分数除法教案

时间:2023-04-20 17:14:02 教案 投诉 投稿

有关分数除法教案模板锦集10篇

  作为一位兢兢业业的人民教师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。怎样写教案才更能起到其作用呢?下面是小编为大家收集的分数除法教案10篇,希望能够帮助到大家。

有关分数除法教案模板锦集10篇

分数除法教案 篇1

  本课题教时数:1本教时为第1教时备课日期10月22日

  教学目标

  1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。

  2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

  教学重难点

  能比较熟练地求比值和把一个比化成简单的整数比。

  能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭示课题

  二、整理知识

  三、组织练习

  四、课堂小结

  本单元我们学习了什么?你学习了哪些内容?

  这节课我们先复习分数除法的有关概念和计算。

  通过复习,大家要进一步掌握分数除法的意义、比的意义和基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。

  1、复习分数除法的意义

  问:分数除法表示的意义是什么?

  你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?

  指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。

  2、复习分数除法计算法则

  提问:我们在分数除法里,学过哪几种情况的计算?

  分数除法计算的方法是怎样的?

  3、笔算练习

  做复习第2题

  指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。

  4、复习比的意义

  问:什么叫比?比的各部分名称是什么?请你举个例子来说明。

  比与除法、分数有什么联系?请你根据4:5来说明。

  5、做复习第3题

  6、复习比的基本性质

  提问:化简比和求比值各是依据什么来做的`?

  1、做复习第5题

  2、做复习第6题

  3、做复习第7题

  指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。

  4、做复习第8题

  指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。

  这节课复习了什么内容?你进一步明确了哪些知识?

  课后感受

  教学效果较好,同学们所做的题目的正确率较高。

分数除法教案 篇2

  教学目标:

  1、运用所学知识解决一些生活中的实际问题。

  2、加强列方程的思维训练。

  3、培养学生分析问题解决问题的能力。

  教学过程:备注

  活动一:复习与准备

  1、爸爸的体重75千克,小明的体重是爸爸的7/15。

  (1)、小明的体重是多少千克?

  (2)、小明体内水份的'质量占小明体重的4/5,小明体内有多少千克水份?

  (3)让学生说出数量关系并列式计算

  活动二:出示例1

  1、与复习题比较有什么不同?

  2、要求小明的体重应该知道什么条件?为什么?

  3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?

  4、学生自己列式计算

  5、与复习题比较有什么相同点和不同点?你发现了什么?

  小结:(略)

  1、要求学生自己做第二问

  (1)、要求画图分析

  (2)、与第一问比有什么不同?

  (3)、根据什么等量关系列方程?

  小结:

  活动三:巩固练习

  1、38页做一做

  2、40页1、2

  板书设计

分数除法教案 篇3

  1、 分数除法

  (1)分数除法的意义和整数除以分数

  教学目标:

  1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教学过程:

  一、复习

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:56=30,写出相关的两个除法算式。(305=6,306=5)

  2、口算下面各题

  36

  二、新授

  1、教学例1

  (1)出示插图及乘法应用题,学生列式计算:1003=300(克)

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  A、3盒水果糖重300克,每盒有多重?3003=100(克)

  B、300克水果糖,每盒100克,可以装几盒?300100=3(盒)

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  3=(千克)3=(千克)3=3(盒)

  (4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

  2、巩固分数除法意义的.练习:P28做一做

  3、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

  A、2==,每份就是2个。

  B、2==,每份就是的。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察2和3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、练习

  四、总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

分数除法教案 篇4

  【学习目标】

  1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。

  2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。

  3、通过练习,培养计算能力及初步的逻辑思维能力。

  【学习重难点】

  1、重点是确定运算顺序再进行计算。

  2、难点是明确混合运算的顺序。

  【学习过程】

  一、复习

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;

  如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的',后算中括号里面

  的,最后算中括号外面的。

  2、整数四则混合运算定律在分数四则运算中同样适用。

  3、说出下面各题的运算顺序。

  (1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4

  (3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)

  二、探索新知

  1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。

  A、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3

  算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  2、列出综合算式,想一想它的运算顺序,再独立计算。

  ______________________________________________________________

  3、独立完成P34 “做一做”第1、2题

  4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。

  三、知识应用独立完成练习九第1题,组长检查核对,提出质疑。

  四、层级训练:巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。

  (1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。 (2)第7题:“60瓦”与计算无关。 (3)第10题:最后得数与原数相同,原因是231、的倒数与的积正好是1。 342

  五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

分数除法教案 篇5

  教学目标

  1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

  2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

  教学重点和难点

  确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。

  教学过程

  (一)复习准备

  1.找出单位1。

  2.出示第88页的复习题。

  (1)画图分析并列式解答。

  (2)说说你是怎样思考和解答的?

  (3)学生分析教师板演线段图。

  3.导入:

  今天我们继续学习分数应用题。

  (二)学习新课

  现在老师把这道题改动一下。

  1.出示例6。

  千克?

  2.分析解答。

  (1)读题,找出已知条件和问题。

  (2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的

  不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

  (3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

  (4)谁来分析这个条件?

  成8份,吃了的占其中的5份。)

  学生分析的'同时教师板演线段图:

  (5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

  生在黑板上画出:

  (6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

  (7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

  (8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

  (9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

  (10)试着在练习本上列方程解答。

  (11)谁能说说你是怎样解答的?

  生口述:

  解 设买来大米x千克。

  答:买来大米40千克。

  题中的等量关系式是什么?

  (买来的重量还剩几分之几=还剩的重量。)

  3.小结。

  通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)

  解答方法相同吗?为什么?

  (解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)

  4.出示例7。

  烧煤多少吨?

  (1)读题,找出已知条件和所求问题。

  (3)画图分析解答。

  ①从这个条件可以看出题中是几个数量相比?(两个数量相比。)

  追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)

  我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)

  ②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)

  下一步画什么?(实际烧煤吨数。)

  指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的

  这两条线段谁为已知?谁为未知?

  在提问回答的过程中教师板演线段图:

  ③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

  (计划烧煤吨数-节约吨数=实际烧煤吨数。)

  计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)

  ④试做在练习本上。

  ⑤反馈:说说你的解答方法及依据。

  解 设四月份原计划烧煤x吨。

  答:四月份原计划烧煤135吨。

  (1)学生独立画图分析并列式解答。

  (2)反馈提问:

  ②你用什么方法解答的?依据的等量关系式是什么?

  (三)课堂总结

  今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

  (数量间的等量关系相同,解答方法不同。)

  (四)巩固反馈

  (1)课本第91页的第2题。

  (2)根据列式补充条件:

  (五)布置作业

  课本第91页第1,3题。

  课堂教学设计说明

  本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

  由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。

  在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

分数除法教案 篇6

  单元教材分析:本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

  单元教学目标:

  1、理解并掌握分数除法的计算方法,回进行分数除法计算。

  2、回解答已知一个数的'几分之几是多少求这个数的实际问题。

  3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值

  4、能运用比的知识解决有关的实际问题。

  学情分析:

  本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

  教学目标:

  1、让学生理解分数除法的运算意义。

  2、掌握分数除以整数的计算方法。

  3、培养学生的计算能力和分析能力。

  教学过程:备注

  活动一:

  出示例1

  每盒水果糖重100克,3盒有多重?

  1、读题理解题意

  2、列式100*3=300

  3、把乘法算式改成两道除法算式

  300/3=100300/100=3

  4、用千克做单位怎样列式?

  1/10*3=3/10

  5、|用同样的方法改写成除法算

  小结:分数除法的意义

  活动二:

  出示例2

  把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

  1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5

  2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5*1/2

  3、根据上面的折纸实验和算式,你发现什么规律?

  小结:(略)

  活动三:

  巩固练习:

  1、31页做一做1、2

  板书设计

  略去设计

分数除法教案 篇7

  教学目的

  1理解分数除法的意义,掌握分数除法的计算方法。

  2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影

  板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动

  一、复习导入新课为迁移做准备

  明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的.与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果

  二、新课学习分数除法的计算方法

  学习分数除法的计算方法板书 激发兴趣 汇报 板书

  板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米

  4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314

  5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义

  讨论方法

  选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外

  三、练习巩固分数除法的计算法则投影

  投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算

分数除法教案 篇8

  教学内容:

  教材第29~30页“分数除法(三)”。

  教学目标:

  1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

  2.在解方程中,巩固分数除法的计算方法。

  教学重难点:

  1.能够体会方程是解决实际问题的`重要模型。

  2.能够用方程解决实际问题。

  教学过程:

  一、创设情景激趣揭题

  1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

  2.引入并板书课题。

  二、扶放结合探究新知

  1.根据这些数学信息,你能提出哪些数学问题?

  2.引导学生逐一解答提出的问题。

  3.重点引导:跳绳的有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

  4.引导观察,找出有什么相同点和不同点?

  三、反馈矫正落实双基

  1.指导完成P29的试一试的1,2题。

  2.你能根据方程

  X×1/5=30

  编一道应用题吗?

  3.请你想一个问题情景,遍一道分数应用题。

  四、小结评价布置预习

  1.引导小结

  通过本节课的学习你有哪些收获?

  2.布置预习

  整理前面所学知识。

  板书设计:

  分数除法(三)

  跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

  参加活动总人数×2/9=跳绳的人数

  解:设操场有X人参加活动。

分数除法教案 篇9

  一、复习

  1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

  如果已知265×362=95930,你能说出答案吗?为什么?

  (引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

  二、教学分数除法的意义

  1、2/7 ×( )=1,括号内填几分之几?为什么?

  2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

  (引导说出分数除法的意义)

  3、完成p25做一做

  三、分数除以整数的计算法则

  1、这节课我们学习分数除法

  2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

  3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

  3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

  你是根据什么知识口算这几道题的?

  4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

  出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

  怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

  根据学生的回答板书:

  3/4÷3 = 3÷34 = 1/4

  你能归纳这种分数除以整数的计算方法吗?

  5、用这种方法口算:

  3/4÷3 4/9÷4 10/9÷5 6/7÷2

  6、质疑

  你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

  7、小组讨论,自主学习分数除以整数

  用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

  (1)分数除以整数,用分子除以整数的商作分子,分母不变。

  (2) 1除以一个分数,结果是该分数的倒数。

  (3)一个分数除以1,结果是原分数。

  你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

  8、小组汇报

  (1)1/5 ÷3=3/15 ÷3=1/15

  (2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

  (3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  (4) ……

  你能归纳自己小组讨论的分数除以整数的计算方法吗?

  (1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

  (2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

  (3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

  (4)……

  9、观察第三种方法:

  1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  这个计算过程还可以更简洁些,你能看出来吗?

  化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

  观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

  (引导学生说出分数除以整数,等于分数乘整数的倒数)

  10、计算方法的.优化

  刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

  学生计算后提问:你喜欢那种方法?为什么?

  总结分数除以整数的计算法则:

  分数除以整数(零除外),等于分数乘整数的倒数。

  11、对其他的方法,你又有什么要说的吗?

  (引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

  四、课堂练习

  1、计算下列各题

  2/3÷3 2/11÷2 3/8÷6 5/4÷2

  2、练习七第1题

  3、讨论题

  1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案 篇10

  一、教学内容

  苏教版小学数学第十一册第33—38页“分数除法”例1—例4。

  二、简要分析

  本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。

  三、教学过程

  (一)复习旧知,作好铺垫,导入新课。

  1、说出下列各数的倒数(出示卡片)

  2、6、—、—、0.5、 1—、 0.7

  2、用投影打出:下面两题简便计算的根据是什么?

  12÷25=(12×4)÷(25×4)=48÷100=0.48

  11÷125=(11×8)÷(125×8)=88÷1000=0.088

  [简析:商不变规律的应用,为后面学习新知作出充分准备。]

  3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?

  A组:78÷10.35÷1136÷721.8÷9

  B组:—÷1—÷1—÷218÷——÷1

  —÷——÷—4—÷2——÷0.7

  [简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]

  师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。

  (二)指导探索,在新旧知识的.衔接上教师加以点拔导学。

  (1)请大家列出B组算式中除数不是1的算式。

  —÷218÷——÷——÷—

  4—÷2— —÷0.7

  (2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?

  [评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]

  师:下面分学习小组进行讨论。

  (3)交流。

  学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。

  学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。

  [评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]

  (教师根据学生的回答,作好下列板书)

  —÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)

  =—×—÷1=18×—÷1

  =—×— =18×—

  (三)引导学生观察、比较、类推,得出结论。

  师问:这里我们是应用的什么进行变化的?(商不变的规律)

  (教者把上面板书用虚线框起)让学生观察比较。

  —÷2=—×—18÷—=18×—

  问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)

  生汇报:除号变成了乘号,除数变成了它的倒数。

  分数除法算式变成了分数乘法算式。

  师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。

  练习:用复合投影片打出:

  将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)

  —÷— —÷— —÷612÷—

  =—×—=—×4 =—×—=12×—

  [评析:抓住时机,练重点难点,强化新知。]

  6、讨论、比较、类推,概括方法。

  问:在刚才的练习中,你认为有什么规律?

  (生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)

  师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?

  生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)

  引导学生讨论:为什么乙数要加上零除外?

  (四)利用法则,练习重点,巩固新知。

  1、—÷3=—×———=12÷—=12×———=

  —÷—=—×———=—÷—=———()———

  2、计算。(并指名板书,注意书写格式)

  —÷3—÷——÷36÷—

  3÷——÷——÷— —÷—

  3、改错。

  (1)9÷—=9÷—=—=10—(2)—÷5=—×—=—

  (3)—÷—=—×—=—

  4、判断。

  (1)1÷—=—÷1(2)a÷b=a×—

  [评析:改错题、判断题的设计,进一步强化了计算法则。]

  (五)作业练习,熟记法则。

  1、练习八第3题的前4题

  第6题的前4题

  2、校对答案。(说出过程,强化法则的应用)

  思考题:计算(1)4—÷2—(2)—÷0.7

  [评析:这里是知识结构的完整,知识点的引伸。]

  (六)总结。

  1、今天我们一起研究了什么内容?

  2、你有哪些收获?

  3、计算过程中应注意什么问题?

  四、教后评析

  本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。

  1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。

  2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。

  3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。

【分数除法教案】相关文章:

分数除法教案11-17

《分数除法》教案02-23

《分数与除法 》教案08-25

分数与除法教案12-15

分数除法计算教案04-12

《分数与除法的关系》教案03-03

【热门】分数除法教案03-17

关于分数除法教案03-27

分数除法教案(精选15篇)02-06

分数除法教案(15篇)01-15