列方程解决实际问题教案

时间:2024-09-26 16:39:16 教案 投诉 投稿

关于列方程解决实际问题教案3篇

  作为一名优秀的教育工作者,时常要开展教案准备工作,教案是教学活动的依据,有着重要的地位。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的列方程解决实际问题教案3篇,仅供参考,希望能够帮助到大家。

关于列方程解决实际问题教案3篇

列方程解决实际问题教案 篇1

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  上节课我们复习了用字母表示数、解方程,这节课我们复习列方程解决实际问题。(板书课题:列方程解决实际问题)

  ⊙回顾与整理

  1.列方程解应用题的步骤。

  (1)弄清题意,确定未知数并用x表示;

  (2)找出题中数量之间的相等关系;

  (3)列方程,解方程;

  (4)检验,并写出答语。

  2.列方程解应用题的关键及找等量关系的方法。

  (1)列方程解应用题的关键是什么?

  列方程解应用题的关键是找出题中的等量关系,根据等量关系列方程并解答。

  (2)你知道哪些找等量关系的方法?

  预设

  生1:根据关键词语找等量关系。

  生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。

  生3:根据常见的数量关系找等量关系。

  生4:根据计算公式找等量关系。

  ⊙典型例题解析

  1.课件出示例1。

  某校有若干间学生寄宿的宿舍,如果每间宿舍住6人,则多出36人;如果每间宿舍住8人,则多出3间宿舍。寄宿的学生有多少人?宿舍有多少间?

  分析 本题考查学生列方程解决实际问题的能力,应抓住总人数不变找出等量关系来列方程。

  解答 解:设宿舍有x间。

  6x+36=8x-3×8

  x=30

  6×30+36=216(人)或8×30-3×8=216(人)

  答:寄宿的学生有216人,宿舍有30间。

  2.课件出示例2。

  父子两人现在的年龄和是53岁,8年后,父亲的年龄是儿子的`2倍,求父亲和儿子现在的年龄各是多少岁。

  分析 以8年后父亲的年龄是儿子的2倍为等量关系,假设现在儿子是x岁,则8年后儿子是(x+8)岁,父亲是(53-x+8)岁。

  解答 解:设现在儿子是x岁,则8年后父亲是(53-x+8)岁。

  53-x+8=(x+8)×2

  53-x+8=2x+16

  3x=61-16

  x=15

  53-15=38(岁)

  答:父亲现在的年龄是38岁,儿子现在的年龄是15岁。

列方程解决实际问题教案 篇2

  一、教材分析:

  本节课是在五年级下册初步认识方程,并会用等式的性质解一步方程、会列方程解决相关简单实际问题的基础上进行教学的。通过教学让学生理解并掌握形如axb=c的方程的解法,会列上述方程解决两步计算的实际问题。

  教学时,教师注意以数量甲比数量乙的几倍多(少)几的问题为载体,引导学生在解决问题的过程中,逐步掌握相关方程的几解法,积累分析数量关系并把实际问题抽象为方程的经验。

  二、教学目标:

  1.使学生在解决实际问题的过程中,理解并掌握形如axb=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2.使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

  使学生在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流、自觉检验等习惯。

  教学难点:

  重点:使学生在解决实际问题的过程中,理解并掌握形如axb=c的方程的解法,会列上述方程解决两步计算的实际问题。

  难点:理解并掌握形如axb=c的方程的解法,会列上述方程解决两步计算的实际问题

  三、教学过程

  (一)教学例1

  1.谈话引入:西安是我国有名的历史文化名城,有很多著名的古代建筑,其中

  包括闻名遐迩的大雁塔和小雁塔,(出示相应图片)这节课,我们先来研究一个与这两处建筑有关的数学问题。(小黑板出示例1的文字部分)

  2.提问:题目中告诉我们哪些条件?要我们求什么问题?

  启发:你能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?(根据学生回答,教师在题目中相关文字下作出标志,并要求学生进行完整地表述)

  提出要求:你能不能用不同的等量关系式将单眼塔 和小雁塔高度之间的相等关系表示出来?

  交流板书学生想到的等量关系式:①小雁塔的高度2-22=大雁塔的高度; ②小雁塔的高度2=大雁塔的高度+22;③小雁塔的高度2-大雁塔的高度=22。

  3.引导学生观察第一个等量关系式,提问:在这个等量关系式中,哪个数量是

  已知的?哪个数量是要我们去求的?

  【评析:这只解决问题的关键一步,因为找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题。并通过小组交流各自的思考,促使学生透彻地理解大雁塔与小雁塔高度之间的相等关系从而灵活地解决问题。】

  追问:我们可以用什么方法来解决这个问题?

  明确方法,揭示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。(板书课题:列方程解决实际问题)

  4.谈话:我们已经学过列方程解决简单的实际问题。谁能说说列方程解决问题一般要经过哪几个步骤?

  让学生先自主尝试设未知数,并根据第一个等量关系列出方程。

  5.提问:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?

  交流明确:首先要应用等式的性质将方程两边同时加上22,使方程变形为:2x=?,再用以前学过的方法继续求解。要求学生接着例呈现的第一步继续解出这个方程,组织交流解方程的完整过程,核对求出的解,并提示学生进行检验后再写上答句。

  【评析:以解决问题为载体,引导学生在解决问题的过程中,逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。】

  6.提问:还可以怎样列方程?(学生自己列出方程后,在小组内交流并说说怎样求出方程的解。

  引导小结:刚才我们通过列方程解决了一个实际问题,你能说说列方程解决实际问题的大致步骤吗?其中哪些环节很重要?

  引导学生关注:①要根据题目中的条件寻找等量关系,而且一般要找出最容易发现的等量关系;②分清等量关系中的`已知量和未知量,用字母表示未知量并列方程;③解出方程后,要即使进行检验。

  【引导学生从不同角度分析题中的数量关系,并根据不同的等量关系列出不同的方程,体会列方程解决实际问题的灵活性,感受方程的优点和价值。】

  (二)、巩固练习

  1.做练一练先让学生读题,并设想解决这一问题的方法和步骤,然后让学生独立完成并交流。交流时让学生说说找出了怎样的等量关系,根据等量关系列出了怎样的方程,是怎样解列出的方程的,对求出的解有没有检验等。再让学生核对自己的答案,检查自己的解题过程。

  启发思考:这个一 与例1有什么相同的地方?有什么不同的地方?

  2.做练习一第1题。

  先让学生说说解这些方程时第一步要怎样做,依据是什么?然后让学生独立完成。反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验。

  3.做练习一的第2题。

  学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。

  4.做练习一的第3题。

  生独立完成后,指名说说自己的思考过程,进一步突出要根据题中数量之间的相等关系列方程。

  【通过练习,有利于学生及时巩固并掌握有关方程的解法,进一步熟悉此类问题中的数量关系。】

  (三)、全课总结

  今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?

  (四)、课堂作业

  1.做练习一的第4题和第5题。

  2.补充与习题相应练习。

列方程解决实际问题教案 篇3

  教学内容:

  教科书P13例9 、P14练一练、P16练习三第1~3题。

  教学目标:

  1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。

  教学重点:

  掌握列方程解应用题的基本方法, 在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。

  教学难点:

  能正确找出应用题中数量间的相等关系。

  教学过程:

  一、谈话导入

  今天研究一个与颐和园有关的数学问题。

  二、学习新知

  1.P13例9

  (1)指名读题 ,分析数量关系。

  用线段图表示出题目中数量之间的关系吗?

  学生尝试画图,集体交流。

  根据线段图得到:水面面积+陆地面积=颐和园的占地面积

  启发:这大题目中有两个未知数,我们设谁为x呢?

  (2)列方程并解方程

  指名学生列出方程,鼓励学生独立求解。

  如果用x表示陆地面积,那么可以怎样表示水面面积呢?

  追问:这道题可以怎样检验?

  检验:A、72.5+72.53=290(公顷) B、217.572.5=3

  (3)观察我们今天学习的'方程,与前面的有什么不同?

  小结:像这样含有两个未知数的问题我们也可以列方程来解答。

  (4)学生独立完成P14练一练第1题

  三、巩固练习

  1.P14练一练第2题

  教师引导学生找出数量关系式

  陆地面积2.4-陆地面积=2.1

  2.解方程

  2x+3x=60

  3.6x-2.8x=12

  100x-x=198

  师:这几道方程以例题中的方程有什么共同特点,解这一类方程时要先做什么?依据是什么?

  3.根据线段图列出方程

  4.解决实际问题:(列方程解)

  (1)柏树松数共有750棵,柏树的棵数是松树的1.5倍,两种树各多少棵? 为什么选择松树的数量设为x呢?

  (2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

  在做这道题时你认为应注意什么呢?

  四、全课小结

  这节课学习了列方程解决问题?

  在解答这一类应用题时应注意什么?

  五、课堂作业

  P16练习三第2-3题

【列方程解决实际问题教案】相关文章:

精选列方程解决实际问题教案4篇07-14

列方程解决实际问题教案五篇08-13

列方程解决实际问题教案合集5篇05-13

列方程解决实际问题教案汇总五篇05-12

列方程解决简单的实际问题教学反思04-05

《用除法解决实际问题》教案03-04

《用连除解决的实际问题》的教学反思11-26

实际问题与方程教案01-29

列方程教学反思01-04