实用的平行四边形教案模板集锦九篇
作为一位杰出的老师,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。如何把教案做到重点突出呢?以下是小编收集整理的平行四边形教案9篇,欢迎阅读,希望大家能够喜欢。
平行四边形教案 篇1
教学内容:
课本第73-74页练习十七第4-9题
教学要求:
1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
教学重点:
能比较熟练地运用平行四边形的计算公式,解答有关的应用题。
教具准备:
口算卡片。
教学过程:
一、复习
1、平行四边形的面积计算公式是什么?
2、口算:
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
3、求平行四边形的面积。
(1)底12米,高是7米;(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米
4、出示课题。
二、新授
1、补充例题
一块平行四边形的麦地底长125米,高24米,它的面积是多少平方米?
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?
与上题比较,从数量关系上看,什么是相同的`?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
A900×(125×24÷10000)
B900÷(125×24)
C900÷(125×24÷10000)
2、(略)
三、巩固练习
练习十七第6、7题
四、课堂作业
练习十七第8、9题
⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?
⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?
板书设计:
平行四边形面积的计算
平行四边形教案 篇2
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的` 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 教学目标设计: 1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。 2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。 3、培养初步的推理能力和合作意识,以及解决实际问题的能力。 教学重点:探究平行四边形的面积公式 教学难点:理解平行四边形的面积计算公式的推导过程 教学过程设计: 一、创设情境,激发矛盾 拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽 教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长 学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。 教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底 边长×邻边长吗? 今天这节课我们就来研究“平行四边形的面积”。教师板书课题。 学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢? 二、另辟蹊径,探究新知 1、寻找根源,另辟蹊径 教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢? 引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢? 学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的`积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢? 2、适时引导,自主探索 教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢? (1)学生操作 学生动手实践,寻求方法。 学情预设:学生可能会有三种方法出现。 第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。 第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。 (2)观察比较 刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢? (3)课件演示 是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。 3、公式推导,形成模型 既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢? 先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。 A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变? B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系? C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?) 学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下: 长方形的面积 = 长 × 宽 平行四边形的面积 = 底 × 高 4、变化对比,加深理解 引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么? 5、自学字母公式,体会作用 请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的 面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里? 三、实践应用 1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据) 2、看图口述平行四边形的面积。 3分米 2.5厘米 3、这个平行四边形的面积你会求吗?你是怎样想的? 4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个? 学习目标 1、 理解平行四边形的概念及其特征,知道平行四边形两组对边分别平行且相等。 2、认识平行四边形的底和高,会画出平行四边形的高; 3、培养学生的实践能力,观察能力和分析能力。 学习重点: 掌握平行四边形的特征。 学习难点: 会画平行四边形的高。 学习准备: 课件、长方形框架、平行四边形纸、钉板 导学过程: 一、魔术表演: 教师拿出一个用四根木条钉成的长方形,两手捏住长方形的两个对角,向相反方向拉,观察两组对边有什么变化?拉成了什么图形?为什么会发生这样的变化? 二、揭示课题和目标。 三、体验平行四边形的特性 1、揭示平行四边形的不稳定性; 2、你能举出日常生活中应用平行四边形容易变形这一性质的例子吗? 3、图片展示。 四、探究平行四边形的特征 (一)观察图形,合理猜想 请学生拿出手里的平行四边形纸,让学生大胆猜平行四边形的特征。学生发言。 (二)动手操作,验证猜想 1、操作实践。教师提示用三角板或者直尺验证。学生小组验证。 2、汇报交流验证的过程。 预设:1、测量后发现对边相等 2、延长对边不相交,所以对边平行 3、用画垂线的方法,从一边向另一边画垂线,垂线段都相等,所以对边平行。 3、归纳特征。 师:现在请你用一句话概括平行四边形的特征。生用自己的语言描述。 教师帮助归纳并板书:两组对边分别平行且相等 4、应用做教材67页1题。 五、动手操作,认识“底和高”: 1、观察画出的垂直线段,告诉学生: 像这样从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的`边叫平行四边形的底。 2、请学生猜猜,平行四边形有多少条高? 3、揭示平行四边形高的画法 4、练习:画出四个平行四边形的高。 五、智慧屋(练习题) 六、全课总结:通过本节课的学习,你知道了平行四边形的哪些东西呢? 课型: 新授课。 教学分析: 本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。 教学目标: (一)知识与技能: 引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。 (二)过程与方法: 学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。 (三)情感态度价值观: 培养学生积极参与的学习品质,使学生获得成功的`体验,感受教学与日常生活的密切联系,树立学好数学的信心。 教学策略: 创设情景、动手实践、交流合作。 教具学具: 多媒体课件、长方形、正方形、格子纸、三角板。 教学流程: 一、创设情景,提出问题。 今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题) 二、协作探索,研究问题。 1、教学长方形、正方形。 (1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角? (2)教学对边的概念: 在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示) (3)小组合作研究长方形、正方形的特点。 下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。 长方形的对边和正方形的边有什么特点,角有什么特点? (4)指名汇报,并演示自己发现的过程。 共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。 (5)在方格纸上画出长方形、正方形 2、教学平行四边形。 (1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗? 我们把这样的四边形叫做平行四边形。 (2)平行四边形的特点: 出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点? (3)总结:平行四边形有四条边,四个角,对边相等。 (4)动手操作:拿出活动的四边形:拉动之后你发现了什么? 动手操作 三、运用知识,解决问题。 1、猜一猜。(多媒体演示) 2、找一找。(多媒体演示) 3、说一说。 四、总结。 你今天从智慧星那里学到了什么? 板书设计: 长方形正方形和平行四边形 边:4条 4条4条 对边相等全都相等对边相等 角:4个直角4个直角4个 学习目标: 1、理解并掌握平行四边形的定义 2、掌握平行四边形的性质定理1及性质定理2 3、提高综合运用知识的能力 预习指导: 1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。 2、____________________________________是平行四边形。 3、平行四边形的性质是:_________________________________________. 学习过程: 一、学习新知 1、平行四边形的定义 (1)定义:________________ ________________________叫做平行四边形。 (2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形 (3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形, 反过来,平行四边形就一定具有性质。 (4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________. 2、平行四边形的性质 平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢? 已知:如图 ABCD, 求证:AB=CD,CB=AD. 分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论. 证明: 总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。 在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。 证明: 通过上面的证明,我们得到了: 平行四边形的性质定理1是_______________________________________. 平行四边形的`性质定理2是_______________________________________. 二、应用举例: 例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE. 例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。 (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的 度数。 例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE. 例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。 (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。 三、随堂练习 1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。 2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。 四、课堂小结 : 1、平行四边形的概念。 2、平行四边形的性质定理及其应用。 五、当堂检测 1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ). (A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是 2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD, EF与GH相交与点O,那么图中的平行四边形一共有( ). (A)4个 (B)5个 (C)8个 (D)9个 3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF. 教学目标: 1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积. 2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力. 3.对学生进行辩诈唯物主义观点的启蒙教育. 教学重点:理解公式并正确计算平行四边形的面积. 教学难点:理解平行四边形面积公式的推导过程. 学具准备:每个学生准备一个平行四边形。 教学过程: 1、什么是面积? 2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢? 二、导入新课 根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。 三、讲授新课 (一)、数方格法 用展示台出示方格图 1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米) 2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。 2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么? :如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。 (二)引入割补法 以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。 (三)割补法 1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形? 2、然后指名到前边演示。 3、教师示范平行四边形转化成长方形的过程。 刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。 ①先沿着平行四边形的高剪下左边的直角三角形。 ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。 ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。 请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。) 4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。) ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么? ②这个长方形的长与平行四边形的底有什么样的关系? ③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。 5、引导学生平行四边形面积计算公式。 这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的.面积=长×宽) 那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。) 6、教学用字母表示平行四边形的面积公式。 板书:S=a×h,告知S和h的读音。 说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。 (6)完成第81页中间的“填空”。 7、验证公式 学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。 条件强化:求平行四边形的面积必须知道哪两个条件?(底和高) (四)应用 1、学生自学例1后,教师根据学生提出的问题讲解。 3、判断,并说明理由。 (1)两个平行四边形的高相等,它们的面积就相等() (2)平行四边形底越长,它的面积就越大() 4、做书上82页2题。 四、体验 今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的? 五、作业 练习十五第1题。 六、板书设计 平行四边形面积的计算 长方形的面积=长×宽 平行四边形的面积=底×高 S=a×hS=ah或S=ah 课后反思: 导学目标: 1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。 2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。 3、在探索过程中发展学生的`合理推理意识、主动探究的习惯。 4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。 导学重点:平行四边形的判别方法。 导学难点:根据判别方法进行有关的应用 导学准备:多媒体课件 导学过程: 一、快速反应 1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________ 2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________ 3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗? 结论:______________________________________ 符号表示: 4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么? 在图中,AC=BD=16, AB=CD=EF=15, CE=DF=9。 图中有哪些互相平行的线段? 二、议一议 1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗? 三、平行四边形的判别方法: (1)两组对边分别平行的四边形是平行四边形。 (2)两组对边分别相等的四边形是平行四边形。 (3)一组对边平行且相等的四边形是平行四边形。 (4)两条对角线互相平分的四边形是平行四边形。 四、练一练: 1.判断下列说法是否正确 (1)一组对边平行且另一组对边相等的四边形是平行四边形 ( ) (2)两组对角都相等的四边形是平行四边形 ( ) (3)一组对边平行且一组对角相等的四边形是平行四边形 ( ) (4)一组对边平行,一组邻角互补的四边形是平行四边形 ( ) 2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗? 3.比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。 五、师生共同小结,主要围绕下列几个问题: (1)判定一个四边形是平行四边形的方法有哪几种? (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发? (3)平行四边形判定的应用 六、课后巩固:课本P107习题4.4第1题和第2题 七、课后反思: 一 教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二 重点、难点 1.重点:平行四边形的判定方法及应用. 2.难点:平行四边形的判定定理与性质定理的灵活应用. 3.难点的突破方法: 平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的. (1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明. (2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意: ①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充; ②本节课只介绍前两个判定方法. (3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法. 然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的'条件. 在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力. (4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求. (5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题. (6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识. 三 例题的意图分析 本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由. 四 课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的? 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗? 让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨: (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗? (2)你怎样验证你搭建的四边形一定是平行四边形? (3)你能说出你的做法及其道理吗? (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗? (5)你还能找出其他方法吗? 从探究中得到: 平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。 平行四边形判定方法2 对角线互相平分的四边形是平行四边形 【平行四边形教案】相关文章: 平行四边形的面积教案03-31 《平行四边形的面积》教案01-02 平行四边形面积教案02-09 认识平行四边形教案03-05 平行四边形的面积教案03-17 《平行四边形面积的计算》教案09-14 数学《平行四边形的面积》教案02-14 数学平行四边形的面积教案02-28 平行四边形面积的计算教案03-03 平行四边形和梯形教案03-11平行四边形教案 篇3
平行四边形教案 篇4
平行四边形教案 篇5
平行四边形教案 篇6
平行四边形教案 篇7
平行四边形教案 篇8
平行四边形教案 篇9