周长、直径、半径之间的关系, 能熟练运用圆周长的公式解决一些实际问题。
3.感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
已知一个圆的周长求这个圆的直径或半径。
教学难点:
理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。
教学准备:
圆形图片。
教学过程:
一、复习旧知,引入新知
提问
1.什么是圆的周长?圆的`周长计算公式是什么?
2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?
指名回答,明确计算方法。
3.口答,求下列各圆的面积。
(l)r=2cm r=3cm r=5cm
(2)d=2cm d=3cm d=5cm
4.引入:知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。(板书:圆的周长计算的实际运用)
二、合作交流,探究新知
1.教学例6。
(1)出示例6的情境图,指名读题,并且找出条件和问题。
(2)讨论:如何准确地测算出这个花坛的直径?
(3)交流后,明确:先测量出这个花坛的周长,再利用圆的周长计算公式计算
花坛的直径。
(4)出示测量结果:花坛的周长是251.2米。
(5)学生独立完成。
(6)集体订正,教师板书
方法一:列方程解答。
解:设花坛的直径是x米。
3. 14x=251.2
x=251. 23. 14
x=80
答:花坛的直径是80米。
方法二:算术方法解答。
251. 23. 14 =80(米)
答:花坛的直径是80米。
(7)师:两种方法有什么相同点和不同点?你喜欢什么方法?
2.小结。
(l)提问:已知圆的周长,如何求圆的半径或直径?
(2)学生回答,教师板书
①列方程解答。
②d=C r=C 2
三、巩固练习,加深理解
1.完成练一练。
(1)学生独立完成。
(2)集体交流。
2.完成练习十四第8题。
(1)借助圆柱形教具演示,帮助学生理解什么是树干横截面,,。
(2)学生独立思考并计算。
(3)集体交流。
3.完成练习十四第9题。
(1)理解拱门的高度的含义。
(2)学生独立计算。
(3)集体订正。
4.完成练习十四第10题。
(1)学生独立思考。
(2)集体交流,明确:可以通过计算来比较,也可以根据周长的计算公式来直接比较。
5.作业:练习十四第6、7、10题。
四、课堂小结
师:通过这节课的学习,你有什么收获?
学生发言,教师点评。
板书设计:
圆的周长计算的实际运用
方法一:列方程解答。
解:设花坛的直径是x米。
3. 14x=251.2
x=251. 23. 14
x=80
答:花坛的直径是80米。
方法二:算术方法解答。
251. 23. 14 =80(米)
答:花坛的直径是80米。
d=C r=C 2
圆的周长教案 篇6
学情分析:
学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。
教学目标:
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
推导并总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学过程:
备注:
活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的.什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体
中找出一个圆形来,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2.怎样才能知道这个正方形的周长?说说你是怎么想的?
3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总
是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)滚动--把实物圆沿直尺滚动一周;
(2)缠绕--用绸带缠绕实物圆一周并打开;
(3)折叠--把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)转化
曲直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,
猜猜看,圆的周长应该是直径的倍?
(正方形的边长和圆的直径相等,直接观察可发现,圆周长
小于直径的四倍,因为圆形套在正方形里;而且由于两点间
线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
活动二:动手操作,探索圆的周长与直径的关系。
圆的周长教案 篇7
教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。
教学目标:
1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。
2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。
3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。
教学设计思想:
复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的'技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。
教学过程:
一、创设情境,揭示课题。
二、回顾整理,讨论交流。
1、怎样求圆的周长?求圆的面积有几种情况?
2、圆的周长和面积公式是怎样推导出来的?
3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)
4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)
5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?
三、发现生活中的数学问题
教师结合图片演示,让学生提出有关圆的周长和面积的问题。
图片内容:农村的喷灌、碾子、拴在木桩上的小羊。
四、走进美丽的图形世界
教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。
五、开心词典
以开心词典的形式,让学生做六道选择题。
六、走进生活,解决问题
1、小猴子骑独轮车走钢丝。求车轮要转多少周。
2、用绳子绕树干10周,求横截面的直径。
3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?
4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?
七、思考生活中的数学问题
1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?
2、阅读关于400米标准跑道的小资料。
课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答
圆的周长教案 篇8
一、教学目标
【知识与技能】
掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。
【过程与方法】
通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。
【情感态度与价值观】
积极参与数学活动,培养学习数学的兴趣。
二、教学重难点
【重点】圆的周长的计算公式。
【难点】圆的周长公式的推导过程。
三、教学过程
(一)导入新课
创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。
学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。
教师明确,圆一圈的长度即为圆的周长。
引入课题——圆的周长。
(二)探索新知
1.探索发现
学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。
学生汇报测量结果及测量方法。
教师引导学生思考,圆的周长大小与什么有关。
学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。
教师明确直径是半径的2倍,可看其中一项即可。
2.探索圆的周长与圆的直径关系
小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的.特殊关系。教师巡视,对有困难的小组及时给予指导。
小组汇报分享测量结果,教师板书。
学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。
学生汇报通过多次测量计算比值总在3.1左右。
教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。
给出圆周率的特点:
(1)是一个无限不循环的小数;
(2)我国伟大的数学家祖冲之将其精确到小数点后七位;
(3)现在为了方便只要取小数点后两位即可。
(三)应用新知
问题:大头儿子家圆桌直径为1米,求需要买多长的铁丝?3.1米够吗?
教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。
(四)小结作业
提问:通过本节课,你有什么收获?
课后作业:回家找一个圆形,借助直尺测量,计算出周长。
四、板书设计
略
圆的周长教案 篇9
一、教学内容:
《义务教育课程标准实验教科书数学》人教版六年级上册第62-64页《圆的周长》
二、教材分析:
本节课是学生在学习了长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识。这为学生认识、概括、归纳圆的周长提供了知识技能基础。在教法上,以“铺垫——探究新知——运用新知”为主线,又在各个环节中设置由浅入深、由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。
三、设计理念:
本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。
四、教学目标:
1. 让学生知道什么是圆的周长。
2. 理解并掌握圆周率的意义和近似值。
3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。
4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。
5. 结合圆周率的学习,对学生进行爱国主义教育。
五、教学重点:推导圆周长的计算公式,准确计算圆的周长。
六、教学难点:理解圆周率的意义。
七、教学准备:老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等。学生:2个大小不同的硬纸圆片、直尺、彩带、学具。
八、教学过程:
(一)、创设情境,引起猜想
1、激发兴趣,引出课题
播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。
问:同学们,你认为这样的比赛公平吗?
2、认识圆的周长
(1).回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
(2).认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
【设计理念】播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基础
3、讨论正方形周长与其边长的.关系
(1).我们要想对这两个路程的长度进行比较,实际上需要知道什么?
(2).怎样才能知道这个正方形的周长?说说你是怎么想的?
(3). 那就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
【设计理念】正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。
4、讨论圆周长的测量方法
(1).讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
(2).反馈:(基本情况)
<1>.“滚动”——把实物圆沿直尺滚动一周;
<3>.“折叠”——把圆形纸片对折几次,再进行测量和计算;
(3).小结各种测量方法:(板书)转化曲 直
(4).创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
(5).明确课题:
今天这节课我们就一起来研究圆周长的计算方法。 (板书课题:圆的周长)
【设计理念】教师引导学生结合具体实物想到采用不同的方法进行测量,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间,又不断设置认知冲突,在遵循学生认知规律的前提下,有效地培养了学生思维的创造性。
5、合理猜想,强化主体
(1).请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论交流。
(2).正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?向大家说一说你是怎么想的?
(3).正方形的周长总是边长的4倍。再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
(4).小结并继续设疑
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
【设计理念】在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程中的主体地位。
(二)、实际动手,发现规律
1、分组合作测算
(1).明确要求
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。(为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。)
4、总结圆周长的计算公式
(1). 如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长 =直径× 圆周率 用字母表示就是:C=πd
(2). 如果知道圆的半径,又该怎样计算圆的周长呢 板书: C =2πr
【设计理念】本环节选取一元硬币、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程,在理解圆周率意义的过程中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。
(三)、巩固练习,形成能力
1.判断并说明理由:π =3.14 ()
2.选择:大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确的是:()
a.大圆的圆周率大于小圆的圆周率,大圆的圆周率小于小圆的圆周率;
b.大圆的圆周率等于小圆的圆周率。
3.实际问题:我家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,我至少需要准备多长的花边?
(四)、小结:通过今天的学习,你有什么收获?
【设计理念】练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题抓住了新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学、用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。
(五)、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆绕8字跑,谁跑的路程近
附:板书设计
圆的周长
意义:围成圆的曲线的长度叫做圆的周长
测量: 化曲为直法:滚动、拉直
圆周率:(字母π);计算取值:3.14。
公式: 因为c÷d=π 所以c=πd 或c=2πr
圆的周长教案 篇10
教学内容:
圆的周长(小学数学九年制义务教材第十册).
教学目的:
1.让学生知道什么是圆的周长.
2.理解圆周率的意义.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的意义.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长.
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.
三、互动
请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的.周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=d
=3.141.95
=6.123
6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示,错误的出示)
(1)圆周率就是圆的周长除以它的直径所得的商. ( )
(2)圆的直径越大,圆周率越大. ( )
(3)圆的半径是3厘米,周长是9.42厘米. ( )
3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步
【圆的周长教案】相关文章:
《圆的周长》教案02-06
圆的周长教案01-01
关于圆的周长教案01-15
《圆的周长》教案15篇02-26
圆的周长教案(精选15篇)02-23
【精选】圆的周长教案三篇01-18
圆的周长教案(精选20篇)11-28
圆的周长教案(15篇)01-10
圆的周长教案15篇01-01
圆的周长教案精选15篇03-13