可能性教案

时间:2024-05-28 11:45:54 教案 投诉 投稿

精选可能性教案范文集锦9篇

  作为一名教职工,时常需要编写教案,教案是备课向课堂教学转化的关节点。教案应该怎么写才好呢?下面是小编收集整理的可能性教案9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

精选可能性教案范文集锦9篇

可能性教案 篇1

  教学目标:

  1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。

  2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。

  3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

  教学重点:

  通过活动认识一些事件发生的等可能性。

  教学难点:

  理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的'***会是相等的。

  教学准备:

  多媒体,红球3个 黄球3个

  教学过程:

  一、创设情境,激趣导入。

  1.出示装有3个红球的袋子

  (1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)

  (2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)

  2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)

  二、活动体验,探索新知。

  1.摸球。

  (1)猜测。

  (出示上述装有3个红球和3个黄球的透明口袋)

  谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?

  学生自由猜测

  (2)验证。

  谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)

  ①明确活动要求。

  谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。

  ②明确统计方法。

  提问:怎样能记住每次摸球的结果呢?

  以前我们用过哪些方法来记录?(画“√”、涂方块…)

  在生活中,你还见过哪些记录数据的方法?(引导说出画“正”字的方法)

  怎样用画“正”字的方法来记录呢?谁能向大家介绍一下?

  教师相***出示“摸球结果记录表”,向学生介绍。

  讲解示范:一画“一”表示1次,1个“正”字表示记录5次。

  红球

  黄球

  ③明确分工。

  谈话:活动时我们要互相合作,互相帮助,这样才能顺利完成任务。请各小组在组长的带领下进行分工活动。

  ④活动体验。

  学生分组实验,教师巡视指导。

  (3)归纳。

  ①各小组交流汇报统计结果,教师用实物投影展示。

  ② 提问:统计的结果和你的估计差不多吗?我们再将各小组摸到红球的次数和摸到黄球的次数进行比较,你有什么发现?(有的小组摸到红球的次数和摸到黄球的次数同样多,有的小组摸到红球的次数比摸到黄球的次数多一些,有的小组摸到红球的次数比摸到黄球的次数少一些)如果继续摸下去,摸到红球的次数和摸到黄球的次数会怎样?

  讲述:这就说明从装有3个红球和3个黄球的袋子里任意摸一个球,摸到红球的***会和摸到黄球的***会是相等的,也就是摸到红球和黄球的可能性是相等的。

  提问:我们是用什么方法来记录摸球结果的?你觉得用画“正”字的方法来记录好不好?(记录简便、整理迅速)记录之后我们又对数据作了怎样的处理?(填入统计表)可见用统计的方法来研究事情发生的可能性是一个很好的方法。通过实验和统计得到了什么结论?(摸到红球和黄球的可能性是相等的)

  三、玩中交流,内化交流。

  1.抛小正方体。

  教师出示小正方体,问:知道小正方体有几个面吗?在6个面上都写有数字,小组成员仔细观察有哪些数字?各出现了几次?

  如果把小正方体抛30次,那么“1”“2”“3”各字朝上的次数会怎样呢?

  验证。

  明确活动要求:小组成员按顺序轮流抛小正方体,并记录朝上数字的次数。

  在小组内明确分工。

  活动体验:学生先分组实验,再统计结果,填写下列表格。

  朝上的数字

  1、2、3

  次数归纳。

  各小组汇报统计结果,教师将数据填入下表。

  朝上的数字

  1、2、3

  合计

  第一小组

  第二小组

  第三小组

  第四小组

  提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?

  反思。通过这一活动,你又明白了什么?为什么1、2、3朝上的次数差不多?

  讲述:根据合计栏里的数据,我们可以看出抛的次数越多,数字1、2、3朝上的次数就越接近。那么抛一次,向上的数字有几种可能性?这三种可能性的大小怎样?(相等)

  三、拓展深化

  谈话:如果要在装有红球和蓝球的口袋中任意摸一个球,摸到红球和蓝球的可能性相等,可以怎样放球?

  学生各抒己见

  谈话:为什么可以这样放?(因为红球和蓝球的个数相同,所以任意摸一个球,摸到红球和蓝球的可能性相等。)

  2.完成“想想做做”第2题

  先小组讨论,再展示交流,说说想法。

  四、总结

  提问:通过这节课的学习,你学会了什么?知道了什么?

  板书设计:

  统计与可能性

  3个红球 3个黄球

  当口袋里红球与黄球一样多时,摸到红球与黄球可能性是相等的。

可能性教案 篇2

  本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  1.体验事件发生的确定性和不确定性。

  对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。

  教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的

  (1)主题图的教学。

  教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的`。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。

  需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。

  (2)例1的教学。

  教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。

  教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。

  ①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。

  ②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。

  ③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教

  科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。

  ④另外,在汇报时只要学生能够结合具体的问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的盒子里摸出红棋子这个事件的发生是确定的”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。

  ⑤(3)例2的教学。

  ⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。

  ⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。

  ⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。

  ⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  ⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。

  为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。

  一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。

  由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。

可能性教案 篇3

  可能性

  第2课时

  学习内容:

  第94、95页例3、例4及课堂活动,练习二十三第4~6题。

  学习目标:

  1.知道事件发生的可能性有大有小,会求简单事件发生的可能性。

  2.通过实践操作,体验事件发生的可能性及游戏规则的公平性。

  3.会求简单事件发生的可能性。

  教学重点:

  会求简单事件发生的可能性及游戏规则的公平性。

  教学难点:

  让学生亲身经历事件发生的过程来感知可能性有大有小。

  教具准备:

  多媒体课件

  学习方法:

  小组合作、探究学习

  教学过程:

  一、复习旧知

  二、自主探索,学习新知

  1.教学例3。

  课件出示例3:有10张倒扣着的相同的.卡片,其中有4张画的燕子,3张画的大象,2张画的老虎,1张画的喜鹊,打乱后从中任意拿1张。

  (1)看了这些信息你有什么感想?

  (2)小娟喜欢燕子,她一定能拿到画有燕子的卡片吗?

  (3)拿到画有燕子的卡片的可能性和画有大象的卡片的可能性哪个大?为什么?

  (4)分组游戏,并做好记录,然后集体汇报。

  (5)思考:可能性的大小和什么有关系?

  (6)猜想:任意拿1张,拿到燕子的可能性是( ),拿到大象的可能性是( ),拿到老虎的可能性是( ),拿到喜鹊的可能性是( )。

  (7)汇报每组实验数据,进行分析计算,验证猜想。

  (8)教师小结求简单事件发生的可能性的方法。

  2.教学例4。将一副扑克牌的13张方块牌和匀,从中任意抽出1张,用“可能”“不可能”“一定” “偶尔”“经常”等来描述抽牌的情况。

  (1)认真审题,弄清题意:说说例4让我们做什么?

  (2)小组合作进行实验。

  (3)集体汇报实验结果。

  (4)填一填

  ( )抽到方块2,( )抽到黑桃A,( )抽到方块A,( )抽到方块。。。。。。

  3.教师小结:在我们生活中经常会用“可能”“不可能”“一定” “偶尔”“经常”等来描述生活中的一些现象。

  三、运用新知,巩固提高

  1、小林做5个纸团。并将其中几个纸团做上记号。小丁任意摸出1个并作记录,放回和匀后再摸

  (1)小丁摸了40次,将结果记录如下

  (2)分析上表中的数据,得出什么结论?

  (3)两人交换角色。小丁做纸团并做记号,再由小林来摸并记录

  两人交流对这次游戏活动的感受。

  2、盒中有形状相同的红色小棒8根,黄色小棒2根。小兰从盒中任意取出1根小棒,取出哪种颜色的小棒的可能性大?

  选择“不可能”、“偶尔”、“经常”填空。

  (1)( )取出红色小棒。

  (2)( )取出黄色小棒。

  (3)( )取出白色小棒

  四、学生质疑,教师总结

  教师:通过这节课的学习,谈一谈你有哪些收获?

  五、课堂作业:练习二十三第4~6题。

  家庭作业:第95页课堂活动。

  板书设计:

  可能性的大小

可能性教案 篇4

  《可能性》是义务教育课程标准实验教科书(人教版)三年级上册104-105页内容。其相关知识是新课标增设的教学内容,属于统计与概率学习领域。本节课是学生首次接触有关可能性的知识,是学生对可能性的认识和理解从定性向定量的过渡。小学数学课程标准中明确指出:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。“数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……”根据这一理念,基于这样的教学内容和学生的知识基础,在设计教学时,我注重联系学生的生活经验,创设有效的教学情境,精心组织活动,为学生提供探究空间、交流平台以促进学生主动学习。

  案例描述:

  教学目标:

  1、通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定、可能、不可能”来描述事情发生的可能性。

  2、在探索、解决问题的过程中,形成初步的判断、推理、概括能力。

  3、激发学生学习数学的兴趣,产生积极的情感体验。

  教学重点:

  感受体验事情发生的确定性和不确定性,会判断生活中“一定、可能、不可能”发生的事情。

  教、学具:、彩球、塑料袋

  教学过程:

  一、创设情景,初步感知

  1、初步感受事情发生的确定性

  (1)用“一定”来描述事情发生的确定性。

  师:同学们,老师最近学会了一种很神奇的魔法,想表演给大家看,你们想看吗?

  生:想看。

  师:老师手里有一个魔袋(一个不透明的袋子),里面装着一些彩球,请同学们从里面任意摸出一个,我能猜出它是什么颜色的。你们相信吗?

  (学生有的说信,有的说不信)

  师:那我们就试试吧。

  (师出示一个不透明的袋子,里面装有彩球,请学生任意摸出一个球,老师都能准确猜出球的颜色。学生猜测,袋中装的都是黄颜色的`球。)

  师:因为袋中装的全都是黄球,所以从里面任意摸出一个,结果怎样?

  师:当事情确定会发生时,我们可以用“一定”来描述。(板书:一定)

  把白球倒入空的不透明的袋子中,请学生描述会摸到什么颜色的球?

  [设计意图:良好的开端是成功的一半,一开始由猜球游戏导入新课,使学生很快进入最佳学习状态,兴趣盎然、主动参与。使学生在参与猜球的过程中明白“一定”的涵义,初步体验到什么有些事件的发生是“一定”的。]

  (2)用“不可能”来描述事情发生的确定性。

  师:林老师想从袋中(刚才装白球的袋)摸出一个红球,行吗?为什么?

  师:确定不会发生的事情,我们就用“不可能”(板书:不可能)来描述。从这个袋中还不可能摸出什么颜色的球?

  [设计意图:在学生已经理解“一定”的基础上,自然而然地引出“不可能”发生的事情,进一步体验什么情况下事件的发生是“不可能”的。至此,学生对确定性事件已经形成了初步的认识。]

  2、初步感受事情发生的不确定性。

  (1)用“可能”来描述事情发生的不确定性。

  师:(往只装有白球的袋中倒入若干个黄球)这时,任意摸出一个球,结果怎样?

  引导:用“可能”来描述事情发生的不确定性。

  (2)加深对“可能”的理解。

  请学生从装有黄、白、红球的袋中任意摸出一个球,摸之前先猜一猜可能摸到什么颜色的球。

  [设计意图:让学生在猜测中主动参与,学会用自己的语言来描述事件发生的情况,为新知内化创造条件。]

  二、互动交流,深层体验

  1、“生本”对话,描述可能性。

  师:通过刚才的活动,我们知道,当事情确定发生时,我们可以用“一定”来描述,当事情确定不会发生时,我们可以用“不可能”来描述,当事情不确定发生时,我们可以用“可能”来描述。下面,老师给大家介绍书上的几位小朋友(出示例1的插图)请同学们仔细观察,你能用“一定”、“不可能”、“可能”对正要摸棋的小朋友说些什么吗?

  [设计意图:对话是课堂学习、交流不可缺少的,让学生和书本进行“对话”,学生觉得新颖有趣,乐于对话,敢于对话,在对话交流中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。]

  2、揭示课题

  3、学习例2,判断可能性。

  出示例2,生独立判断,交流汇报。

  [设计意图;至此,学生对本节课所学的内容已经有了一定的掌握,对于例2放手让学生独立学习,培养学生自主学习的能力。]

  三、联系生活,应用拓展

  1、“生生”对话。

  小组内活动:

  ①往袋中装球,用“一定、不可能、可能”说一句话。

  ②提出一个要求,根据要求来装球。

  小组间活动:

  小组派代表,向其它小组的同学提问题,当场解决。

  [设计意图:再次设计对话环节,小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。]

  2、辨一辨。(书本习题)

  3、涂一涂。(书本习题)

  4、用“一定、可能、不可能”举一举生活中的例子。

  [设计意图:让学生带着数学去理解生活,结合生活去体会数学的价值。]

  四、课堂总结,升华情感

  师:这节课,你学会了什么,有什么收获?觉得自己学得怎样?心情如何?

  教学反思:

  1、 较好地整好教学资源。

  这节课的教学应创设更多的情境让学生在其中体验。教科书提供了丰富的情境材料,在此基础上,我以进行了整合。如例1这之前先设计摸球、猜球的颜色等活动来初步感知事情发生的可能性。对例1也进行了改编,与书本的小朋友进行对话,进一步体验事情发生的可能性。

  2、 灵活地组织数学活动。

  “数学教学是数学活动的教学”本节课的教学按照学生的认知规律和教学内容的特殊性,灵活地组织数学活动,给学生提供较充足的活动空间,探索空间和创造空间,使学生在操作、比较、实践中认识“可能性”如课一开始的“猜一猜”活动,接下来的“摸球”活动,小组内及小组间活动等,全过程无处不是“可能性”的学习与判断,可以说活动贯穿全课,“可能性”也融贯全课。

  3、 精心设计教学对话。

  每一堂课都离不开对话,本节课的教学对话可以说是一个亮点。在教学设计时,我非常注重“对话”在教学过程中的积极作用。主要体现在以下三点。

  (1) 师生对话

  在与学生对话中,我注重用饱满热情、生动的语言,自然可亲的态度与学生进行交流互动,创设平等、**、和谐的课堂氛围,同时关注对学生表达、概括能力的培养。

  (2) 生本对话

  教学例1时,我设计了“生本”对话环节:“你能用一定、不一定、可能和书上这位正要摸球的小男孩说些什么吗?”学生对这一活动感到新颖、有趣,乐于对话,敢于对话,在对话中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。

  (3) 生生对话

  在教学完例2后,我又设计了“生生”对话环节。小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。

  反思不足之处:

  在小组间的交流活动过程中,教师过于放手,学生所提问题不能很好的围绕“可能性”来展开。好果教师事先做一定的示范、指导,再放手让学生活动,这样可增强活动的可操作性和有效性。

可能性教案 篇5

  教学目标:

  进一步体会事情发生的不确定性,体会可能性的大小。并能用“一定”、“可能”、“不可能”等词来描述事情发生的可能性,获得初步的概率思想。

  能力目标:

  发展学生的语言表达能力和简单的推理、分析、判断能力,并能用所学知识解决生活中的实际问题。

  情感目标:

  培养学生的学习兴趣和良好的合作学习态度。在合作交流中培养学生团队精神,在自主探索中树立学生自信,在游戏活动中培养学生学习兴趣。

  教学重点:

  通过活动体验可能性并初步感受并判断可能性的'大小。

  教学难点:

  通过活动体验可能性并初步感受并判断可能性的大小。

  教学过程:

  一、游戏引入,感受“一定、可能、不可能”。

  老师这里有两张红桃,看看,一会我们玩游戏。我任意抽一张会是什么?谁来猜一猜?再看看。说说为什么?(都是红桃)

  1、用两张红桃,感受抽出来的一定是红桃。不可能是黑桃

  2、两张牌红桃及黑桃,得出可能是红桃也可能都是黑桃。为什么?板书:一定 不可能 可能

  二、自主探究,初步感受可能性有大小

  1、自己实验探索可能性的大小

  同学们手里都有一个转盘, 小组合作,动手做转盘游戏。游戏规则:每人转一次,组长记录,红黄的次数。一种黄颜色多,一种红颜色少。说一说,哪种颜色的可能性大?看各组结果。如果有失误就加全班。得出结论黄颜色的可能性大。让学生说说原因。

  总结理由:占的面积多的可能性大,面积少的可能性小。

  教师总结:看来,可能性是有大,有小的。板书:大小

  三、 通过各种练习进一步体会可能性的大小

  1、初步感受可能性的大小及原因。

  现在老师这里有一个同学们玩的游戏转盘,帮助老师猜猜他们最有可能玩的是哪一个。(1)判断:根据占的面积大小来判断,最有可能玩的是1号,因为面积大。

  老师连线(2)看课件连线,1个。(1)从笼子里跑出兔子。看看会出来什么颜色的。一定不是白的、一定是白的、可能性大、一样。让孩子们先自己判断。然后交流。

  重点是说理由。

  2、探索有几种可能性,可能性大小。联系实际4个课件

  (1)掷骰子、参观门票、摸球、圆珠笔、扑克牌与生活联系紧密的事情体会可能性的大小。

  教师:(1)色子是六个面,每个面是表示数字的点。想想有几种可能?.指名回答。(2)关于门票联系实际,说说几种可能?(3)摸球题,自己先看清楚每个盒子里有几个什么颜色的球?然后判断,填空。说明理由:什么颜色的多?可能性就大。(4)笔筒类似,比较简单。(5)审题:花色?红桃、黑桃、梅花都有可能,所以三种。红桃张数多,所以可能性大,梅花张数少,所以可能性小。

  四、深化学习,联系生活,并且试着改变大小。

  老师这里有一个特别有意思的动画,想看看吗?那就要认真看,还要认真思考,回答问题,能做到吗?

  (1)动画:扑到那种可能性大?因为蓝蝴蝶很多,所以可能性大,黄蝴蝶只有一只,所以可能性小。演示。学生看,证实自己的答案。改变大小:怎样才能抓到更多的黄蝴蝶?多放几只。可能性就更大了。教师小结:想让谁的可能性大,就把谁多放进去一些。

  现在同学们看看第四道题。你试着涂一涂。怎样才能符合要求。设计好了,再做。

  (2)涂色;学生自己涂色,必须有三种颜色,而且红色必须最多。3个红色,2个黄色,2个绿色。4个红色,1个黄色,2个绿色,4个红色1个绿的,2个黄的。5个红色1个绿色,1个黄色。展示学生作品。

  (3)设计转盘, 培养孩子思维能力。

  五、这道题比较难,看看谁最聪明。

  (1) 小组交流先说说怎样画,用铅笔把字写下了来,觉得合适了再画。看题目要求。

  同学们,元旦快到了,班里准备搞一次抽奖活动分别设立一、二、三等奖。请同学们开动脑筋帮助老师设计一下转盘。

  要求:三等奖最多,用黄颜色表示。

  二等奖其次,用蓝颜色表示

  一等奖最少,用红颜色表示。

  (2)集体交流,展示 两种:1红2蓝5黄 1红3蓝4黄

  六、总结归纳

  今天我们知道了可能性有大有小,还简单的接触到可能性的大小是可以改变的。

可能性教案 篇6

  课题:

  观察物体、统计与可能性、数字编码

  复习目标:

  1、能从不同的角度观察物体,并画出平面图,培养学生的空间观念。

  2、认识简单的可能性事件,会求简单事件发生的可能性,并用分数表示。能结合具体实例体会游戏的公平性,会求一组数据的中位数,提高学生的统计意识和能力。

  3、通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,学会运用数进行编码,初步培养学生的抽象、概括能力。

  复习重点:

  从不同方向观察多个几何形体。

  教学准备:

  小正方体10个。

  教学过程:

  一、谈话引入。

  今天这节课,我们一起来复习有关观察物体、统计与可能性、数字编码的知识。[板书课题]

  二、整理和复习。

  1、复习观察物体

  ①观察长方体,一次最多能看到几个面?

  ②出示总复习第8题。

  先让学生审题,理解题意,再让他们在草稿本上画一画,最后展示学生作品,集体订正。

  ③请你找出从上面、正面、侧面看到的形状。

  指名口答。

  ④P124第11题。

  同桌之间摆一摆,然后在全班展示学生的不同摆法。

  2、复习统计与可能性

  ①P122第9题。

  小红和小刚在玩抛硬币的游戏,谁能说一说他们的游戏规则。

  游戏规则公平吗?说说你的想法。

  两枚硬币抛下后可能出现的结果有以下四种情况(如表)小红和小刚获胜的.可能性都是2/4(1/2),所以游戏公平。

  第一枚硬币 第二枚硬币 结果

  1 正 正 小红赢

  2 正 反 小刚赢

  3 反 正 小红赢

  4 反 反 小刚赢

  ②P125第12题

  四人小组讨论后全班交流。

  三名学生可能会出现以下8种情况(如表),所有同学获胜的可能性都是2/8(1/4),所以游戏公平。

  第一位同学第二位同学第三位同学 结果

  1 手心 手心 手心 平

  2 手心 手心 手背 第三位同学赢

  3 手心 手背 手心 第二位同学赢

  4 手心 手背 手背 第一位同学赢

  5 手背 手背 手背 平

  6 手背 手心 手心 第一位同学赢

  7 手背 手心 手背 第二位同学赢

  8 手背 手背 手心 第三位同学赢

  ③说出下面这组数据的中位数。

  问:求中位数时要注意什么?

  如果有双数个数据,怎样求中位数?

  3、复习数字编码。

  ①咱们学校的邮政编码是多少?

  邮政编码共由几位数字组成?前两位数字表示什么?前三位、前四位及最后两位数字分别表示什么?

  ②介绍你自己的身份证号码,并说出各数字代表什么意义?

  师强调:身份证倒数第2位的数字是用来表示性别的,单数表示男性,双数表示女性。

  三、复习小结

  今天这节课复习了哪些内容?你有什么收获?还有什么不懂的问题?

  教学反思:

  前几部分复习内容,我都安排了学优生上复习课,可这部分内容却再也不敢放手了,其最主要的原因是可能性的部分习题,老师之间都时有争议,更何况学生。果不其然,今天在教学122页抛硬币时,学生们就到底是3种还是4种可能的结果发生了巨大分歧。教材125页“手心、手背”一题更是让他们无从下手。在教学此题时,我将重点放在引导学生如何将各种可能情况既不重复又不遗漏地写出来。在此特别感谢周欣同学,她的回答思路清晰,给全班同学许多启示。

  教学失误:

  周五布置作业时没考虑到要学生们准备10个小正方体,所以124页第11题今天只能请学生上台用教具拼摆,由于全班同学由“工程师”变成“观众”,所以课堂中少了孩子们发现与创造后的欣喜若狂。我会在明天的数学课中及时弥补这一失误。

可能性教案 篇7

  教学目的

  1通过摸球,装球等活动,初步体验有些事件的发生是确定的,有些事件的发生是不确定的,并能用“一定”,“可能”,“不可能”等词语来描述事件发生的可能性,获得概率的思想。

  2 培养初步的判断和推理能力。

  3培养学习数学的兴趣,形成良好的合作学习的态度。

  教学重点:感受体验有些事件发生的确定性和不确定性

  难点:理解,辨析“可能”,“一定”,“不可能”发生的事件

  教学过程:

  一 联系生活,激趣引入

  “今天,智慧爷爷带了个幸运王冠想戴在我们班一位扎两条小辫的女小朋友头上,谁可能会成为这个幸运的小天使呢?她坐在第一大组,猜猜她可能是谁? ( 学生猜测 )师强调可能。

  指一男生,可能会是他吗?(不可能),为什么呢?

  智慧爷爷悄悄告诉大家,那是穿红衣服的女孩,你能判断出什么结论吗?一定吗?

  为什么不猜a a ,bb了?

  在智慧爷爷没给我们缩小范围之前,可能是aa ,也可能是bb, 在我们的生活中,很多事情一时是不能确定的,都有他的可能性,这就是我们今天要学习的新本领“可能性”

  二 创设情境 探索新知

  小朋友们喜欢玩游戏吗?智慧爷爷带来了三种颜色的球,装在四个口袋里,我们来个比手气游戏,每组派2个同学,一个摸球,一个上黑板记录。哪一组小朋友摸到代表喜气的红球次数最多,哪一组就获胜。

  每组推选代表。下面的同学先猜一下,哪组可能获胜呢?(学生猜测)智慧爷爷悄悄告诉大家,第一组一定会胜。李老师不相信,你们相信吗?我们一起来试试。

  宣布规则:摸的同学不许看,每人摸5次。开始后,李老师说第一次,你们开始摸,说了第2次才能摸第2次。记录的同学看好你们组小朋友摸到球的颜色,摸一次就在对应颜色旁打钩。(学生摸球)

  他们都摸了5次,分别摸出了什么球?哪一组获胜了?

  看到这样的结果,你们是不是很惊讶啊,智慧爷爷告诉小朋友,他为什么猜得那么准呢?原来这四个口袋里分别有秘密呢?你能猜出来吗?请大家在小组里商量商量。

  谁来大胆猜测一下第一组的口袋里到底有什么秘密?

  都是红球。(打开看一下)那么任意摸一个,会是什么情况呢?

  一定是红球。如果学生能说出一定,教师表扬。小朋友的这个词用得真好。(师板书一定)。

  学生猜测一下2、3、4组口袋里分别有什么秘密?

  一一出示可能,不可能。

  小结:通过刚才的游戏,我们发现在全是红球的袋内任意摸一个,(“一定”是红球,)在没有红球的袋内任一摸一个,(“不可能”是红球,)在既有红球又有其他颜色的球的袋内任一摸一个,(有“可能”是红球。)

  三 找找好朋友

  智慧爷爷觉得小朋友们刚才的.表现非常棒,决定再和大家做个交朋友的游戏。看,他请来了一些小伙伴和大家来做好朋友。大家看看,都是谁来了?

  (出示小黑板,分别贴有米老鼠,唐老鸭、蓝精灵,史诺比,机器猫,小兔,猫)你想和谁教朋友呢?

  每个小动物下面都有号码,老师给每组发一个股子,你转到几就能和几号小动物交朋友了?

  四人为一组,先小组里猜猜自己可能会转到哪个朋友,轮流自己转转,每人转1次,看看分别转到了谁。

  集体交流:你们通过转转发现,除了可能和米老鼠交朋友,还可能和谁交到朋友?还可能呢?

  谁交到唐老鸭了?为什么没有人交到呢?(没有7号)所以我们不可能交到。

  李老师想和2号的小动物交朋友,你能设计一个股子,不管怎么转,一定是和米老鼠交到朋友?小组商量一下。

  四 摸果冻

  小朋友们真了不起,智慧爷爷拿来三种口味的果冻招待小朋友和你们的新朋友。

  (1) 出示3袋果冻,全是草莓味,桔子味和草莓味,柠檬味和橘子味。

  问:“从每袋内任意摸一个果冻,一定是草莓味的吗?

  小组商量讨论,集体交流

  (2 ) 如果你最想吃柠檬味的果冻,你会到哪个口袋里摸,不愿到哪个口袋摸呢?为什么?

  五 小小装配员

  智慧爷爷今天为我们带来了许多果冻,在分给大家之前,还想考考小朋友的智慧呢?你们愿意接受智慧爷爷的考验吗?请小朋友当小小装配员。按定单要求装果冻,看哪组合作的又快又好。

  订单:1 随意拿一个,一定是草莓味的

  2 随意拿一个,可能是草莓味的

  3 随意拿一个,不可能是草莓味的

  一一出示定单,说说是怎样放的,为什么那样放。

  六 说说可能性

  我们生活中,有些事是可能发生的,有些事是一定发生的,有些事是不可能发生的。

  选择:

  1 太阳从东方升起。(一定,不可能,可能)

  2 公鸡下蛋。(一定,不可能,可能)

  3 明天考试我得100分。(一定,不可能,可能)

  生活中的事情很多很多,你能不能利用这三个词来说说生活中的事情。

  同桌交流互说,全班交流

  生活中的例子很多很多,我们要做个有心人

  七;出示转盘,分布均匀,转动指针,会停哪呢?

  出示另一转盘,分布不均。(标设奖品)商家为什么这样设计呢?

  八 课堂总结

  今天你有什么收获?

可能性教案 篇8

  3.1 认识事件的可能性(教参)

  【教材分析】

  (一)教学内容分析:本节课内容属于概率范畴,意在帮助学生分清不确定的现象和确定的现象,使学生能定性地认识事件“可能、不可能、必然”发生的含义.让学生学会怎样用观察的方法去认识身边的不确定现象的数学规律.

  (二)学情分析:学生在日常生活中接触过一些不确定的现象,但他们对这些不确定现

  象的观察往往是零星的,短暂的.同时,学生对未知的事物又充满好奇且敢于质疑,很愿意投人到合作探究的实践活动中去.在学生小学阶段已学的有关事件可能性的认识的基础上,进一步使学生通过实例体会到可以用列举法来获得各种可能的结果数,从而使学生的认识达到升华.

  【教学目标】

  1.通过实例进一步体验事件发生的可能性的意义.

  2.了解必然事件、不确定事件、不可能事件的概念.

  3.会根据经验判断一个事件是属于必然事件、不可能事件,还是不确定事件.

  4.会用列举法(枚举、列表、画树状图)统计简单事件发生的各种可能的结果数.

  【教学重点、难点】

  1.事件发生的可能性的意义,包括按事件发生的可能性对事件分类.

  2.用列举法(列表、画树状图)统计简单事件发生的各种可能的结果数,需要较强的分析能力,是本节教学的难点.

  (基于对教材、教学大纲和学生学情的分析,制订相应的教学目标.同时,在新课程理念的指导下,注重对学生的动手能力、合作交流能力和对学生探究问题的习惯和意识的培养.这里没有用“使学生掌握…”,“使学生学会…”等字眼,保障了学生的主体地位,反映了教法与学法的结合,体现了新教材,新理念.)

  【教学过程】

  一、激趣、设疑、引题

  同学们做过抛掷硬币的游戏吗?请你试一试抛一枚硬币10次,把结果记录下来,看看有几次正面朝上,有几次反面朝上?

  做完游戏后,提出问题:

  (1)抛掷硬币10次,每次都正面朝上或反面朝上,可能吗?可能性大吗?

  (2)在刚才的游戏中,可能正反面同时朝上吗?

  (3)在刚才的游戏中,还有哪些事件一定会发生?你能得到哪些结论?

  事实上在我们的周围有很多事件一定不会发生,有些事件可能会发生,也可能不会发生,有些事件必然会发生.

  引出课题:认识事件的可能性.

  (利用学生都感兴趣的小游戏引入,可以激发学生的学习欲望,让他们迅速投入到数学知识的学习中,同时加强了人文数学的教育)

  二、观察、思考、巩固

  (一)观察和思考:你能举出几个生活中必然发生,不可能发生,

  可能发生的例子吗?(请大家发言)

  不仅在现实生活中有很多例子,而且在我们所学的各学

  科中也有很多例子.(利用多媒体展示“铁杵磨成针”“守株待兔”

  “愚公移山”这三个成语故事和天气预报的动画)

  同时给出必然事件、不可能事件和不确定事件的概念:

  在数学中,我们把在一定条件下必然会发生的事件叫做必然事件(certainevent);

  在一定条件下必然不会发生的事件叫做不可能事件(impossibleevent);

  在一定条件下可能发生,也可能不发生的事件叫做不确定事件(uncertainevent)或随机事件.

  (这里用贴近学生生活的事例和动感十足的多媒体展示,不但能激起学生的学习兴趣和热情,而且能让学生感受到数学与现实生活以及其他学科之间的联系,增强学生应用数学的意识.)

  (二)巩固、检测、反馈(利用题组区分概念):

  在课件巾设置能力区分度不同的三组题,以利于同学们正确理解概念.

  1.头脑运动会(设置一组容易题,以快速抢答的方式请同学在规定的时间内给出正确答案,对于没有把握的问题也可以向其他人求助.)

  问题:下面哪些事件是必然事件?哪些事件是不可能事件?哪些事件是不确定事件?

  (1)打开电视机,它正在播广告;

  (2)抛掷10次硬币,结果有3次正面朝上,8次反面朝上;

  (3)将一粒种子埋进土里,给它阳光和水分,它会长出小苗;

  (4)黑暗中我从我的一大串钥匙中随便选中一把,用它打开了门;

  (5)抛掷一枚均匀的骰子.掷得的数不是奇数就是偶数;

  (6)从一副洗好的只有数字1到l0的40张卡片中任意抽出一张,卡片上的数比6小;

  (7)一个普通的玻璃杯从10层楼落下,落到水泥地上会摔破.

  2.头脑风暴.

  例在一个箱子里放有1个白球和1个红球,它们除颜色外都相同。

  (1)从箱子里摸出一个球,是黑球.这属于那一类事件?摸出一个球,是白球或者是红球.这属于哪一类事件?

  (2)从箱子里摸出一个球,有几种可能?它们属于哪一类事件?

  (3)从箱子里摸出一个球,放回,摇均匀后再摸出一个球,这样先后摸得的两球有几种不同的可能?

  (列表或画树状图是人们用来列出事件发生的所有不同可能结果的常用方法,它可以帮助我们分析问题,而且可以避免重复和遗漏,即直观又条理分明.)

  不可能事件 可能事件 必然事件

  |a|的值

  a的'倒数

  若a+b=0(a,b的之间关系)

  3.个性空间(设置一组稍难题,对所学知识进一步巩固).

  问题1:列表造句:

  问题2:(1)有2种不同款式的衬衣和2种不同款式的裙子,各取一件衬衣和一条裙子搭配,问有多少种搭配的可能?

  (2)笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子的门都打开.松鼠要先经过第一道门(A,B或c),再经过第二道门(D,或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有多少种不同的可能?

  (在完成了两组区分度不同的练习之后,对于培养学生合作学习,激发学习兴趣都有帮助,至此本节课的教学目标已达成)

  (三)完成课本课内练习.

  三、概括、梳理、升华

  1.采用谈话式小结.教师提问:

  (1)你在这节课的学习中,最大收获是什么?

  (2)你对哪一点最感兴趣?

  (3)你受到哪些启迪?

  (4)你还有什么新的发现?

  (这种小结方式很容易沟通师生之间的感情,学生容易投入和参与,让学生自由说出自己的想法,把总结评价的主动权充分地交给学生,同时给学生一个开放的思维空间,培养学生的知识整理与语言表达能力,情绪会被再度调动起来,从而起到认知升华的作用)

  2.判断一个事件是属于必然事件,不可能事件,还是不确定事件.用列举法统计简单事件发生的各种可能的结果数.

  四、布置作业

  1、课本作业题

  2、1999年,全国少工委与中国青少年研究中心调查显示,46.9%的中小学生没有达到8时的睡眠时间标准,请你在班级里也做一次调查,你的结论是什么?

可能性教案 篇9

  【教材分析】

  (一)教学内容分析:

  可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

  教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

  (二)学情分析

  考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

  【教学目标】

  1、 了解概率的意义

  2、 了解等可能性事件的概率公式

  3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

  进一步认识游戏规则的公平性

  【教学重点、难点】

  重点:概率的意义及其表示

  难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

  【教学过程】

  (一) 创设情境,引入新知:

  引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

  分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

  解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

  (这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

  (二) 师生互动,探索新知:

  从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

  ①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

  ②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

  ③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

  接着类似的可以让学生自己结合生活经验独立举一些例子。

  (这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

  然后教师归纳,在教学中我们把事件发生的可能性的.大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

  如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

  强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

  例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

  (三) 讲解例题,综合运用:

  在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

  例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

  分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

  解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

  一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

  (例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

  从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

  (四) 练习反馈,巩固新知:

  做一做:

  1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

  (根据班级各小组的实际人数回答)

  2、 转盘上涂有红、蓝、绿、黄四种颜色,

  每种颜色的面积相同。自由转动一次转盘,

  指针落在红色 区域的概率是多少?

  指针落在红色或绿色 区域的概率是多少?

  (1/4,1/2)

  (五)变式练习,拓展应用:

  例2:如图所示的是一个红、黄两色各占

  一半的转盘,让转盘自由转动2次,指针2

  次都落在红色 区域的概率是多少?一次落在

  红色 区域,另一次落在黄色 区域的概率是多少?

  分析:

  (1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

  (2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

  (3)统计所求各个事件所包含的可能结果数。

  解:根据如图的树状图,所

  有可能性相同的结果数有4种:

  黄,黄;黄,红;红,黄;红,红。

  其中2次指针都落在红色 区域的可能结

  果只有1种,所以2次都落在红色 区域

  的概率 ;

  一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

  变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

  (本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

  (五) 反思总结,布置作业:

  引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

  五、教学说明:

  本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

【可能性教案】相关文章:

《可能性》教案01-31

可能性教案04-16

可能性教案范文04-13

《可能性》教案15篇02-13

《可能性》教案(15篇)02-13

可能性教案15篇01-31

可能性教案(15篇)01-31

可能性教案(精选15篇)02-18

可能性教案(通用15篇)02-17

《可能性》教案(通用26篇)02-01