分数的基本性质教案

时间:2024-07-04 23:49:56 金磊 教案 投诉 投稿

分数的基本性质教案(精选20篇)

  作为一位不辞辛劳的人民教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?以下是小编为大家收集的分数的基本性质教案,仅供参考,大家一起来看看吧。

分数的基本性质教案(精选20篇)

  分数的基本性质教案 1

  教学目标:

  1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

  3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

  教学重点:

  理解分数的基本性质。

  教学难点:

  能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

  教学过程:

  一、创设情境,激趣引新,

  1、师:故事引入,揭示课题

  同学们,你们听说过阿凡提的故事吗?今天老师这里有一个 老爷爷分地的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

  故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的 ,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

  3、学生猜想后畅所欲言。

  4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

  二、探究新知,解决问题

  1、 动手操作、形象感知

  (1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

  (2)学生独立操作验证。

  方法1、涂、折、画的方法

  方法2、计算的方法。

  方法3:商不变的性质。

  (3)观察,说说你发现了什么?

  2、出示做一做(1)

  (1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。

  (3)观察,说说你发现了什么? (课件揭示)

  (4)交流:你还有什么发现?

  分数的分子和分母变化了,分数的大小不变。

  分数的分子和分母都乘以相同的数,分数的大小不变。

  (板书:都乘以相同的数)(课件演示)

  3、出示做一做图片(2),学生独立填写分数。

  (1)说说你是怎么想的?

  (2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)

  4、想一想:引导归纳分数的基本性质

  (1)从刚才的演示中,你发现了什么?

  板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。

  (2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词都、

  相同的数、0除外。 都可以换成哪个词?同时。

  板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。

  (3)揭题:分数的.基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)

  5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?

  师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=34=(33)(43)=912=9 /12)(课件揭示)

  师:其实,数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。你们想挑战吗?

  6、趣味比拼,挑战智慧

  给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。

  交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?

  三、多层练习,巩固深化。

  1、考考你(第43页试一试和练一练第2题)。

  2/3=( )/18 6/21=2/( )

  3/5 =21/( ) 27/39=( )/13

  5/8=20/( ) 24/42=( )/7

  4/( )=48/60 8/12=( )/( )

  2、涂一涂,填一填。(练一练第1题)

  3、请你当法官,要求说出理由.(手势表示。)

  (1)分数的分子、分母都乘或除以相同的数,分数的大小不变。( )

  (2)把 15/20的分子缩小5倍,分母也同时缩小5倍,分数的大 小不变。( )

  (3)3/4的分子乘3,分母除以3,分数的大小不变。( )

  (4) 10/24=102/242=103/243 ( )

  (5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。( )

  (6)3/4=30/4 0=30/4 0 ()

  4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。

  5、(1)把5/6和1/4都化成分母是12而大小不变的分数;

  (2)把2/3和3/4都化成分子是6而大小不变的分数 6、2/5分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

  四、拾捡硕果,拓展延伸。

  1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

  (或用分数表示这节课的评价,快乐和遗憾各占多少?)

  2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)

  3、拓展延伸

  师:最后,阿凡提为了考考同学们,他特意挑选了一道题,要同学们选择来完成,有信心去完成吗?

  比一比:三杯同样多的牛奶,小明喝了其中一杯牛奶的2/3,小红喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人谁喝得最多?谁喝得最少?

  五、动脑筋退场

  让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边, 与4/5相等的站在教室的左边。

  分数的基本性质教案 2

  教学目标:

  1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2.理解和掌握分数的基本性质。

  3.较好的实现知识教育与思想教育的有效结合。

  教学重点:

  理解和掌握分数的基本性质。

  教学难点:

  能熟练、灵活地运用分数的基本性质。

  教学过程:

  一、创设情景

  师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?

  师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。

  二、新授

  师:同学们想了很多好的方法,哪个小组愿意汇报一下?

  生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的'正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以

  生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)

  师:我们发现的这个规律,就是分数的基本性质。

  同学们现在小组内总结一下,什么是分数的基本性质?

  (学生认真讨论)

  师:同学们汇报一下你们的讨论结果。

  三、 自主练习 巩固提高

  课本第80页1、2、3、题。

  其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。

  第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。

  课堂小结 :

  一生小结,他生补充,教师评判。

  分数的基本性质教案 3

  教学目的:

  理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2.理解和掌握分数的基本性质。

  3.较好实现知识教育与思想教育的有效结合。

  教学难点:

  理解和掌握分数的基本性质,并运用分数的.基本性质解决问题,进一步加深分数与除法之间的关系。

  教学准备:

  板书有关习题的幻灯片。

  教学过程:

  一、复习

  1.出示

  在括号里填上适当的数:

  指名说一说结果,并说一说你是根据什么填的?

  二、课堂练习:

  1.自主练习第4题。

  学生先独立做,教师巡视,并个别指导,集体订正。

  教师板书题目中的线段,指名让学生板演。

  在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)

  怎样找出相等的分数?

  让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

  然后要求学生在书上把这几个相应的点找出来。指名板演。

  2.自主练习第5题。

  先让学生独立做,教师巡视。个别指导。

  指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

  教师根据学生的回答选择几个题目进行板书。

  3.自主练习第6题。

  先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

  集体订正。指名说一说自己的计算过程和结果。

  教师根据学生的回答选择几个题目进行板书。

  4.自主练习第7题。

  学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

  集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

  5.自主练习第8题。

  学生先独立做。

  集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?

  分数的基本性质教案 4

  教学目标

  (一)理解和掌握分数的基本性质。

  (二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

  (三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点和难点

  (一)理解和掌握分数的基本性质。

  (二)归纳分数的基本性质,运用性质转化分数。

  教学用具

  教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给

  学具:每位同学准备三张相同的长方形纸片。

  教学过程设计

  (一)复习准备

  1.口答:(投影片)

  根据 120÷30=4,不用计算直接说出结果:

  (120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。

  2.说一说依据什么可以不用计算直接得出商的?

  3.说出商不变的性质。

  教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

  (二)学习新课

  1.分数基本性质。

  (1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

  教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

  教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

  学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

  教师:请比较这三个分数的大小?

  你根据什么说这三个分数相等?

  学生口答后老师用等号连结上面三个分数。

  (2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

  请同学观察,思考和讨论。投影出思考题:

  如何?

  结果如何?

  变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?

  学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)

  的变化规律是什么?(学生小组讨论后汇报)教师板书:

  教师:试说一说这时分子、分母的变化规律?

  学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。

  教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)

  (3)请根据上面的.研究,说一说你发现了什么规律?请概括地说一说。

  学生口述分数基本性质的内容,老师把板书补充完整。

  教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。

  请学生打开书读两遍。

  教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)

  用学生自己的例题说明后,用投影片再说明:

  口答填空:(投影片)

  2.把一个分数化成大小相等,而分子或分母是指定数的分数。

  分子应怎样变化?谁随着谁变?

  化?谁随着谁变?

  教师:上面两个分数的变化依据是什么?

  (2)口答练习:(学生口答,老师板书。)

  教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

  (三)巩固反馈

  1.口答:(投影片)

  2.在括号里填上“=”或“≠”。(投影)

  3.在( )里填上适当的数。(投影)

  4.判断正误,并说明理由。

  (四)课堂总结与课后作业

  1.分数基本性质。

  2.把分数化成大小相同而分子或分母是指定数的分数的方法。

  3.作业:课本108页练习二十三,1,2,4,5。

  课堂教学设计说明

  分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

  在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

  在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

  新课教学分为两部分。

  第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

  第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

  板书设计

  分数的基本性质教案 5

  教学目标

  1、进一步理解分数基本性质的意义,掌握约分的方法。

  2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。

  教学重难点

  约成最简分数

  教学准备:

  分数卡片口算卡片

  教学过程

  一、自主回顾

  回顾一下对约分的理解情况

  突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。

  师:什么是最简分数?

  说一说。

  二、巩固练习

  师分数卡片判断

  1、找朋友:找出和相等的`分数。(七个小矮人身上的分数分别是下列分数)

  你是怎样寻到的?说说自己的理由好么?

  2、能用不同的分数表示下面各题的商吗?

  练习十一第8题

  师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的魅力。

  师:你能写出不同的除法算式吗?

  =()÷()=()÷()

  你能说出几个除法的算式?

  这些算式之间有什么联系?

  3、快乐学习超市

  超市画面快乐套餐1快乐套餐2

  快乐套餐1:比一比○○0.4

  计算并化简+=-=

  在()填上最简分数20分=()时

  快乐套餐2、3同上。

  (分组练习小组代表汇报整合了练习十一10至14题)

  4、集中练习

  把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?

  分母是10的最简分数有几个?

  请你提出一个类似的问题。

  课堂作业

  练习十一第9题,12、13、14题各自选2个

  课后练习:完成练习册上的相应练习。

  分数的基本性质教案 6

  教学内容:人教版五年级数学下册57页内容。

  教学目标:

  知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。

  过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。

  情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。

  教学重点:使学生理解和掌握分数的基本性质。

  教学难点:运用分数的基本性质解决相关的问题。

  教学准备:多媒体课件、正方形纸、直尺、彩笔

  教学过程:

  一、铺垫孕伏,温故迁移

  1.比一比:看谁算得又对又快。

  2.说一说:商不变的性质是什么?

  3.想一想:分数与除法有怎样的关系?

  4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?

  二、设疑激趣,探究新知

  (一)故事激趣,引出分数。

  说出自己从故事中听到的分数。

  (二)小组合作,直观感知。

  1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。

  2.画一画:画出折痕所在的直线。

  3.涂一涂:

  (1)给平均分成2份的正方形纸的其中的1份涂上颜色。

  (2)给平均分成4份的正方形纸的其中的2份涂上颜色。

  (3)给平均分成8份的正方形纸的其中的4份涂上颜色。

  4.比一比:比较3张正方形纸涂色部分的大小。

  5.议一议:和同伴说说自己的想法。

  (二)观察比较,探究规律。

  1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。

  2.汇报交流。

  3.启发点拨。

  通过从左往右观察、比较、分析,你发现了什么?

  引导学生小结得出:分数的'分子、分母同时乘相同的数,分数的大小不变。

  那么,从右往左看呢?

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  4.归纳小结:引导学生概括出分数的基本性质。

  5.启发思考:这里的“相同的数”可以是任何数吗?(补充板书:0除外),你能举例说明吗?

  (三)独立尝试,运用规律。

  1.学生独立思考,完成例2。

  2.反馈交流,订正点拨。

  3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。

  三、达标检测,内化提升

  (见《达标测试题》)

  四、总结收获,评价激励

  这节课你有什么收获?你对自己的哪些表现比较满意?

  板书设计:

  分数的基本性质

  例1:

  分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

  例2:

  分数的基本性质教案 7

  教学目标

  1、进一步理解通分的意义,

  2、掌握通分的方法。能熟练的把异分母分数化成与它们相等的同分母分数。

  3、能灵活的运用通分的方法进行分数的大小比较。

  教学重难点:

  运用通分的方法进行分数大小比较

  教学准备:

  分数卡片

  一、回顾

  1、什么是通分?怎样通分?

  2、我们可以在什么时候应用通分?

  3、互动:相互出题练习相互交流(3分钟)

  二、教学例5

  出示例题:小芳和小明看一本同样的故事书。

  学生提出问题。

  分析解答。

  师:谁看的页数多?

  这个问题实质是什么?

  生:比较两个分数的大小。

  师:小组研究,比较两个分数的'大小。

  方法一:画图比较

  方法二:通分比较

  转化成同分母的分数

  方法三:化成小数再比较

  学生汇报,分类领悟比较的方法。

  注意方法的规范。

  你还有什么别的比较方法吗?

  :通分的方法在比较分数大小中的运用

  三、巩固练习

  1.先通分,再比较下面各组分数的大小66页练一练

  2、练习十二第五题

  先明确题目的要求有两个。

  4、自由练习

  分小组编拟交换练习

  四、全课

  五、课堂作业:第7题,第8题

  分数的基本性质教案 8

  分数是数学中的一个重要概念,它可以表示一个数被另一个数平均分成若干份的结果。分数的基本性质包括分数的大小比较、分数的加减乘除、分数的化简和分数的约分等方面。

  一、分数的大小比较

  分数的大小比较是指两个分数的大小关系。当分母相同时,分子越大的'分数越大;当分母不同时,可以通过通分后比较分子的大小来确定大小关系。

  例如,比较1/3和1/4的大小关系,可以将它们通分为4/12和3/12,由于4/12大于3/12,所以1/3大于1/4。

  二、分数的加减乘除

  分数的加减乘除是指对分数进行加、减、乘、除的运算。其中,加减法需要先通分,然后将分子相加或相减,再将结果约分;乘法则直接将分子相乘,分母相乘,再将结果约分;除法则将除数的分子分母颠倒,然后乘以被除数的分数,最后将结果约分。

  例如,计算1/3+1/4的结果,需要通分为4/12+3/12=7/12,然后将7/12约分为1/6。

  三、分数的化简

  分数的化简是指将一个分数表示为最简分数的形式。最简分数是指分子和分母没有公因数的分数。化简分数的方法是将分子和分母同时除以它们的最大公约数。

  例如,将6/9化简为最简分数,需要先求出6和9的最大公约数为3,然后将分子和分母同时除以3,得到2/3。

  四、分数的约分

  分数的约分是指将一个分数化为与它相等的最简分数的形式。约分分数的方法是将分子和分母同时除以它们的公因数,直到分子和分母没有公因数为止。

  例如,将12/18约分为最简分数,需要先求出12和18的公因数为6,然后将分子和分母同时除以6,得到2/3。

  综上所述,分数的基本性质包括大小比较、加减乘除、化简和约分等方面。掌握这些基本性质对于学习数学和解决实际问题都有很大的帮助。

  分数的基本性质教案 9

  教学目的

  1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

  2.培养学生观察、分析、思考和抽象、概括的能力.

  3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

  教学过程

  一、谈话.

  我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

  整数的互化方法.今天我们继续学习分数的有关知识.

  二、导入新课.

  (一)教学例1.

  出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

  1.分别出示每一个圆,让学生说出表示阴影部分的分数.

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2.观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

  (2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

  3.分析、推导出表示阴影部分的分数的大小也相等:

  (1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

  (这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

  4.观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化?

  ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

  (2)观察

  (二)教学例2.

  出示例2:比较 的大小.

  1.出示图:我们在三条同样的数轴上分别表示这三个分数.

  2.观察数轴上三个点的位置,比较三个分数的'大小:

  从数轴上可以看出:

  3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

  (1)这三个分数从形式上看不同,但是它们实质上又都相等.

  (教师板书: )

  (2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质.

  1.观察前面两道例题,你们从中发现了什么变化规律?

  “分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

  2.为什么要“零除外”?

  3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

  (板书:“基本性质”)

  4.谁再说一遍什么叫分数的基本性质?

  教师板书字母公式:

  四、应用分数基本性质解决实际问题.

  1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

  (和除法中商不变的性质相类似.)

  (1)商不变的性质是什么?

  (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

  2.分数基本性质的应用:

  我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

  决一些有关分数的问题.

  3.教学例3.

  例3 把 和 化成分母是12而大小不变的分数.

  板书:

  教师提问:

  (1) ?为什么?依据什么道理?

  ( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个“6”是怎么想出来的?

  (这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?

  ( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个“2”是怎么想出来的?

  (这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五、课堂练习.

  1.把下面各分数化成分母是60,而大小不变的分数.

  2.把下面的分数化成分子是1,而大小不变的分数.

  3.在( )里填上适当的数.

  4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

  5.请同学们想出与 相等的分数.

  规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

  六、课堂总结.

  今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

  七、课后作业.

  1.指出下面每组中的两个分数是相等的还是不相等的。

  2.在下面的括号里填上适当的数。

  分数的基本性质教案 10

  教学内容

  人教版小学数学五年级下册第57页例1

  教学目标

  1、掌握分数的基本性质,并利用分数的基本性质解决一些简单的问题。

  2、经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。

  3、让学生体会到数学知识间的内在联系,感受学习数学知识的价值。

  教学重点

  探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点

  自主探究、归纳概括分数的基本性质。

  教学准备

  正方形纸片、多媒体课件、记录单

  教学过程

  (一)复习导入、初步感知

  1、直接口答下面各题的商,说说是怎样想的?根据什么知识?

  180÷20=

  (180×3)÷(180×3)=

  (180÷10)÷(180÷10)=

  2、用分数表示涂色部分,说说你发现了什么?

  3、质疑:你有什么疑问?

  (二)自主探究,总结规律

  1、猜想

  1)观察这三个分数,三个分数中什么变了?什么没变?

  学生仔细观察,汇报。

  小结:它们的分子和分母变化了,但分数的大小没变。

  师:这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们分组讨论这个问题。

  2)学生小组合作,观察,讨论。

  自学提示:

  A、从左到右观察,想一下,这三个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢。

  B、从右到左观察,想一下,这三个分数的分子、分母怎样变化才能得到下一个分数,且分数的`大小不变呢。

  2、小组讨论,完成记录单

  引导学生观察它们的分子、分母各是按照什么规律变化的?学生以小组为单位讨论,请代表发言。

  3、验证

  借助图片,验证大家的.猜想。

  师:有没有特殊的情况?下面我们就来想办法验证一下自己的猜想。

  学生验证猜想,教师参与其中,适时给予学生指导。

  学生讨论后,汇报。

  板书:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。

  提问:为什么0要除外?(学生讨论)

  小结:分子和分母如果都乘上0,则分数成为0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以O。

  (三)知识迁移

  得出结论:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?

  因为:被除数÷除数=商,所以被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时扩大或缩小相同的倍数(而除数不能为0,也就相当于分母不能为0)。因此,商不变就相当于分数的大小不变。

  (四)巩固应用

  1、数学书59页6题

  2、数学书59页2题

  3、找朋友:老师手中拿有1/3这个分数,说出和老师手中分数一样大的分数的同学,就是本节课的幸运小朋友,分发奖励。

  (五)课堂小结

  谁来说说这节课你都收获了哪些东西?

  分数的基本性质教案 11

  教学内容:

  教科书第60~61页,例1、例2、

  练一练,练习十一第1~3题。

  教学目标:

  1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

  2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

  教学重点:

  让学生在探索中理解分数的基本性质。

  教学过程:

  一、导入新课

  1、我们已经学习了分数的有关知识,这节课在已经掌握的`知识基础上继续学习。

  2、出示例1图。

  你能看图写出哪些分数?你是怎样想的?说出自己的想法。

  二、教学新课

  1、教学例1。

  (1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

  (2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

  (3)演示验证。

  2、教学例2。

  (1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

  (2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

  (3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

  (4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

  (5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

  (6)为什么要“0”除外呢?

  (7)你能根据分数的基本性质,写出一组相等的`分数吗?学生尝试完成。

  (8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

  3、完成练一练。

  (1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

  (2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

  三、巩固练习

  1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?

  2、完成第2题。独立完成,交流想法。

  四、课题总结

  今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

  分数的基本性质教案 12

  一、教材分析

  (一)教学内容:

  九年义务教育小学数学教材第十册第四单元的第一课时

  (二)教学目标:

  1.让学生在说一说、分一分、画一画、写一写、折一折、涂一涂等体验活动中理解单位“1”,感受并理解分数的意义,培养学生实际操作的能力和抽象概括的能力。

  2.在实践中培养学生收集、处理信息的能力以及自主探究、合作学习的能力。

  3.通过创设互相协作,积极探索的学习情境,培养学生的学习兴趣,并渗透数学于实际生活的思想。

  (三)教学重点:

  建立单位“1”的概念,理解分数的意义。

  (四)教学难点:

  理解单位“1”的概念。

  二、教学方法

  学生认识事物是由易到难,由浅入深循序渐进的。学生虽然在前面的学习中对分数有了初步的认识,但要使学生理解单位“1”的概念,进一步明确分数的意义,必须遵循他们的认知规律。因此,本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法,并穿插自学、练习。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,层层推进、步步深入,并在此基础上理解分数的意义,培养了学生的多种能力。

  三、学法指导

  学生学习过程的始终,都离不开学法。在本课的教学中学法的指导寓于教学过程的始终。

  (一)教给学生探索知识的`方法。

  教师为学生提供了一些动手的`材料8颗棋子、2块糖、10粒豆子、一幅熊猫图等,让学生用这些学具以小组合作的形式将他们分一分、画一画、折一折表示1/2。然后观察、比较他们的相同点和不同点,领悟出单位“1”不仅仅可以是一个物体、一个计量单位、还可以是许多物体组成的一个整体。达到感性认识到理性认识的升华。

  (二)引导学生在获取知识的同时,掌握对事物本质进行归纳总结的方法。

  学生在在动手操作、比较之后归纳出了单位“1”也可以是许多物体组成的一个整体。让学生进行2次操作体会由于分的份数不同,取的份数不同,产生的分数也不同,在此基础上进一步明确分数的意义概括出:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  四、教学程序

  (一)展示资料,了解分数的产生

  通过谈话自然引入,让学生通过调查、把自己知道的说给大家听。使学生有满足感,产生对学习分数的兴趣,感受到分数产生的必要性。

  (二)唤醒已知、探究未知

  1.通过回顾旧知,为学习新知作准备,激发学生的学习动机,调动学生的学习积极性。

  第一次动手操作理解单位“1”的含义。

  (1)教师提出:1/2除了可以表示把一个苹果平均分成2份,取其中的1份,还可以表示什么呢?为了便于同学们研究问题,老师为学生提供了一些动手材料(8颗围棋子、1米长的绳子、一张圆形纸片、一幅熊猫图等),以小组合作的形式将他们分一分、画一画、折一折,用这些学具试着表示1/2。

  (2)集体交流、共享成果

  各组选派代表到实物投影仪前,向大家展示自己的操作方法及成果。

  (3)重点、难点问题教师利用多媒体技术予以突破。

  如:学生用8颗棋子、6只熊猫表示1/2这个分数后,教师出示,通过直观演示、使学生明确单位“1”可以是一个圆、一个计量单位、还可以是许多物体组成的一个整体。

  (4)引导归纳,通过比较相同与不同,让学生亲自去发现,去学习,去探究,体会、理解单位“1”并结合实际谈单位“1”,体会生活中的单位“1”

  2.再次操作,领悟分数意义

  (1)再次操作,让学生用学具表示出不同的分数,在操作中让学生体会到同样是这些学具却表示出了不同的分数,从而得出分的份数不同,取的份数不同,分数也就不同,为概括分数的意义作准备。同时,在操作过程中,培养了学生的创新思维,

  (2)引导学生试着概括分数的意义

  (3)阅读课本86页什么叫分数,自学分数各部分所表示的含义。

  (4)巩固分数的意义和分子分母的含义。

  (三)反馈练习

  这一环节,教师根据学生反馈的信息及时调控教学,使学生切实掌握知识,达到训练和提高的目的。为了能使面向全体和因材施教相结合,让每一位学生获得成功,我设计下列练习:

  1.用分数表示下面各图中的涂色部分

  2.用下面的分数表示图中的涂色部分对吗?为什么?

  以上两道题是基本练习题,目的是:突出本节课的重点、难点、深化对分数意义的理解。

  3.游戏“夺红旗”

  男、女各一队,派代表到前面夺红旗,但要听老师指挥,拿对了红旗归这一队,错了机会自动转给下一队,老师当发令员,其他同学当小小裁判员。女同学代表到前面拿走全部的2/11、男同学拿走剩下的1/9、女同学拿走剩下的1/4、男同学拿走剩下的2/3、女同学拿走剩下的1/2,剩下的一面奖给全班。

  此题设计加深了学生对分数意义的理解,又增强了学习的趣味性,符合小学生的心理特征,同时训练学生的思维,培养了学生思维的广阔性、灵活性。

  (四)全课小结,揭示课题

  “这节课,我们一起学习了分数的意义,对分数有了进一步的认识,关于分数还有很多很多的知识哪!同学们课下继续去学习、去探究吧!”教师将学生的学习兴趣延伸到了下节课。

  分数的基本性质教案 13

  一、学情分析:

  我们六(5)班有学生48人,男生有19人,女生有29人,自上学年实行小组合作学习以来,每个学生都有了明确的学习目标,在平时学习中主动、努力,每组中的1、2号对3、4号的帮扶起了很大的作用,使这部分学困生在思维方法和技能上有了进一步的提高,在数学情感上,能主动地参与到学习中来。

  二、教材分析:

  (一)教学内容

  本册内容共有8个单元。一单元分数乘法,二单元分数除法,三单元比,五单元分数四则混合运算,这四个单元所属领域是数与代数。四单元的圆所属领域是空间和图形。六单元的统计,七单元的可能性,八单元的百分数所属领域是统计与概率。美的奥秘,数学与生活,远离肥胖所属领域是综合应用。

  (二)教学重难点

  教学重难点有:分数乘除法应用题,按比例分配应用题,如何求圆的周长和面积,化简比和求比值的区别和联系。

  三、教学目标:

  (一)知识与技能目标

  1、能结合具体情境理解分数乘除的意义,能解决有关分数的实际问题。

  2、理解比的意义和性质,会解决有关按比例分配的实际问题。

  3、结合具体情境,理解百分数的意义,能用百分数解决问题。

  4、掌握圆的周长和面积的计算方法,能够运用圆的周长和面积公式解决简单的实际问题。

  5、认识众数、中位数,会求一组数的众数和中位数,会对一组数据作出合理的分析推理。

  6、结合具体实例,设计一个符合要求的方案。

  (二)数学思考目标

  让学生经历知识的形成过程,感受“转化”和“数形结合”的数学思想方法。在观察、操作、思考、交流等活动中,进步发展抽象概括推理的能力。

  (三)情感态度目标

  1、能积极参加数学学习活动,对数学有好奇心和求知欲,并获取成功的学习体验,增强学习数学的信心。

  2、体会数学与人类生活的密切联系,感受数学的严谨性和数学结论的确定性。

  3、学会倾听与质疑,养成独立思考的好习惯。

  四、教学措施:

  1、整合学习内容,强化数学知识间的联系及学科间的融合。

  2、恰当确立每节课的教学内容,树立单元教学思想,在重点例题上下功夫。

  3、精心设计数学活动,让学生在探索中理解数学知识,掌握数学方法。

  4、注重数学思想方法的.渗透和解决问题策略的方法。在本册中结合教学内容渗透“极限”和“数形结合”的数学思想。在教学中学生经历“现实问题——数学问题——联系已有知识经验寻找方法——归纳概括总结公式——运用公式解决现实问题”这一首尾相接的全过程。

  5、改进评估方法实行小组“捆绑式”评价方法和个人评价方法相结合的方式。评价形式也有生生互评、师生互评等多种形式。

  五、课时安排

  1、分数乘法

  理解一个数和分数相乘的意义,理解分数乘分数的算理理解分数乘法的意义,掌握分数乘法的计算方法,会求一个数几分之几的实际问题

  2、分数除法

  分数除法的计算方法,解决已知一个数的几分之几是多少,求这个数的实际问题理解分数除法的意义,会计算,会解决实际问题。

  3、比

  理解比的意义和性质理解比的意义,会求比值掌握比的基质,会化简比。

  4、圆

  圆的周长和面积

  认识圆的`特征,会正确计算圆的周长和面积。

  5、分数四则混合运算

  分析稍复杂的有关分数分析问题和解决问题的能力。四则混合运算问题的数量关系及理解四则混合运算的顺序。

  6、统计

  理解众数、中位数的意义,选择合适的统计量描述数据的特征。会求一组数的中位数、众数,会选择合适的统计量描述数据,分析问题。

  7、可能性

  能按要求根据可能性大小设计方案

  能根据可能性大小设计符合要求的方案

  8、百分数

  百分数的意义,解决一个数是另一个百分之几的问题能进行百分小的互化,解决实际问题

  分数的基本性质教案 14

  教学目标

  1、理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

  2、能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。

  教学重难点

  理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

  教学工具

  课件

  教学过程

  一、复习旧知,沟通联系。

  1、口答下面各题。

  12÷3 =(12×10)÷(3×□)

  18 ÷6 =(18÷□)÷(6÷ 3)

  你是根据什么填的?还记得商不变的规律是怎样叙述的吗?

  4 ÷5=()÷3

  你是根据什么填的?分数与除法之间有什么关系?

  2、猜想。

  同学们,在除法里,有商不变的规律,而分数与除法是有联系的,那么,请同学们猜测一下,在分数里会不会也有类似的性质存在呢?

  在分数里究竟有没有类似的性质存在,如果有,它又是怎样的呢?今天我们一起来研究这个问题。

  二、探究新知,揭示规律。

  1、感知规律

  (1)动手操作

  ①小组合作分别把三张一样大的圆形纸片平均分成两份、四份、八份。

  ②涂色:把平均分成两份的将其中的'一份涂上颜色,把平均分成四份的将其中的两份涂上颜色,把平均分成八份的将其中的四份涂上颜色。

  ③把涂色部分用分数表示出来。

  ④比一比:这3个分数之间有什么关系?

  生通过动手操作,发现这三个分数之间是相等的关系。

  学生汇报后,教师用电脑演示。

  生观察分子分母变化规律发现:分数的分子和分母同时乘相同的数,分数大小不变。

  (2)继续发现

  师课件出示三个大小形状完全相同的长方形,请学生用分数表示涂色部分,并观察涂色部分,看有什么发现。

  生发现涂色部分是相同的。

  观察分子分母的变化规律发现:分数的分子和分母同时除以相同的数,分数大小不变。

  也不能同时除以0。

  2、抽象概括,总结规律。

  引导学生观察、比较,回忆知识的形成过程,总结概括出分数的基本性质。不完善的互相补充。(讨论为什么0除外)

  想一想:根据分数与除法的关系,以及整数除法中商不变的性质,你能说明分数的基本性质吗?

  3、运用规律,自学例题。

  (1)分组讨论。

  把和分别化成分母是12而大小不变的分数。分子应怎样变化?变化的依据是什么?

  (2)汇报讨论情况。

  (3)小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  三、多层练习,巩固深化

  1、基本练习。

  根据分数的基本性质,把下列等式补充完整。

  学生口答后,要求说出是怎样想的。

  2、判断。(手势表示,并说明理由。)

  (1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。

  (2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。

  (3)的分子乘以3,分母除以3,分数的大小不变。

  3、把2/3和4/24化成分母是12而大小不变的分数。

  四、今天你有哪些收获。

  分数的基本性质教案 15

  教材简析:

  分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。

  设计理念:

  分数的基本性质是约分和通分的'基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。

  在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。

  《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。

  教学目标:

  1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.

  2、培养学生观察、分析、思考和抽象、概括的能力.

  3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.

  教学重点:

  使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。

  教学难点:

  让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教具准备:

  每生三张正方形纸

  教学方法:

  演示法、观察法、讨论法、交流法。

  分数的基本性质教案 16

  教学目标:

  1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

  学习目标:

  1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数

  重点难点:

  1、使学生理解分数的基本性质。

  2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  过程设计:

  一、激情导入

  1、导入课题

  生读故事。

  唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?

  师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?

  2、明确目标

  理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。

  3、预期效果

  达到教学目标

  二、民主导学

  任务一

  任务呈现

  动手操作验证性质

  自主学习

  师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求

  1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

  2、仔细观察三张纸的涂色部份,你们能发现什么?

  师:同位分工合作完成。现在开始。

  师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

  请二至三位同学说一说。

  师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?

  生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

  师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)

  下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

  生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

  请二名同学重复。

  师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?

  生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

  请一至二名同学回答。

  师板书:分数的分子分母同时乘相同的数,分数的大小不变。

  师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

  师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?

  请一同学回答,

  生:我们发现了8分之四的`分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

  师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?

  生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)

  师板书:或者除以

  师:你能根据刚才总结的规律举一个例子吗?

  让三名学生举出例子,师板书。并问:分子分母同时除以了几?

  展示交流

  师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)

  生:不成立,

  师:为什么

  生:因为0不能作除数,

  师:0不能作除数,所以这个式子是错误的。(画叉)

  师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)

  生:不成立,因为在分数当中分母相当于除数,除数不能为0。

  师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的'数,不是所有的数需要加上一句什么话

  生:0除外

  师板书0除外

  师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

  生:同时和相同的数

  师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)

  师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

  生齐读二遍。

  师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

  任务二

  任务呈现

  课本76页的例2,请一同学读题。

  自主学习

  生独立完成,完成后和同位的同学说一说你是怎样想的。

  展示交流

  每题请二名同学回答,(集体订正答案)

  检测导结

  1、目标练习

  76页“做一做”

  练习十四的1、2、6、7题

  2、结果反馈

  生做完后同桌交流,再指名说说结果。

  3、反思总结

  今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

  三、辅助设计

  教具课件设计

  小黑板正方形纸数块

  板书设计

  分数的基本性质

  练习和作业设计

  1、完成课本76页做一做中的1、2题。

  生独立完成,师指名回答。

  2、完成练习十四中的1、2、5、6、7题。

  师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

  分数的基本性质教案 17

  教学目的:

  1、理解分数的基本性质;

  2、初步掌握分数性质的应用;

  3、培养学生观察——探索——抽象——概括的能力;

  4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

  教学重点:

  从相等的分数中看出变与不变,观察、发现、概括其中的规律。

  教学难点:

  形成对分数的基本性质的统一认知。

  教学准备:多媒体,自制演示教具。

  教学过程:

  一、激趣引新:

  1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

  2、在下面的()中填上合适的数。

  1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

  同学们现在已经能用分数的知识来解决问题了。

  二、启发引导,探索新知。

  1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

  通过图形的平移、旋转等方法看出三个班种植面积一样大。

  2.引导观察得出结论。

  (1)通过拼图得到1/2=2/4=4/8

  (2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

  (3)引导思考探索变化规律:

  从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

  反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  3.共同讨论,引导学生抽象概括出分数的基本性质:

  (1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?

  (2)变化时同时乘或除以小数可以吗?

  (3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的'数,这个数不能是0。)

  归纳分数基本性质:分数的分子和分母都乘或除以相同的.数(0除外)分数的大小不变。

  4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)

  (1)练习在□中填上合适的数

  1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

  (2)你能把1÷2这个除法算式改写成分数形式?

  你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

  5.组织练习

  (1)判断:

  1/5=1/5×3=1/5()

  5/6=5×2/6×3=10/18()

  8/12=8×4/12÷4=32/3()

  2/5=2+2/5+2=4/7()

  3/4=3÷0.5/4÷0.5()

  分数的分子和分母都乘或除以相同的数,分数的大小不变。()

  (2)画一画、填一填

  (3)填空

  1/2=1×()/2×()=6/()

  10/24=10○()/24○()=()/12

  15/60=()/203/()=9/12

  6/18=()/()=()/()(有多少种填法)

  6.通过练习在此性质中哪些是关键词?

  7.巩固练习(选择你喜欢的一题来做)

  (1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

  (2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

  三、课堂总结

  今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

  四、课堂作业:练习十四第1——3题。

  板书设计:

  分数的基本性质

  1/2=1×2/2×2=2/4=2×2/4×2=4/8

  分数的分子和分母同时乘以一个不为0的数分数的大小不变

  4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  分数的分子和分母同时除以一个不为0的数分数的大小不变

  综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  分数的基本性质教案 18

  教学内容:

  人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。

  设计思路:

  《分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。教材共安排了两道例题、“做一做1、2题”等。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

  教学目标:

  1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

  2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

  3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。

  教学重点:

  理解和掌握分数的基本性质。

  教学难点:

  应用分数的基本性质解决实际问题。

  教学方法:

  直观演示法、讨论法等。

  学法:

  合作交流、自主探究。

  教学准备:

  每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、PPT课件等。

  教学过程:

  一.创设情景,激发兴趣

  (课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?

  ( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )

  二.大胆猜想,揭示课题

  学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?

  随着学生的回答,教师板书课题:分数的基本性质。

  三 .探索研究,验证猜想

  1. 动手操作,验证性质。

  (1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12

  份,并分别给其中的1份、2份、3份涂上色,把涂色部分用分数表示出来。 图(略)????引导学生观察、思考:你发现了什么?

  (2)小组合作:①观察、分析、比较在组内交流你的发现。

  ②合作交流,各抒己见。

  123③选代表全班汇报、交流,师相机板书:4812

  123(3)合作讨论: 为什么相等? 4812

  ①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的? ②观察它们的分子、分母的变化规律,在组内用自己的话说一说。

  2.分组汇报,归纳性质。

  a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

  (根据学生回答

  b.从右往左看,分数的分子和分母又是按照什么规律变化的?

  (根据学生的回答)

  c.有与这一组探究的分数不一样的吗?你们得出的规律是什么?

  d.综合刚才的探究,你发现什么规律?

  (4)引导学生概括出分数的基本性质,回应猜想。

  对这句话你还有什么要补充的?(补充“零除外”)

  讨论:为什么性质中要规定“零除外”?

  (5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

  师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

  3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)

  33×263(1) ==(生: 的分子与分母没有同时乘以2,分数的大小改变。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除数的大小不同,分数1212÷6212

  的`大小改变。) 11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)

  分数的大小改变。) 22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。) 55×x5x

  四.回归书本,探源获知

  1.浏览课本第75—78页的内容。

  2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)

  3.分数的基本性质与商不变性质的比较。

  (1)小组合作:讨论分数的基本性质与商不变性质的异同。

  (2)小组内交流。

  (3)选代表全班交流、汇报。

  (4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!

  4.自主学习并完成例2,请二名学生说出思路。

  五.巩固深化,拓展思维(PPT演示文稿出示下列题目)

  1.想一想,填一填。

  33×( )988÷( )() 55×( )( )2424÷( )3

  学生口答后,要求说出是怎样想的?

  2.在下面( )内填上合适的数。

  要求:后二题采取师生对出数的`游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

  3.思维训练(选择你喜爱的一道题完成)

  3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5

  (2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4??时,b分别等于几?

  讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

  (3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。

  思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

  六.全课小结

  本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)

  七.布置作业

  P77—78练习十四第1、5、8题。

  教学反思

  “分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

  分数的基本性质教案 19

  教学目的:

  1、理解和掌握分数的基本性质。

  2、理解分数的基本性质与商不变规律的关系。

  3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

  4、应用分数的基本性质解决简单实际问题。

  5、正确认识、处理变与不变的的辨证关系。

  教学重点:

  掌握分数的基本性质。

  教学难点:

  抽象概括分数的基本性质。

  教具学具准备:

  多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

  教学步骤:

  一、1、复习旧知

  除法与分数之间有什么联系?

  被除数÷除数=被除数

  除数

  1)、你能用分数表示下面各题的商吗?

  1÷2=()3÷6=()5÷10=()4÷8=()

  2)、根据400÷25=16在□里填数:

  (400×4)÷(25×4)=□

  根据360÷90=4在□里填数:

  (360÷□)÷(90÷10)=4

  (2)你是怎样想的?(回忆除法中商不变性质)

  商不变的性质内容是什么?

  3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的`性质呢?

  2、激趣引入:和尚分饼

  从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6

  你们猜猜哪个和尚分的'饼多?板书:1/4=2/8=4/16

  这几个分数真的相等吗?让我们做个实验来证明。

  3、操作感知:

  (1)请同学们拿出三张大小相同的长方形纸条。

  通过实验、观察、分析、讨论

  ①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

  ②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

  ③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

  然后看涂上颜色的部分是不是一样大。这说明了什么?

  引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

  这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

  二、比较归纳揭示规律

  比较这三个分数分子和分母,它们各是按照什么规律变化的?:

  1、说说这三个分数的意义。

  2、总结规律:

  (1)从左往右观察:

  a、观察手中第一、第二张纸条。

  发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

  b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

  板书:1/2=1×3/2×3=3/6

  c、根据上面的分析,你能得出什么结论?引导学生说出:分数的`分子和分母同时乘相同的数,分数的大小不变。

  (2)引导学生观察、讨论:

  从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

  学生边回答边板书:3/6=3÷3/6÷3=1/2

  2/4=2÷2/4÷2=1/2

  并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

  3、抽象概括归纳性质

  (1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

  (2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

  分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。

  三、出示例2

  1、把2/3和10/24化成分母是12而大小不变的分数。

  引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?

  学生独立完成。

  四、多层练习巩固深化

  1、巩固练习:

  口答

  1/5=()/159/18=()/6

  2/3=()/1210/24=()/12

  6/10=()/20=3/()=18/()

  2、深化练习:

  下面每组中的两个分数相等吗?为什么?

  3/5和6/101/15和1/5

  3、应用练习:

  判断:

  (1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()

  (2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。()

  (3)一个分数的分母除以5,分子也除以5,分数的大小不变。()

  4、发散练习:你能写出和4/6相等的分数吗?

  在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。

  5、游戏:请找找我的好朋友

  五、全课总结

  提问:我们这节课学习了什么内容?分数的基本性质是什么?

  通过今天的学习,你认为学习分数的基本性质有什么作用?

  分数的基本性质教案 20

  设计说明

  1.注重情境创设,激发学生的学习兴趣。

  伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

  2.突出学生的主体地位,在实践操作中掌握新知。

  学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

  课前准备

  PPT课件

  若干张同样大小的圆形纸片 彩笔

  教学过程

  ⊙故事引入

  1.教师讲故事。

  师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

  大毛、二毛、三毛都满意地笑了,妈妈也笑了。

  设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

  2.探究验证。

  (1)提出猜想。

  师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

  生:同样多。

  师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

  (2)验证猜想。

  请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

  ①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

  ②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

  ③剪一剪:把圆形纸片中的涂色部分剪下来。

  ④比一比:把剪下的涂色部分重叠,比一比。

  师:通过比较,结果是怎样的?

  生:同样大。

  设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

  3.揭示课题。

  师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的'内容:分数的基本性质。(师板书,生齐读课题)

  ⊙探究新知

  1.观察比较,探究规律。

  (1)请同学们观察,比较三个分数的大小。

  师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

  师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

  (2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

  师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

  (课件出示:比较它们的分子和分母)

  ①从左往右看,是按照什么规律变化的?

  ②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

  师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

  师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

  师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

  师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

  (3)教师总结分数的基本性质。(板书)

【分数的基本性质教案】相关文章:

分数的基本性质教案10-21

分数的基本性质的教案02-26

分数的基本性质教案(精选20篇)04-18

分数的基本性质教案六篇07-29

分数的基本性质教案九篇07-13

分数的基本性质教案八篇08-05

分数的基本性质教案15篇01-20

分数的基本性质教案(15篇)01-20

分数的基本性质说课稿09-19