鸡兔同笼教案

时间:2024-10-05 10:58:56 教案 投诉 投稿

鸡兔同笼教案锦集五篇

  在教学工作者开展教学活动前,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。我们该怎么去写教案呢?下面是小编精心整理的鸡兔同笼教案5篇,希望对大家有所帮助。

鸡兔同笼教案锦集五篇

鸡兔同笼教案 篇1

  第1课时 鸡兔同笼

  教学内容:P116页的练习二十五的第20题。

  教学目标

  知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

  过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

  情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

  教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

  教学难点:建构解决“鸡兔同笼”问题的'数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体

  教学过程

  一、情境导入

  师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。

  师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?

  生1:列表法,适合数据较小的问题。

  生2:假设法,一般情况都适合,数量关系比较容易理解。

  师:今天我们复习“鸡兔同笼”问题。

  二、自主探究

  师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)

  师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)

  师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)

  三、探究结果汇报

  师:通过复习“鸡兔同笼”问题,你有哪些收获?

  生1:借助列表的方法,解决简单的实际问题。

  生2:我学会了化繁为简的学习方法。

  生3:用“假设”法解决问题的一般性。

  四、师生总结收获

  师:通过本课的学习,你有哪些收获?

  师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)

  板书设计

  鸡兔同笼假设→调整(列表、画图)→检验

鸡兔同笼教案 篇2

  鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:

  一、关注每位孩子的成长是成功的前提

  鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。

  二、关注课堂的互动、生成是取得良好效果的基础

  课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的.知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。

  三、关注数学思想的传承是达成目标的保障

  解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。

  本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。

鸡兔同笼教案 篇3

  预设:

  学生1:列表法能很清晰地解决这个问题。

  学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

  教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

  学生小组交流汇报。

  预设:

  学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

  学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

  【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的.调整,脚的总数量的变化规律,为下面的学习做好铺垫。

  4.数形结合理解假设法。

  教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

  (1)假设全是鸡。

  教师:我们先看表格中左起的第一列,8和0是什么意思?

  32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

  4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

  6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)

  8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

  (3)提出假设法概念。

  刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

  (板书:假设法)

  【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。

  (三)知识运用

  学生独立完成古代趣题。

  【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

  (四)全课小结

  这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?

鸡兔同笼教案 篇4

  教学目标

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

  3、通过本节课的学习,知道与鸡兔同笼有关的`数学史,对学生进行数学文化的熏陶和感染。

  教学过程

  一、故事引入

  教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

  二、探究新知

  1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

  让学生以两人为一组讨论。

  汇报讨论的结果。

  (1)、列表:

  鸡876543

  兔012345

  脚161820222426

  (2)、假设法:

  假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

  因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

  因此,鸡就有:8-5=3(只)

  (3)、用方程解:

  解:设鸡有x只,那么兔就有(8-x)只。

  根据鸡兔共有26只脚来列方程式

  2x+(8-x)4=26

  2x+84-4x=26

  32-26=4x-2x

  2x=6

  x=3

  8-3=5(只)

  2、小结解题方法:

  教师:以上三种解法,哪一种更方便?

  小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

  3、独立解决书中的趣题。

  (1)、方程解:

  解:设鸡有x只,那么兔就有(35-x)只。

  根据鸡兔共有94只脚来列方程式

  2x+(35-x)4=94

  2x+354-4x=94

  140-94=4x-2x

  2x=46

  x=23

  35-23=12(只)

  答:鸡有23只,兔有12只。

  (2)、算术解:

  假设都是鸡。

  235=70(只)

  94-70=24(只)

  24(4-2)=12(只)

  35-12=23(只)

  答:鸡有23只,兔有12只。

  三、巩固与运用

  1、完成教科书第115页做一做的第1题。

  学生独立读题分析后,列式解答。鼓励用方程解。

  2、完成教科书第115页做一做的第2题。

  提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

  请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

  68=48(人)

  假设8条都是大船可坐48人。

  48-38=10(人)

  假设人数比实际的人数多10人。

  多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

  10(6-4)=5(条)

  8-5=3(条)

  这是表示有3条大船。

  四、作业

  练习二十六第一、二题。

鸡兔同笼教案 篇5

  一、教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。

  3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

  二、教材分析:

  (一)设计意图:

  通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

  (二)设计思路:

  遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的.为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。

  在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。

  教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

  三、教学设计:

  <一>、提出问题

  师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

  问:这段话是什么意思?(生试说)

  师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

  (板书课题:鸡兔同笼问题)

  <二>、解决问题

  师:说明为了研究方便,我们不妨先将题目的条件做一个简化。

  (课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)

  师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

  学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。

  师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

  学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)

  小组活动充分后进入小组汇报、集体交流阶段。

  师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

  学生汇报探究的方法和结论:

  1:画图法:(学生展示画图方法及步骤)

  ①先画8个头。

  ②每个头下画上两条腿。

  数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。

  ③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。

  每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。

  2.列表法:

  (展示学生所列表格)

  学生说明列表的方法及步骤:

  学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

  鸡 8 7 6 5 4 3 2 1

  兔 0 1 2 3 4 5 6 7

  脚 16 18 20 22 24 26

  鸡 8 7 6 5 4 3 2 1

  兔 0 1 2 3 4 5 6 7

  脚 16 18 20 22 24 26

  学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。

  鸡 8 6 4 3

  兔 0 2 4 5

  脚 16 20 24 26

【鸡兔同笼教案】相关文章:

《鸡兔同笼》教案05-22

鸡兔同笼教案02-21

《鸡兔同笼》教案02-16

鸡兔同笼小学教案03-27

《鸡兔同笼》教案15篇02-16

鸡兔同笼教案15篇07-05

鸡兔同笼教案(精选10篇)03-10

《鸡兔同笼》教案(精选12篇)05-11

【精品】鸡兔同笼教案三篇02-03

有关鸡兔同笼教案4篇04-07