二次根式教案范文8篇
作为一无名无私奉献的教育工作者,总归要编写教案,编写教案助于积累教学经验,不断提高教学质量。教案要怎么写呢?下面是小编帮大家整理的二次根式教案8篇,希望能够帮助到大家。
二次根式教案 篇1
第十六章 二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式
5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数的最小值为5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)宽:3 ;长:5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.
解:乙的解答是错误的.因为当a=时,=5,a-<0,所以 ≠a-,而应是 =-a.
本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.
在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.
在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.
练习(教材第4页)
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
习题16.1(教材第5页)
1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± .因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 . (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的.相邻两边的长分别为和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由题意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.
6.解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.
7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义. (2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义. (3)∵即x>0,∴当x>0时, 在实数范围内有意义. (4)∵即x>-1,∴当x>-1时,在实数范围内有意义.
8.解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去).当h=10时,t= =,当h=25时,t= =.故当h=10和h=25时,小球落地所用的时间分别为 s和 s.
9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.
10.解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =.
如图所示,根据实数a,b在数轴上的位置,化简:+.
〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.
解:由数轴可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.
已知a,b,c为三角形的三条边,则+= .
〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解题策略] 此类化简问题要特别注意符号问题.
化简:.
〔解析〕 题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑.
解:当x≥3时,=|x-3|=x-3;
当x<3时,=|x-3|=-(x-3)=3-x.
[解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.
5
O
M
二次根式教案 篇2
教学目标
课标要求:学生要学会学习、自主学习,要为学生终生学习打下坚实的基础,根据教学大纲和新课标的要求,根据教材内容和学生的特点我确定了本节课的教学目标 1、了解二次根式的概念 2、了解二次根式的基本性质,经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力。 3、通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力。 4、学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣,并提高应用的意识。
教学重点:二次根式的概念和基本性质
教学难点:二次根式的基本性质的灵活运用
教法和学法
教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,本节课主要采用自主学习,合作探究,引领提升的方式展开教学。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到将二次根式化成最简二次根式等,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。
教学过程
活动一:根据学生已有知识探究二次根式的概念 1.探究二次根式概念 由四个实际问题(三个几何问题,一个物理问题)入手,设置问题情境,让学生感受到研究二次根式来源于生活又服务于生活。 思考:用带有根号的式子填空,看看写出的结果有什么特点? (1)要做一个两条直角边的长分别为7cm和4cm的三角尺,斜边的长应为 cm
(2)面积为S的正方形的边长为
(3)要修建一个面积为6.28m2的圆形喷水池,它的半径为m(∏取3.14)
(4)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t= 学生发现所填结果都表示一个数的算术平方根,教师引导学生用一个式子表示这些有共同特点的式子。学生表示为,此时教师启发学生回忆已学平方根的性质让学生总结出a这一条件。在此基础上总结出二次根式的概念。 2.例题评析 例1:哪些为二次根式? 练习:x取何值时下列各式有意义,通过4小题的训练,让学生体会二次根式概念的`初步应用。加深对二次根式定义的理解,并注重新旧知识间的联系,用转化的思想解决问题,总结出解题规律:求未知数的取值范围即转化为①被开方数大于等于0②分母不为0列不等式或不等式组解决问题。
活动二:探究二次根式的性质1 1.探究(a)与0的关系 学生分类讨论探究出:(a)是一个非负数,此时归纳出二次根式的第一个性质:双重非负性。培养学生的分类讨论和概括能力。例2:,则变式:,
活动三:探究二次根式的性质2 探究()2=a(a)由课本具体的正数和零入手来研究二次根式的第二个性质,首先让学生通过探究活动感受这条结论,然后再从算术平方根的意义出发,结合具体例子对这条结论进行分析,引导学生由具体到抽象,得出一般的结论,并发现开平方运算与平方运算的关系,培养学生由特殊到一般的思维方式,提高归纳、总结的能力。前两题学生口述教师板书,后面的两题由学生板演引导学生分析(2)(4)实质是积的乘方和分式的乘方 拓展:反之(a)如 为后面的化最简二次根式(简单的分母有理化)做好铺垫。 例4:在实数范围内分解因式
活动四:探究二次根式的性质3 3.探究 在活动三的基础上出示课本第4页的探究: 引导学生比较活动三与活动四探究中两组题目的不同之处,活动三中的题目是对非负数先进行开平方运算,再进行平方运算;而活动四中的题目正好相反,是先进行平方运算,再进行开平方运算。再次由特殊到一般的让学生归纳出二次根式的又一个性质。培养学生观察、对比的能力和意识。 此时引导学生谈一谈对()2和的联系和区别 相同点:①都有平方和开平方运算 ②运算结果都是非负数 ③仅当a时,()2= 不同点:①从形式和运算顺序看:()2先开方后平方,先平方后开方 ②从a的取值范围看:()2(a),(a为任意数) ③从运算结果看:()2=a(a),(a为任意数
二次根式教案 篇3
一、内容和内容解析
1.内容
二次根式的概念.
2.内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.
本节课的教学重点是:了解二次根式的概念;
二、目标和目标解析
1.教学目标
(1)体会研究二次根式是实际的需要.
(2)了解二次根式的概念.
2. 教学目标解析
(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.
三、教学问题诊断分析
对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.
本节课的教学难点为:理解二次根式的双重非负性.
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.
(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.
【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.
问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?
师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
【设计意图】为概括二次根式的概念作铺垫.
2.抽象概括,形成概念
问题3 你能用一个式子表示一个非负数的算术平方根吗?
师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
【设计意图】让学生体会由特殊到一般的过程,培养学生的`概括能力.
追问:在二次根式的概念中,为什么要强调“a≥0”?
师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.
【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.
3.辨析概念,应用巩固
例1 当 时怎样的实数时, 在实数范围内有意义?
师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.
例2 当 是怎样的实数时, 在实数范围内有意义? 呢?
师生活动:先让学生独立思考,再追问.
【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.
问题4 你能比较 与0的大小吗?
师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,
【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.
4.综合运用,巩固提高
练习1 完成教科书第3页的练习.
练习2 当x 是什么实数时,下列各式有意义.
(1) ;(2) ;(3) ;(4) .
【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件.
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.
5.总结反思
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
(1)本节课你学到了哪一类新的式子?
(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?
(3)二次根式与算术平方根有什么关系?
师生活动:教师引导,学生小结.
【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.
6.布置作业:
教科书习题16.1第1,3,5, 7,10题.
五、目标检测设计
1. 下列各式中,一定是二次根式的是( )
A. B. C. D.
【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.
2. 当 时,二次根式 无意义.
【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.
3.当 时,二次根式 有最小值,其最小值是 .
【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.
4.对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.
【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.
二次根式教案 篇4
一、内容和内容解析
1.内容
二次根式的性质。
2.内容解析
本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.
对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.
二、目标和目标解析
1.教学目标
(1)经历探索二次根式的性质的过程,并理解其意义;
(2)会运用二次根式的性质进行二次根式的化简;
(3)了解代数式的概念.
2.目标解析
(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;
(2)学生能灵活运用二次根式的性质进行二次根式的化简;
(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.
三、教学问题诊断分析
二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.
本节课的教学难点为:二次根式性质的灵活运用.
四、教学过程设计
1.探究性质1
问题1 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.
问题2 根据算术平方根的意义填空,并说出得到结论的依据.
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.
问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的.性质: ( ≥0).
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.
例2 计算
(1) ;(2) .
师生活动:学生独立完成,集体订正.
【设计意图】巩固二次根式的性质1,学会灵活运用.
2.探究性质2
问题4 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.
问题5 根据算术平方根的意义填空,并说出得到结论的依据.
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.
问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0)
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.
例3 计算
(1) ;(2) .
师生活动:学生独立完成,集体订正.
【设计意图】巩固二次根式的性质2,学会灵活运用.
3.归纳代数式的概念
问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?
师生活动:学生概括式子的共同特征,得出代数式的概念.
【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.
4.综合运用
(1)算一算:
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.
(2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?
【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.
(3)谈一谈你对 与 的认识.
【设计意图】加深学生对二次根式性质的理解.
5.总结反思
(1)你知道了二次根式的哪些性质?
(2)运用二次根式性质进行化简需要注意什么?
(3)请谈谈发现二次根式性质的思考过程?
(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.
6.布置作业:教科书习题16.1第2,4题.
五、目标检测设计
1. ; ; .
【设计意图】考查对二次根式性质的理解.
2.下列运算正确的是( )
A. B. C. D.
【设计意图】考查学生运用二次根式的性质进行化简的能力.
3.若 ,则 的取值范围是 .
【设计意图】考查学生对一个数非负数的算术平方根的理解.
4.计算: .
【设计意图】考查二次根式性质的灵活运用.
二次根式教案 篇5
教学目的:
1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;
2、会求二次根式的代数的值;
3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式
教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值
教学过程:
一、二次根式的混合运算
例1 计算:
分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的.分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。
练习1:P206 / 8--① P207 / 1①②
例2 计算
问:计算思路是什么?
答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。 注意两点:
(1)如果已知条件为含二次根式的式子,先把它化简;
(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。
例3 已知,求的值。
分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。
例4 已知,求的值。
观察代数式的特点,请说出求这个代数式的值的思路。
答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。
三、小结
1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。
2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。
3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。
四、作业
P206 / 7 P206 / 8---②③
二次根式教案 篇6
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的.不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
二次根式教案 篇7
教学目标
1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;
2.熟练地进行二次根式的加、减、乘、除混合运算.
教学重点和难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.
教学过程设计
一、复习
1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.
指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.
2.二次根式 的乘法及除法的法则是什么?用式子表示出来.
指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,
计算结果要把分母有理化.
3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
二、例题
例1 x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;
(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.
x-2且x0.
解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.
解 因为1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.
问:上面的代数式中的两个二次根式的被开方数的'式子如何化为完全平方式?
分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.
注意:
所以在化简过程中,
例6
分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、课堂练习
1.选择题:
A.a2B.a2
C.a2D.a<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空题:
4.计算:
四、小结
1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.
2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.
4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.
五、作业
1.x是什么值时,下列各式在实数范围内有意义?
2.把下列各式化成最简二次根式:
二次根式教案 篇8
教学设计思想
新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的`重要作用,发展学生的应用意识。
教学目标
知识与技能
1.知道什么是二次根式,并会用二次根式的意义解题;
2.熟记二次根式的性质,并能灵活应用;
过程与方法
通过二次根式的概念和性质的学习,培养逻辑思维能力;
情感态度价值观
1.经历将现实问题符号化的过程,发展应用的意识;
2.通过二次根式性质的介绍渗透对称性、规律性的数学美。
教学重点和难点
重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;
难点:确定二次根式中字母的取值范围。
教学方法
启发式、讲练结合
教学媒体
多媒体
课时安排
1课时
【二次根式教案】相关文章:
二次根式教案02-15
二次根式的加减教案01-19
《二次根式的运算》的教案08-25
二次根式教案7篇01-24
二次根式数学教案11-26
二次根式教案4篇02-05
二次根式教案(15篇)02-27
二次根式教案15篇02-16
精选二次根式教案三篇08-18
关于二次根式教案四篇10-13