因式分解教案

时间:2023-04-06 12:51:14 教案 投诉 投稿

因式分解教案合集十篇

  作为一位杰出的教职工,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。那么你有了解过教案吗?下面是小编精心整理的因式分解教案10篇,希望能够帮助到大家。

因式分解教案合集十篇

因式分解教案 篇1

  整式乘除与因式分解

  一.回顾知识点

  1、主要知识回顾:

  幂的运算性质:

  aman=am+n(m、n为正整数)

  同底数幂相乘,底数不变,指数相加.

  =amn(m、n为正整数)

  幂的乘方,底数不变,指数相乘.

  (n为正整数)

  积的乘方等于各因式乘方的积.

  =am-n(a≠0,m、n都是正整数,且m>n)

  同底数幂相除,底数不变,指数相减.

  零指数幂的概念:

  a0=1(a≠0)

  任何一个不等于零的数的零指数幂都等于l.

  负指数幂的概念:

  a-p=(a≠0,p是正整数)

  任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

  也可表示为:(m≠0,n≠0,p为正整数)

  单项式的乘法法则:

  单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

  单项式与多项式的.乘法法则:

  单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

  多项式与多项式的乘法法则:

  多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

  单项式的除法法则:

  单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

  多项式除以单项式的法则:

  多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

  2、乘法公式:

  ①平方差公式:(a+b)(a-b)=a2-b2

  文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

  ②完全平方公式:(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

  3、因式分解:

  因式分解的定义.

  把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

  掌握其定义应注意以下几点:

  (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

  (2)因式分解必须是恒等变形;

  (3)因式分解必须分解到每个因式都不能分解为止.

  弄清因式分解与整式乘法的内在的关系.

  因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

  二、熟练掌握因式分解的常用方法.

  1、提公因式法

  (1)掌握提公因式法的概念;

  (2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

  (3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

  (4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

  2、公式法

  运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

  常用的公式:

  ①平方差公式:a2-b2=(a+b)(a-b)

  ②完全平方公式:a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

因式分解教案 篇2

  教学目标

  教学知识点

  使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。

  潜力训练要求。

  透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。

  情感与价值观要求。

  透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。

  教学重点

  1、理解因式分解的.好处。

  2、识别分解因式与整式乘法的关系。

  教学难点透过观察,归纳分解因式与整式乘法的关系。

  教学方法观察讨论法

  教学过程

  Ⅰ、创设问题情境,引入新课

  导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

  Ⅱ、讲授新课

  1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。

  993-99=99×98×100

  2、议一议

  你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。

  3、做一做

  (1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

  ③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

  (2)根据上面的算式填空:

  ①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

  ④y2-6y+9=()2。⑤a3-a=()()。

  定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。

  4。想一想

  由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?

  下面我们一齐来总结一下。

  如:m(a+b+c)=ma+mb+mc(1)

  ma+mb+mc=m(a+b+c)(2)

  5、整式乘法与分解因式的联系和区别

  ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。

  6。例题下列各式从左到右的变形,哪些是因式分解?

  (1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

  (3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

  Ⅲ、课堂练习

  P40随堂练习

  Ⅳ、课时小结

  本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。

因式分解教案 篇3

  一、教材分析

  1、教材的地位与作用

  “整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的`基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

  因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。

  2、教学目标

  (1)会推导乘法公式

  (2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。

  (3)会用提公因式法、公式法进行因式分解。

  (4)了解因式分解的一般步骤。

  (5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。

  3、重点、难点和关键

  重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。

  难点:正确运用乘法公式;正确分解因式。

  关键:正确理解乘法公式和因式分解的意义。

  二、本单元教学的方法和策略:

  1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.

  2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.

  3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.

  4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.

  三、课时安排:

  2.1平方差公式 1课时

  2.2完全平方公式 2课时

  2.3用提公因式法进行因式分解 1课时

  2.4用公式法进行因式分解 2课时

因式分解教案 篇4

  教学目标:

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

  2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

  3、通过对公式的探究,深刻理解公式的`应用,并会熟练应用公式解决问题。

  4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。

  教学重点:

  应用平方差公式分解因式.

  教学难点:

  灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

  教学过程:

  一、复习准备 导入新课

  1、什么是因式分解?判断下列变形过程,哪个是因式分解?

  ①(x+2)(x-2)= ②

  ③

  2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。

  x2+2x

  a2b-ab

  3、根据乘法公式进行计算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 学习新知

  (一) 猜一猜:你能将下面的多项式分解因式吗?

  (1)= (2)= (3)=

  (二)想一想,议一议: 观察下面的公式:

  =(a+b)(a—b)(

  这个公式左边的多项式有什么特征:_____________________________________

  公式右边是__________________________________________________________

  这个公式你能用语言来描述吗? _______________________________________

  (三)练一练:

  1、下列多项式能否用平方差公式来分解因式?为什么?

  ① ② ③ ④

  2、你能把下列的数或式写成幂的形式吗?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

  (四)做一做:

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

  (五)试一试:

  例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

  (1) x4- y4 (2) a3b- ab

  (六)想一想:

  某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?

因式分解教案 篇5

  一、教学目标

  (一)、知识与技能:

  (1)使学生了解因式分解的意义,理解因式分解的概念。

  (2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

  (二)、过程与方法:

  (1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

  (2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

  (3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

  (三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

  二、教学重点和难点

  重点:因式分解的概念及提公因式法。

  难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

  三、教学过程

  教学环节:

  活动1:复习引入

  看谁算得快:用简便方法计算:

  (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

  (2)-2.67×132+25×2.67+7×2.67= ;

  (3)992–1= 。

  设计意图:

  如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.

  注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

  活动2:导入课题

  P165的探究(略);

  2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

  设计意图:

  引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的.理解,为学生类比因式分解提供必要的精神准备。

  活动3:探究新知

  看谁算得准:

  计算下列式子:

  (1)3x(x-1)= ;

  (2)(a+b+c)= ;

  (3)(+4)(-4)= ;

  (4)(-3)2= ;

  (5)a(a+1)(a-1)= ;

  根据上面的算式填空:

  (1)a+b+c= ;

  (2)3x2-3x= ;

  (3)2-16= ;

  (4)a3-a= ;

  (5)2-6+9= 。

  在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

  活动4:归纳、得出新知

  比较以下两种运算的联系与区别:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

因式分解教案 篇6

  (一)学习目标

  1、会用因式分解进行简单的多项式除法

  2、会用因式分解解简单的方程

  (二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。

  难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。

  (三)教学过程设计

  看一看

  1.应用因式分解进行多项式除法.多项式除以多项式的`一般步骤:

  ①________________②__________

  2.应用因式分解解简单的一元二次方程.

  依据__________,一般步骤:__________

  做一做

  1.计算:

  (1)(-a2b2+16)÷(4-ab);

  (2)(18x2-12xy+2y2)÷(3x-y).

  2.解下列方程:

  (1)3x2+5x=0;

  (2)9x2=(x-2)2;

  (3)x2-x+=0.

  3.完成课后练习题

  想一想

  你还有哪些地方不是很懂?请写出来。

  ____________________________________

  (四)预习检测

  1.计算:

  2.先请同学们思考、讨论以下问题:

  (1)如果A×5=0,那么A的值

  (2)如果A×0=0,那么A的值

  (3)如果AB=0,下列结论中哪个正确( )

  ①A、B同时都为零,即A=0,

  且B=0;

  ②A、B中至少有一个为零,即A=0,或B=0;

  (五)应用探究

  1.解下列方程

  2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值

  (六)拓展提高:

  解方程:

  1、(x2+4)2-16x2=0

  2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?

  (七)堂堂清练习

  1.计算

  2.解下列方程

  ①7x2+2x=0

  ②x2+2x+1=0

  ③x2=(2x-5)2

  ④x2+3x=4x

因式分解教案 篇7

  教学目标

  1、进一步巩固因式分解的概念;

  2、巩固因式分解常用的三种方法

  3、选择恰当的方法进行因式分解

  4、应用因式分解来解决一些实际问题

  5、体验应用知识解决问题的乐趣

  教学重点

  灵活运用因式分解解决问题

  教学难点:

  灵活运用恰当的因式分解的方法,拓展练习2、3

  教学过程

  一、创设情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

  二、知识回顾

  1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.

  判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

  (1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

  (3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

  (5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

  (7).2πR+2πr=2π(R+r)因式分解

  2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.

  分解因式要注意以下几点:(1).分解的对象必须是多项式.

  (2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

  公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

  4、强化训练

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的'长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  试一试把下列各式因式分解:

  (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

  三、例题讲解

  例1、分解因式

  (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

  (3)(4)y2+y+

  例2、分解因式

  1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

  4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7)22、8a2b2-2a4b-8b3

  三、知识应用

  1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除吗?还能被哪些整数整除?

  四、拓展应用

  1.计算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除吗?

  3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.

  五、课堂小结:今天你对因式分解又有哪些新的认识?

因式分解教案 篇8

  知识点:

  因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

  教学目标:

  理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

  考查重难点与常见题型:

  考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

  教学过程:

  因式分解知识点

  多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

  (1)提公因式法

  如多项式

  其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

  (2)运用公式法,即用

  写出结果。

  (3)十字相乘法

  对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的'a,b,如有,则对于一般的二次三项式寻找满足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

  (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

  分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

  (5)求根公式法:如果有两个根X1,X2,那么

  2、教学实例:学案示例

  3、课堂练习:学案作业

  4、课堂:

  5、板书:

  6、课堂作业:学案作业

  7、教学反思:

因式分解教案 篇9

  教学设计思想:

  本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的`题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

  教学目标

  知识与技能:

  会用平方差公式对多项式进行因式分解;

  会用完全平方公式对多项式进行因式分解;

  能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;

  提高全面地观察问题、分析问题和逆向思维的能力。

  过程与方法:

  经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。

  情感态度价值观:

  通过学习进一步理解数学知识间有着密切的联系。

  教学重点和难点

  重点:①运用平方差公式分解因式;②运用完全平方式分解因式。

  难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式

  关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。

因式分解教案 篇10

  教学目标:

  1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.

  2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.

  3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.

  教学重、难点:用提公因式法和公式法分解因式.

  教具准备:多媒体课件(小黑板)

  教学方法:活动探究法

  教学过程:

  引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?

  知识详解

  知识点1 因式分解的定义

  把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

  【说明】 (1)因式分解与整式乘法是相反方向的变形.

  例如:

  (2)因式分解是恒等变形,因此可以用整式乘法来检验.

  怎样把一个多项式分解因式?

  知识点2 提公因式法

  多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

  探究交流

  下列变形是否是因式分解?为什么?

  (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

  (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

  典例剖析 师生互动

  例1 用提公因式法将下列各式因式分解.

  (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

  分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.

  小结 运用提公因式法分解因式时,要注意下列问题:

  (1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.

  (2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数).

  (3)因式分解最后如果有同底数幂,要写成幂的形式.

  学生做一做 把下列各式分解因式.

  (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

  知识点3 公式法

  (1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的.差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

  (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

  探究交流

  下列变形是否正确?为什么?

  (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

  例2 把下列各式分解因式.

  (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

  分析:本题旨在考查用完全平方公式分解因式.

  学生做一做 把下列各式分解因式.

  (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

  综合运用

  例3 分解因式.

  (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

  分析:本题旨在考查综合运用提公因式法和公式法分解因式.

  小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式. 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.

  探索与创新题

  例4 若9x2+kxy+36y2是完全平方式,则k= .

  分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差).

  学生做一做 若x2+(k+3)x+9是完全平方式,则k= .

  课堂小结

  用提公因式法和公式法分解因式,会运用因式分解解决计算问题.

  各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。

  自我评价 知识巩固

  1.若x2+2(m-3)x+16是完全平方式,则m的值等于( )

  A.3 B.-5 C.7. D.7或-1

  2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )

  A.2 B.4 C.6 D.8

  3.分解因式:4x2-9y2= .

  4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

  5.把多项式1-x2+2xy-y2分解因式

  思考题 分解因式(x4+x2-4)(x4+x2+3)+10.

【因式分解教案】相关文章:

因式分解教案12-08

因式分解教案04-02

因式分解复习教案08-25

人教版因式分解教案01-04

因式分解教案设计04-18

精选因式分解教案3篇03-13

因式分解教案汇编5篇02-26

因式分解教案模板8篇01-31

【必备】因式分解教案4篇02-20

【热门】因式分解教案3篇03-03

Copyright©2013-2024duanmeiwen.com版权所有