分数乘法教案

时间:2023-04-27 16:35:50 教案 投诉 投稿

关于分数乘法教案范文集合六篇

  在教学工作者开展教学活动前,编写教案是必不可少的,借助教案可以有效提升自己的教学能力。教案要怎么写呢?以下是小编为大家整理的分数乘法教案6篇,仅供参考,欢迎大家阅读。

关于分数乘法教案范文集合六篇

分数乘法教案 篇1

  教学内容:

  课本第14、15页的例1和例2,完成做一做和练习四的第1~5题。

  教学重点:

  学会找单位1

  教学难点:

  依题意画出线段图

  教学目的:

  1.使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2.培养学生分析能力,发展学生思维。

  教学过程:

  一、复习

  1.先说下列各算式表示的意义,再口算出得数。

  2.列式计算。

  (1)20的是多少?

  (2)6的是多少?

  让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位1。

  二、新授。

  1.教学例1。

  出示例1:学校买来100千克白菜,吃了,吃了多少千克?

  (1)指名读题,说出条件和问题。

  (2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

  先画一条线段,表示100千克白菜。

  吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

  教师边说边画出下图:

  (3)分析数量关系,启发解题思路。

  引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。

  (4)学生列式计算:=100(20)?=80

  (5)再让学生分析一下数量关系。

  (6)练一练:完成第18页做一做第1题。

  评讲订正时,让学生分析一下数量关系。

  2.教学例2。

  出示例2:小林身高米,小强身高是小林的,

  小强身高多少米?

  (1)明确题意,指名读题,说出条件和问题。

  (2)让学生画出线段图并标明条件和问题。

  ①要画几条线段表示题里的数量关系?

  ②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。

  ③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。

  启发学生:根据小强身高是小林的,要把表示小林的线段平均分成8份,在它的.下面画出其中7份的长度代表小强的身高。

  教师边启发边画出如下线段图:

  (3)分析数量关系,启发解题思路。

  启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的身高,就要求出小林身高的是多少,即求的是多少,根据分数乘法的意义,用乘法计算。

  (4)让学生列式计算。

  (5)如果把上题改成下面的题:

  小强身高米,小林身高是小强的倍,小林身高多少米?

  问:哪条线段画得长一些?怎样画?

  把谁看作单位1为什么?

  怎样列式?

  教师边启发边画出如下线段图:

  (6)教师说明:

  一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的

  指出:在这种情况下乘得的积大于原来的被乘数。

  (7)做一做。

  完成课本14页做一做的第3题。

  三、巩固练习

  1.完成课本第14页做一做的第3题。

  学习列式计算后,指名让学生分析数量关系。

  2.完成练习四的第5题。

  说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。

  订正时指名分析。

  四、全课小结。

  今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。

  五.作业。

  练习四的第1~4题。

分数乘法教案 篇2

  【教材简析】

  本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。这些问题都是求一个数的几分之几是多少的实际问题的发展,需要学生用分数乘法和减法加以解决。

  例题是已知某小学六年级参加学校运动会的总人数以及其中男运动员占总人数的几分之几,求女运动员人数的实际问题。教学时,教材首先呈现一条表示运动员人数的线段,要求学生在这条线段上分别表示男、女运动员所占的部分。通过这样的操作,一方面能使男运动员人数与总人数的关系更加清晰,另一方面也有利于启发学生思考:要求女运动员的人数,可以先算出男运动员有多少人。当学生画图操作后,教材不在呈现具体的分析过程,而是引导学生通过交流,进一步明确解题思路,并在此基础上列式解答。这样,引导学生根据自身的实际情况选择算法,有利于降低学习难度,也有利于促进学生更好地利用已有的解决问题的知识和经验。随后的练一练和练习十六的第1~2题中的数量关系都与例题相近,有利于学生进一步巩固和掌握例题所学习的分析和解决问题的方法。

  【教学目标】

  1、使学生学会用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用意识。

  2、使学生在运用已有知识和经验进行解决一些稍复杂的实际问题的过程中,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的`信心。

  【教学过程】

  一、谈话引入:

  同学们,你们参加过运动会吗?瞧!岭南小学举办了学生运动会(媒体同

  时出示例题文字)他们六年级有45人参加,其中男运动占5/9,谁能知道女运动员有多少人?(学生自由读题,了解题意。)

  评析:这一环节的设计,教师充分运用教材,以现实的、学生熟悉喜爱的活动场景引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情。

  二、探索新知:

  1、设问:从题中你知道了什么?(学生先自己说一说,再在小组里交流。)

  2、反馈。

  学生充分交流后,都能感受到:这是一个部分数与总数之间相比较的问题,他涉及两个基本数量关系,一个是男运动员人数与女运动员人数相加的和等于六年级运动员的总人数,另一个是男运动员人数与运动员总人数的分数关系。但一下子要想知道女运动员有多少人,问题的思路不是很清晰。

  3、以图促思。(媒体出示线段图。)

  4、谈话:这是一条表示运动员总人数的线段图,你能在图上分别表示出男、女运动员所占的部分吗?

  5、学生操作:

  学生动手操作后,教师设问:要求女运动员有多少人,可以先算什么?

  6、学生再一次交流,明确解体思路。(学生通过画图后,很容易想到,要求女运动员的人数,可以先算出男运动有多少人。再用总数减去男运动员的人数就能得到女运动员的人数了。)

  7、列式解答。指名一生板演,其余学生在书上完成。

  8、集体批改。(对解题正确的学生进行鼓励。)

  9、探讨其它算法。

  设问:想一想,还可以怎样算?

  如果有学生想出行如A(1-N/M)的式子,要给以表扬,但不要求学生都去掌握。

  评析:这一环节的设计,教师不是把解题思路和方法直接告诉学生,而是让学生通过观察、思考、操作、交流等活动,在充分感知的基础上,借助自己的经验,用自己的策略去解决问题。在探索出解题思路后,教师没有让学生用所谓公式化的方法,而是问学生:想一想,还可以怎样算?让学生自己体会,根据自身的实际情况选择算法,这样,不仅能促进学生更好地利用已有的解决问题的知识和经验,更有利于学生学习能力的培养。

  三、巩固深化

  1、完成练一练第1题

  (1)弄清题意。(媒体出示题目,让学生仔细阅读。)

  (2)谈话:要求还剩多少页没有看,可以先算出什么?

  (3)学生独立分析并解答。

  (4)集体反馈:指名汇报答案,教师重点问一问不同的方法先算的各是什么。

  2、完成练一练第2题

  (1)引导学生弄清题意。

  (2)让学生独立解答。

  (3)组内交流评议。

  3、完成练习十六第1、2题

  (1)指名两位学生板演,其余在自备本上完成。

  (2)组织交流。

  (3)集体反馈,重点让学生说一说解题时先算什么?

  评析:这一环节的设计,教师利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终以自主探索,合作交流为主。

  四、总结回顾。

  1、通过今天的学习,你又有什么收获?

  2、用今天学到的方法可以解决生活中那些实际问题?课后可以留心观察,找到问题后进行解答,如在解答中遇到新的问题可以跟同学交流,也可以来问老师。

  评析:这一环节的设计,教师让学生自己对本堂课所学知识进行总结,既使学生认识到本堂课到底学了什么,又培养了学生的概括能力和口头表达能力。让学生课后留心观察,找到问题后进行解答,不仅给学生提供展示自我的机会,同时,也培养了学生独立解决问题的能力。

分数乘法教案 篇3

  设计说明

  1.重视学生的实践操作。

  动手实践是学生学习数学的主要方式之一,它能加深学生对抽象的数学知识的理解。在本设计中,教师为学生提供充分的动手操作的机会,学生通过分一分、算一算等活动,进一步体会分数乘整数的意义,同时还可以进一步体会“分数乘整数时,分子和整数相乘,分母不变”的道理。

  2.实现数学学习的'个性化。

  本设计充分挖掘学生潜力,留给学生充足的时间和空间,放手让学生联系已有知识经验,自主探究计算方法,极大程度地发挥了学生学习的主体性和主动性。学生在自主探究中产生了多种算法,让学生通过尝试、感悟、体验、探索,总结出“能约分的先约分,再计算比较简便”这一最优的计算方法。学生自主构建知识,充分体现了“不同的人学习不同的数学”的理念。

  课前准备

  教师准备 PPT课件

  学生准备 彩色纸 剪贴画 长方形纸条

  教学过程

  第1课时 分数乘整数的意义及其计算方法

  ⊙复习引入,提出问题

  1.把8+8+8+8+8改成乘法算式。(8×5)

  2.把0.5+0.5+0.5改成乘法算式。(0.5×3)

  3.列式计算。

  (1)5个12是多少?(12×5)

  (2)12个1.5是多少?(1.5×12)

  4.提出问题。

  师:3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

  (板书课题:分数乘整数的意义及其计算方法)

  设计意图:通过复习整数乘法和小数乘法,引出分数乘法问题,不仅自然地过渡到下一个环节,而且激发了学生探究新知的欲望。

  ⊙合作交流,探究新知

  1.探究分数乘整数的意义,初步感知分数乘整数的计算方法。

  课件出示问题:1个

  占整张纸条的,3个

  占整张纸条的几分之几?

  (1)引导学生分析问题。

  你们打算用什么方法来解决这个问题?怎样获得最后的计算结果?

  (2)小组内讨论、交流。

  (3)全班汇报。

  预设

  ①图示法计算。

  把一个长方形纸条看作单位“1”,把它平均分成5份,其中的一份就是一个

  ,是,3份就是3个,如下图:

  3个是。

  ②加法计算。

  求3个

  占整张纸条的几分之几,就是求3个相加的和是多少。

  列式:++==。

  ③乘法计算。

  通过尝试计算,发现结果和其他算法的结果相同,说明几个相同分数相加也可以用乘法计算。

  ×3=++===

  (教师在学生汇报的过程中,适时提问,引导学生完整表述计算过程)

  师:同学们真厉害!这就是我们今天要学习的新知识——分数乘整数。

分数乘法教案 篇4

  分数乘法

  1、分数乘法的意义和计算法则:

  课时:1课时。 总课时:1课时。执行时间:

  课题:分数乘整数。

  教学目的:

  1、 使学生理解分数乘整数的意义;

  2、 握分数乘整数的计算法则,并能够正确地进行计算。

  3、 培养学生的学习兴趣。教具:多媒体教学课件。

  教学过程():

  一、 复习引入

  1、 5个12是多少?怎么样列式?

  算式:12+12+12+12+12=60或12×5=60

  小结:求几个相同加数的和,可以用加法算,也可以用乘法算。

  2、 计算:

  2/7+2/7+2/7 3/10+3/10+3/10

  (1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?

  二、 尝试、探究

  1、 分数乘整数的.意义,

  (1)学生说,教师板书:2/7×3 3/10×3

  (2)学生交流。(3)教师强调意义。

  2、 探究分数乘整数的计算法则,

  (1) 学生试计算3/10×3,汇报交流,

  方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.

  (3)肯定学生想法,

  课件演示【例1】看教本:

  小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?

  (1)学生审题, (2)引导学生看思考,

  (2) 学生交流板书:

  用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)

  用乘法算:2/9×3=2×3/9=6/9=2/3(块)

  答:3个人一共吃2/3块。

  (4)小结计算法则:

  三、 巩固练习

  1、 做练习一的第1题。

  2、 做一做,

  四、 作业:第3、4题。

  五、 后记:

分数乘法教案 篇5

  教学目标

  抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.

  教学过程

  一、引入

  根据条件列出对应关系.

  1.青砖的块数比红砖多

  2.青砖的块数比红砖少

  3.红砖的块数比青砖多

  4.红砖的块数比青砖少

  上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?

  二、展开

  (一)将上列各条件补充一个共同的条件和问题,出示例1.

  红砖2100块 有青砖多少块?

  1.学生独立解答;

  2.大组交流;

  3.列表归纳.

  (二)出示例2

  电视机厂今年生产电视机3600台,____________________,去年生产多少台?

  1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.

  (1)相当于去年的'25%

  (2)比去年少25%

  (3)比去年多25%

  (4)去年生产的是今年的25%

  (5)去年比今年少25%

  (6)去年比今年多25%

  2.将应选择的条件填入下列各式后的括号内.

  ( )

  ( )

  ( )

  ( )

  ( )

  ( )

  3.师生共同分析

  (1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.

  分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:

  去年的产量□100

  今年的产量360025

  设去年生产x台,得到的式子:

  在第六个式子的括号里填(1).

  (2)按照式子找应补充的条件.

  如:

  分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).

  三、巩固

  (一)根据题意列式解答:

  果园里有梨树168棵 苹果树有多少棵?

  (二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一

  台机器要多少元?

  (三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?

  (四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?

  教案点评

  这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。

分数乘法教案 篇6

  一、单元分析

  本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法、利用分数乘法解决问题、倒数的认识。这些内容都属于分数中的基本知识和技能。利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,以及百分数知识的重要基础。

  二、单元学习目标

  1.建立分数乘法的原型,掌握分数乘法的计算方法,能够比较熟练地进行计算。

  2.理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  3.会利用分数乘法解决一些实际问题。

  4.使学生理解倒数的.意义,掌握求倒数的方法。

  三、单元课时总数:9课时

  课题:分数乘整数1课时上课时间:年月日

  教材分析

  这部分教材是在已学的整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过人跑一步相当于袋鼠跳一下的2/11。问人跑3步的距离是袋鼠跳一下的几分之几?这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的学习。通过分数加法来进一步学习分数乘整数的计算方法。

  学情分析

  学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分。所以教师在教学时在这方面还要加以强调。

  教学目标

  1、使学生理解分数乘法的原型,掌握分数乘法的计算方法,能够正确地进行计算.

  2、培养学生的计算能力。

  3、激发学生学习兴趣,热爱学习数学。

  教学过程备注

  活动一:创设情境,初步理解分数乘法的原型

  教师出示例1:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?

  让学生审题后独立试做。

  学生可能会出现以下两种做法:

  (1)学生用连加法列式

  (2)用乘法列式

  借助于分数加法来理解理分数乘法的原型。

  活动二:教学分数乘整数的计算方法

  1、师:++和3都是求3步的距离是袋鼠跳一下的几分之几。你又都是怎样计算的呢?

  全班交流,感觉分数乘整数的计算方法。

  总结分数乘整数是怎样计算的:用分数的分子和整数相乘的积作分子,分母不变。

  2、教学例2:6=

  让学生试做,然后教师强调计算时能约分的可以先约分,再计算。教师板书。

  活动三:反馈练习

  1、完成9页中的做一做。

  教师注意强调学生的书写格式以及能约分的要先约分。

  注意体会在什么情况下用分数乘法来解决问题。

  2、完成练习二中的1、2题。

  活动四:质疑总结。

【分数乘法教案】相关文章:

分数的乘法教案01-20

分数乘法的教案01-15

分数乘法教案01-22

关于分数乘法教案11-25

关于分数乘法的教案03-31

分数乘法教案(精选13篇)08-22

分数乘法教案(精选23篇)01-18

分数乘法教案15篇01-22

分数乘法教案(15篇)02-01

精选分数乘法教案4篇12-30