圆的周长教案

时间:2023-04-07 11:50:26 教案 投诉 投稿

关于圆的周长教案模板集合5篇

  作为一名教师,很有必要精心设计一份教案,编写教案助于积累教学经验,不断提高教学质量。那么什么样的教案才是好的呢?以下是小编帮大家整理的圆的周长教案5篇,仅供参考,希望能够帮助到大家。

关于圆的周长教案模板集合5篇

圆的周长教案 篇1

  教学内容:

  教科书P 92-93例4、例5,试一试、练一练和练习十四第1-4题

  教学目标:

  1.使学生认识圆的周长,认识圆周率,理解和掌握圆的周长计算公式。应用圆的周长公式计算周长,解决周长计算的简单实际问题。

  2.使学生经历观察、操作、测量、计算和交流、归纳等活动过程,推导圆的周长计算公式,积累推导计算公式的学习过程,发展分析、综合和归纳、概括等思维能力。

  3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,积累参与实验探究,培养实事求是的科学态度,感受探索计算公式的成功,树立学习数学的自信心。

  教学重点:

  理解并掌握圆的周长的计算公式

  教学难点:

  推导圆的周长公式

  教学过程:

  一、教学例4。

  1.谈话:同学们,我们经常听人们说:我买了一个28的自行车。我买了一个24英寸的彩电。这里的28和24英寸都是表示物体规格的数字。

  2.课件出示例4题目及图示,全班交流:你从图中了解哪些信息?

  3.小组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

  4.课件演示车轮滚动,验证学生的发现。

  5.全班交流

  你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

  二、教学例5。

  1.课件出示例5,全班交流:这样的`实验你们课前做了吗?

  2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

  周长/cm 直径/cm 周长除以直径的商

  (保留两位小数)

  3.指名汇报,全班交流。

  ⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

  ⑵ 纵观各组的实验结果,你们有什么发现?

  圆的周长总是直径的3倍多一些。

  4.学生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

  5.概括圆周长公式。

  ⑴ 圆周率用字母表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说、C、d之间有什么关系?

  学生先在小组内交流再全班交流。

  (板书:Cd=,C=d ,C=d)

  ⑵ 求圆的周长用哪个公式?(C=d或C=2r)

  三、巩固拓展

  1.完成试一试

  ⑴ 学生独立计算。⑵ 全班展示交流。

  2.完成练一练。

  3.完成练习十四第1题。

  学生独立计算,再全班交流。

  4.完成练习十四第2题。

  ⑴ 学生独立计算。

  ⑵ 全班展示交流。

  ⑶ 学生订正。

  5.完成练习十四第3题。

  指名口头列式,学生集体计算。

  交流:为什么求是车轮的周长?

  6.完成练习十四第4题。

  学生独立计算后再汇报交流。

  四、总结延伸

  本节课,你有哪些收获?还有什么疑问?

圆的周长教案 篇2

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:

  求圆的直径和半径。

  教学难点:

  灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。

  4 5 8

  2、求出下面各圆的周长。

  C=d c=2r

  3.142 23.144

  =6.28(厘米) =83.14

  =25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=d C=2r

  (3)根据上两个公式,你能知道

  直径=周长圆周率 半径=周长(圆周率2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77m 求:d=?

  解:设直径是x米。

  3.773.14 3.14x=3.77

  1.2(米) x=3.773.14

  x1.2

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米 R=c(2) 求:r=?

  解:设半径为x米。

  3.142x=1.2 1.223.14

  6.28x=1.2 = 0.191

  x=0.191 0.19(米)

  x0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  (1)3.148

  (2)3.1482

  (3) 3.1482+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的.周长是多少?20xx.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20xx.14=125.6(厘米)

  45分钟走了多少厘米? 125.6 =94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  四、 作业。

  P65-66 第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对 的含义就理解得特别透彻,也学得有兴趣。

圆的周长教案 篇3

  教学内容:

  义务教育课程标准实验教科书数学六年级上册第62~64页的内容。

  教学目标:

  1、知识与技能目标:使学生直观认识圆的周长,知道圆的周长的含义,通过对圆周长的测量方法和圆周率的探索、圆的周长计算公式的推导等教学活动,培养学生观察、猜测、分析、抽象、概括、动手操作的能力和解决简单的实际问题的能力。

  2、过程与方法目标:通过摸一摸,动手操作,猜想验证等方法使学生亲历整个探寻知识的过程,从而掌握圆周长计算的由来和相关知识。

  3、情感态度与价值观:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感,培养创新精神以及团结合作精神。

  教学重难点:

  教学重点:通过测量、计算、猜测、验证等过程,理解圆的周长计算公式的推导过程及其实践运用。

  教学难点:理解圆周率的意义。

  教具准备:圆形纸片、直尺、计算器、记录单

  教学过程:

  一 课始预习,初步了解

  看书完成前置作业:

  1、什么叫圆的周长?并举例说明。圆的周长可以怎样测量?

  2、什么叫圆的半径和直径?二者之间有什么关系?

  3、你认为圆的周长的

  大小跟什么有关?为什么?你能想出办法证明圆的周长跟它有什么样的关系吗?

  4、哪个数学家对圆的周长有关的知识做出了卓越的贡献

  (设计意图:学生通过看书自学,对本课知识点有个初步了解,在完成前置作业的过程中对本课知识的重难点进行思考,带着问题和疑惑走进课堂,使学生产生学习的动力和积极性)

  二、互动交流,探究新知

  1、认识圆的周长

  ⑴让学生根据自己的理解说说什么叫圆的周长

  ⑵学生通过摸一摸圆形学具,感受围成圆的线是曲线,完善圆的周长的概念。 ⑶谁能用一句话来概括一下圆的周长?

  ⑷课件演示圆的周长,并出示圆的周长概念。

  围成圆的曲线的长,叫做圆的周长。

  (设计意图:学生通过看书自学,对圆的周长概念有了初步认识,再通过摸一摸的感知活动对圆周长的曲线特点有了深刻体会,课件演示让学生对圆的周长的直观形象进行感知,从而对圆周长概念有了深刻理解)

  2、实验、探究圆的周长与直径的关系

  ⑴认识圆的半径和直径

  学生通过折圆纸片,找出半径和直径,通过观察,测量明确d﹦2r

  ⑵猜测圆的周长与什么有关系

  师:长方形的周长和什么有关系正方形呢?那么圆的周长究竟与什么有关系呢?谁来说一说?你觉得可以用什么办法来证明?

  预设:

  学生1出示大小不一的圆,分别比较它们的直径和周长,得出直径大的'周长就大。

  引导小结:①圆的直径越长,它的周长也就越长,圆的直径越短,它的周长也就越短。

  ②我们发现了圆的周长与直径的比值都是三点几,也就是说圆的周长都是直径的3倍多一些。

  (设计意图:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情。)

  3、学习圆周率的有关知识

  ⑴引入圆周率

  师:其实,很早就有人研究了圆的周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是一个固定的数,我们把它叫做圆周率。(板书: =圆周率)

  ⑵介绍圆周率的资料,并对学生进行爱国主义教育

  师:关于圆周率的知识,你知道哪个数学家在这方面做出了什么样的卓越贡献?(学生通过预习有一些初步的印象。)

  课件播放圆周率的资料完善学生的记忆。

  在当时,祖冲之所算的圆周率的值要比外国科学家早多少年?听完刚才的这些资料介绍,你有什么感想?

  师:我们真为我们国家能出现这样一伟大的数学家感到骄傲和自豪,老师也希望同学们长大以后,能成为一个了不起的人,对国家有用的人。

  ⑶教学圆周率的读写法及数值

  师:对于圆周率,我们用希腊字母л来表示。(板书л)

  ①让学生跟老师读,并用手指在桌子上边写边读。

  ②经过数学家们研究发现圆周率是一个什么样的小数呢?

  学生回忆预习的内容,师提醒学生明确圆周率是一个无限不循环小数它的数值是л=3.1415926……(板书:л=3.1415926……)圆的周长是它直径的∏倍,是一个固定不变的数。 ③圆周率的近似值。

  师:随着现代科技的发展,借助超级计算机,人们算出的圆周率,小数点后面已经达到了万亿位。但是在实际生活中,我们并不需要这么多的小数,一般保留两位小数。(板书:л≈3.14)

  ④学生看书,再次阅读圆周率的知识点介绍

  (设计意图:圆周率是新出现的一个概念,让学生从预习的初步感知,到探索中对圆周率的理解,到再次的看书完善对圆周率概念的陈述,了解近似值的大小取值,让学生对圆周率有了深刻的认识,为圆周长的公式推导打下了基础,学生在这个过程中体会到攻破难关的喜悦。)

  4、圆周长计算公式的推导

  提问:圆的周长一般用字母什么来表示?圆的直径呢?

  那么根据周长与直径的关系我们可以得到一个什么样的公式

  引导学生回答并板书:C÷d=Л,

  那么C=?(板书:C=лd)

  让学生互相说说出公式所代表的意义,并汇报。

  想一想,直径和半径的关系,已知半径r,圆的周长C又等于什么?学生推导教师板书:C=2лr

  三、解决实际问题

  1计算下面各圆的周长

圆的周长教案 篇4

  教学内容:教材第62-64页圆的周长。

  教学目标:

  1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

  2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

  3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

  教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

  教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

  教学设计:

  创设情境,揭示课题

  创设情境,认识圆的周长。

  师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

  师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

  设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

  引导探究,展开新课

  1.情境导入,借助教具直观感知,认识圆的周长。

  (1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

  (2)你知道圆的周长指的是什么吗?

  让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

  (3)围成圆周长的是一条什么线?

  明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

  2.测量圆的周长。

  (1)滚动法。

  拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

  滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

  小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

  (2)绕绳法。

  课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

  绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量;②绳子是无弹性的。

  (3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

  教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

  经过对比,感受滚动法和绕绳法两种测量方法的局限性。

  3.操作实验,探究圆的周长和直径的关系。

  (1)观察猜想:圆的周长与它的什么有关呢?

  学生猜想:可能与它的直径或半径有关。

  课件演示:圆的周长随着直径或者半径的变化而变化。

  (2)动手操作,找出规律。

  四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:

  周长c(cm)直径d(cm)的比值(保留两位小数)

  3.14213.14

  9.533.17

  12.643.15

  15.853.16

  31.4103.14

  (3)观察表中记录的测量数据和计算结果。

  ①你发现周长与直径的比值有什么特点?(比值都是三点几)

  ②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)

  (4)进一步验证圆的周长总是直径的3倍多一些。

  下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

  (5)认识圆周率。

  ①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

  ②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

  ③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

  ④感受文明,激发情感。

  结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

  (6)总结圆的周长的计算公式。

  ①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

  ②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

  ③小结:圆的.周长总是它直径的π倍。

  (7)进一步明确复习题答案。

  结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

  4.学以致用。

  课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

  学生读题后自己完成。让学生板演。

  c=2πr

  2×3.14×33=207.24(cm)≈2(m)

  1km=1000m

  1000÷2=500(圈)

  答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

  设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

  巩固练习,提升能力

  1.完成教材64页1题。

  2.判断。

  (1)圆的周长是直径的3.14倍。( )

  (2)圆的周长等于圆周率与直径的乘积。( )

  (3)当半径为3cm时,圆的周长为18.84cm。( )

  (4)半圆的周长是圆周长的一半。( )

  3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

  4.完成教材66页7、8题。

  课堂总结,评价拓展

  本节课你有什么收获?

  布置作业,巩固新知

  教材66页9、10题。

  板书设计:

  圆的周长

  圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。

  圆的周长总是直径的3倍多一些。

  圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。

圆的周长教案 篇5

  教学目标:

  1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。

  2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。

  3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  教学重点:

  理解并掌握圆的周长的计算公式。

  教学难点:

  理解圆的周长与直径之间的关系。

  教学准备:

  圆规、剪刀、绳子、尺子。

  教学过程:

  一、复习旧知,引入新知

  1.教师在黑板上画圆。

  (1)提问:你对圆有哪些了解?

  (2)指名回答,同学之间相互补充。

  (3)你还想了解什么?

  2.通过学生的回答,引出:这节课我们就起来研究圆的周长。(板书:圆的周长)

  二、合作交流,探究新知

  1.认识周长的含义。

  (1)师:你能指出黑板上这个圆的周长吗?

  (2)从实物中指出圆的周长。

  (3)用语言表述圆的周长。

  学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。

  2.教学例4。

  (1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指

  轮胎的直径。

  (2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?

  (3)比较这三个车轮的直径和周长,你又有什么发现?

  (4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。

  3.教学例5。

  (1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?

  (2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。

  (3)明确要求

  ①画三个大小不同的圆。

  ②用尺子量出直径。

  ③用线围出圆的周长并用尺子挞出长度。

  ④边操作边填好表格。

  周长/cm 直径/cm 周长除以直径的'商

  (保留两位小数)

  (4)学生分组按要求操作,要求分工明确。

  (5)整理学生的测量结果,汇总。

  (6)观察表格,说说有什么发现。

  学生回答后,小结:一个圆的周长总是直径的3倍多一些。

  4.认识圆周率。

  (1)介绍圆周率,并板书: 3.14

  (2)阅读教材第102页的你知道吗内容。

  5.推导得出圆的周长计算公式及其字母公式。

  板书: 或

  三、巩固练习,加深理解

  1.完成试一试。

  (l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。

  (2)指名说说计算方法。

  2.完成练一练。

  (l)学生独立完成计算。

  (2)汇报交流。

  3.完成练习十四第1题。

  (1)学生看图,说说题目中的已知条件。

  (2)学生独立完成计算。

  (3)交流计算方法。

  4.作业:练习十四第2、3、4题。

  四、课堂小结

  师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有

  哪些收获?

  板书设计:

  圆的周长

  周长/cm 直径/cm 周长除以直径的商

  (保留两位小数)

【圆的周长教案】相关文章:

《圆的周长》教案02-06

圆的周长教案01-01

关于圆的周长教案01-15

《圆的周长》教案15篇02-26

圆的周长教案(精选15篇)02-23

【精选】圆的周长教案三篇01-18

圆的周长教案(精选20篇)11-28

圆的周长教案(15篇)01-10

圆的周长教案15篇01-01

圆的周长教案精选15篇03-13

Copyright©2013-2024duanmeiwen.com版权所有