平行四边形教案

时间:2024-07-14 04:46:30 教案 投诉 投稿

【精品】平行四边形教案四篇

  作为一名为他人授业解惑的教育工作者,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。怎样写教案才更能起到其作用呢?下面是小编为大家整理的平行四边形教案4篇,仅供参考,大家一起来看看吧。

【精品】平行四边形教案四篇

平行四边形教案 篇1

  【学习目标】

  1、平行四边形性质(对角线互相平分)

  2、平行线之间的距离定义及性质

  【新课探究】

  活动一:

  如图,□ABCD的两条对角线AC、BD相交于点O.

  (1)图中有哪些三角形是全等的?有哪些线段是相等的?

  (2)想办法验证你的猜想?

  (3)平行四边形的性质:平行四边形的对角线

  几何语言:∵四边形ABCD是平行四边形(已知)

  ∴AO==AC,BO==BD()

  活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.

  (1)线段AC,BD有怎样的位置关系?

  (2)比较线段AC,BD的长短.

  (3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.

  【知识应用】

  1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

  2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.

  3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是

  【当堂反馈(小测)】:

  1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

  2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长

  3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?

  【巩固提升】

  1.平行四边形的两条对角线

  2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

  3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是

  4、下列性质中,平行四边形不一定具备的是()

  A、对角互补B、邻角互补C、对角相等D、内角和是360°

  5、下列说法中,不正确的是()

  A、平行四边形的对角线相等B、平行四边形的对边相等

  C、平行四边形的.对角线互相平分D、平行四边形的对角相等

  6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长

  7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。

  8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。

  (1)写出图中每一对你认为全等的三角形;

  (2)选择(1)中的任意一对进行证明。

  9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。

  (1)多做几条这样的直线,看看它们有什么共同的特征

  (2)试着用旋转的有关知识解释你的发现。

平行四边形教案 篇2

  【教学目标】

  1、知识与技能:

  探索与应用平行四边形的对角线互相平分的性质,理解平行线间的距离处处相等的结论,学会简单推理。

  2、过程与方法:

  经历探索平行四边形性质的过程,进一步发展学生的逻辑推理能力及有条理的表达能力。

  3、情感态度与价值观:

  在探索平行四边形性质的过程中,感受几何图形中呈现的数学美。让学生学会在独立思考的基础上积极参与对数学问题的讨论,享受运用知识解决问题的成功体验,增强学好数学的自信心。

  【教学重点】:

  探索并掌握平行四边形的对角线互相平分和平行线间的距离处处相等的性质。

  【教学难点】:

  发展合情推理及逻辑推理能力

  【教学方法】:

  启发诱导法,探索分析法

  【教具准备】:多媒体课件

  【教学过程设计】

  第一环节回顾思考,引入新课

  什么叫平行四边形?

  平行四边形都有哪些性质?

  利用平行四边形的性质,我们可以解决相关的计算问题。阿凡提是传说中很聪明的人。一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说:给你两块地,一块是平行四边形形状的(如下图,AB=10,OA=3,BC=8),还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?

  [学生活动]此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到合适的解决办法.

  [教学内容]教师乘机引出课题,明确学习任务.

  第二环节探索发现,应用深化

  1、做一做:(电脑显示P100“做一做”的内容)

  如图4-2,□ABCD的'两条对角线AC,BD相交于点O,

  (1)图中有哪些三角形是全等的?有哪些线段是相等的?

  (2)能设法验证你的猜想吗?

  [教师活动]教师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具(刻度尺、剪刀、图钉),尝试在交流合作中动手探究平行四边形的对角线有何性质.

  2、观察、讨论:(小组交流)

  通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。

  [教师活动]探究结束后,分组展示结果,教师利用课件展示“旋转法”的实验过程,增强教学的直观性.

  结论:平行四边形的对角线互相平分。

  [教师活动]“实验都是有误差的,我们能否对此进行理论证明?”

  [学生活动]此问题难度不大.

  [教师活动]教师让学生口述证明过程.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质.

  活动二

  刚才财主巴依提出的问题你能解决吗?

  学生口述过程,教师最后给出规范的解题过程。

  练一练:

  财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中(点E与A、D不重合),你能知道这里有多少对全等三角形吗?

  [教师活动]此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形.

  活动三

  电脑显示P101关于铁轨的图片

  提出问题:“想一想”

  已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,

  (1)线段AC,BD所在直线有什么样的位置关系?

  (2)比较线段AC,BD的长。

  引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。

  (让学生进一步感知生活中处处有数学)

  A.(学生思考、交流)

  B.(师生归纳)

  解(1)由AC⊥b,BD⊥b,得AC//BD。

  (2)a//b,AC//BD,→四边形ACDB是平行四边形

  →AC=BD

  归纳:

  若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。

  即平行线间的距离相等。

  [议一议]:

  举你能举出反映“平行线之间的垂直段处处相等实例吗”?

  活动目的:

  通过生活中的实例的应用,深化对知识的理解。

  第三环节巩固反馈,总结提高

  1、说一说下列说法正确吗

  ①平行四边形是轴对称图形()

  ②平行四边形的边相等()

  ③平行线间的线段相等()

  ④平行四边形的对角线互相平分()

  2、已知,平行四边形ABCD的周长是28,对角线AC,BD相交于点O,且△OBC的周长比△OBA的周长大4,则AB=

  3、已知P为平行四边形ABCD的边CD上的任意点,则△APB与平行四边形ABCD的面积比为

  4、平行四边形ABCD中,AC,DB交于点O,AC=10。DB=12,则AB的取值范围是什么?

  5、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

  第四环节评价反思,目标回顾

  活动内容:

  本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?

  [布置作业]:

  P102习题4.21,2,3

  探究题已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF

平行四边形教案 篇3

  教学目的:

  1、深入了解平行四边形的不稳定性;

  2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)

  3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;

  4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。

  教学重点:

  平行四边形的性质和判定。

  教学难点:

  性质、判定定理的运用。

  教学程序:

  一、复习创情导入

  平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  二、授新

  1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:

  2、自学质疑:自学课本P79-82页,并提出疑难问题。

  3、分组讨论:讨论自学中不能解决的问题及学生提出问题。

  4、反馈归纳:根据预习和讨论的效果,进行点拨指导。

  5、尝试练习:完成习题,解答疑难。

  6、深化创新:平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  7、推荐作业

  1、熟记“归纳整理的内容”;

  2、完成《练习卷》;

  3、预习:(1)矩形的定义?

  (2)矩形的性质定理1、2及其推论的内容是什么?

  (3)怎样证明?

  (4)例1的解答过程中,运用哪些性质?

  思考题

  1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?

  跟踪练习

  1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )

  2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。

  3、下列条件中,能够判断一个四边形是平行四边形的是( )

  (A)一组对角相等; (B)对角线相等;

  (C)两条邻边相等; (D)对角线互相平分。

  创新练习

  已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)

  达标练习

  1、已知如图,O为平行四边形ABCD的.对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。

  2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。

  综合应用练习

  1、下列条件中,能做出平行四边形的是( )

  (A)两边分别是4和5,一对角线为10;

  (B)一边为4,两条对角线分别为2和5;

  (C)一角为600,过此角的对角线为3,一边为4;

  (D)两条对角线分别为3和5,他们所夹的锐角为450。

  推荐作业

  1、熟记“判定定理3”;

  2、完成《练习卷》;

  3、预习:

  (1)“平行四边形的判定定理4”的内容 是什么?

  (2)怎样证明?还有没有其它证明方法?

  (3)例4、例5还有哪些证明方法?

平行四边形教案 篇4

  课型:

  新授课。

  教学分析:

  本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。

  教学目标:

  (一)知识与技能:

  引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。

  (二)过程与方法:

  学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。

  (三)情感态度价值观:

  培养学生积极参与的学习品质,使学生获得成功的体验,感受教学与日常生活的密切联系,树立学好数学的信心。

  教学策略:

  创设情景、动手实践、交流合作。

  教具学具:

  多媒体课件、长方形、正方形、格子纸、三角板。

  程:

  一、创设情景,提出问题。

  今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题)

  二、协作探索,研究问题。

  1、教学长方形、正方形。

  (1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?

  (2)教学对边的概念:

  在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示)

  (3)小组合作研究长方形、正方形的特点。

  下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。

  长方形的对边和正方形的边有什么特点,角有什么特点?

  (4)指名汇报,并演示自己发现的过程。

  共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的.对边相等,正方形的四条边都相等。

  (5)在方格纸上画出长方形、正方形

  2、教学平行四边形。

  (1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?

  我们把这样的四边形叫做平行四边形。

  (2)平行四边形的特点:

  出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点?

  (3)总结:平行四边形有四条边,四个角,对边相等。

  (4)动手操作:拿出活动的四边形:拉动之后你发现了什么?

  动手操作

  三、运用知识,解决问题。

  1、猜一猜。(多媒体演示)

  2、找一找。(多媒体演示)

  3、说一说。

  四、总结。

  你今天从智慧星那里学到了什么?

  板书设计:

  长方形正方形和平行四边形

  边:4条

  4条4条

  对边相等全都相等对边相等

  角:4个直角4个直角4个

【平行四边形教案】相关文章:

《平行四边形的面积》教案01-02

认识平行四边形教案03-05

平行四边形面积教案02-09

平行四边形的面积教案07-24

平行四边形的面积教案03-17

平行四边形教案优秀03-27

平行四边形的认识教案07-30

平行四边形面积的计算教案03-03

数学《平行四边形的面积》教案02-14

数学平行四边形的面积教案02-28