平行四边形教案

时间:2023-05-23 11:43:06 教案 投诉 投稿

精选平行四边形教案集合九篇

  作为一位优秀的人民教师,时常需要用到教案,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?下面是小编收集整理的平行四边形教案9篇,欢迎大家分享。

精选平行四边形教案集合九篇

平行四边形教案 篇1

  教学目标

  知识与技能:

  1.使学生理解平行四边形和梯形的概念及特征。

  2.使学生了解学过的所有四边形之间的关系,并会用集合图表示。

  过程与方法:

  通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。

  情感态度和价值观:

  通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。

  重点理解平行四边形和梯形的概念及特征。了解学过的.所有四边形之间的关系,并会用集合图表示。

  难点理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。

  教具图形,剪子,七巧板

  教学过程

  教师导学

  一、创设情景感知图形

  1.出示例1,我们认识过平行四边形,你能说出哪些地方见过平行四边形?(64页)

  2.在我们美丽的校园中,你能找到哪些四边形?

  梯子的侧面-梯形

  3.画出你喜欢的一个四边形。说一说什么样的图形是四边形?

  展示学生画出的四边形,请学生标出它们的名称。

  长方形 平行四边形

  梯形 正方形

  4.小组交流:

  从四边形的特点来看,四边形可以分成几类?

  学生讨论交流

  二、探究新知

  1.归纳平行四边形和梯形的概念

  有什么特点的图形是平行四边形?

  两组对边分别平行的四边形叫做平行四边形。

  强调说明:只要四边形的每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。

  提问:

  ①生活中你见过这样的图形吗? 它们的外形像什么?

  ②这些图形有几条边?几个角?是什么图形?

  ③这几个四边形有边有什么特点?

  ④它是平行四边形吗?

  ⑤你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么?

  只有一组对边平行的四边形叫做梯形。

  5.现在你有什么问题吗?

  长方形和正方形是平行四边形吗?为什么?

  6.用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗?

平行四边形教案 篇2

  教学内容:

  义务教育课程标准实验教科书数学人教版五年级上册第五单元《平行四边形的面积》第一课时79~81页。

  教学目标:

  1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。

  3、培养学生学习数学的兴趣及积极参与、团结合作的,渗透品德教育。

  教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:平行四边形面积公式的推导过程。

  教具准备:多媒体课件、剪刀、平行四边形

  教学过程:

  一、情景引入,激趣导课

  建国60年来,我们的生活水平越来越好,李明家和张海家不单在普罗旺斯小区买了新房子,还买了私家车,他们不仅是物质生活水平提高了,文明也提高了。这不他们又在为两个停车位而互相礼让着,都想把面积大的让给对方。你有什么办法知道这两个停车位的面积哪个大吗?

  导入新课,揭示图形板书课题。

  二、动手操作,探究新知

  1、复习:复习平行四边形的底和高。

  2、归纳意见,提出验证

  学生利用课前准备好的平行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找平行四边形面积的计算方法。

  3、学生汇报结果,展示操作过程

  小组的代表来展示各组的操作方法。

  4、演示过程,强化结果

  多媒体演示,再来回顾一遍剪拼的过程。并适时提问:在转化的过程中,什么发生了变化?而什么没有变?

  5、填空、归纳公式

  根据刚才的操作过程,完成填空题,并归纳板书公式。

  把一个平行四边形转化成长方形,这个长方形的长相当于平行四边形的.(),长方形的宽相当于平行四边形的(),长方形的面积和平行四边形的面积(),因为长方形的面积=(),所以平行四边形的面积=()。

  6、提问质疑

  学生阅读课本81页的内容,质疑。

  三、分层练习,内化新知

  1、用公式分别算一算两个停车位的面积。

  2、计算相对应的底和高的平行四边形花圃面积。

  3、计算平行四边形牌两面涂漆的面积。

  4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36平方米的草坪,你有几种设计?请你画出图形,并标出有关数据。

  四:课堂。

  今天我们学习了什么?通过学习,你有那些新的收获呢?

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  (转化)

  平行四边形的面积=底×高

  S=a×h

平行四边形教案 篇3

  目标:

  1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

  2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力。

  3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

  教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

  教学准备:多媒体、平行四边形纸片. 剪刀、三角尺

  一、创设情境

  同学们,你们喜欢听故事吗?(喜欢)。今天老师说的故事发生在动物村。这是小熊家,它的菜地是这块;这是小兔家,它的菜地是这块。它们觉得这样跑来跑去干活很不方便,于是,小熊就说:“我们俩换块菜地怎么样”?小兔说:“好啊,可我不知道这两块地的面积是否相等?”同学们,你们能帮小兔解决这个问题吗?

  师:你们准备怎样解决呢?

  生:分别算出长方形和平行四边形的面积就行了。

  师:谁来说怎样计算长方形的面积?

  生:长方形的面积等于长乘宽。

  师:怎样列式?(10×6=60平方米)

  师:求长方形的面积有公式很方便,那你会算平行四边形的面积吗?

  生:-------

  师:那么今天我们就来研究怎样求平行四边形的面积.(板书课题:平行四边形的面积)

  二、探究新知

  1、学生尝试解决,

  师:同学们,仔细观察这块平行四边形的菜地,你能想办法把它的面积算出来吗?老师相信你们一定行。

  学生活动,独立尝试解决。

  教师巡视,

  2、反馈学生尝试计算结果。

  师:同学们有结果了吗?

  学生汇报结果。

  师:求一个图形的面积出现了这么多的结果,可能吗?(不可能)

  到底哪个结果正确呢?让我们一起来验证一下。请同学们拿出平行四边形纸,通过剪、拼的方法把这个平行四边形转化成我们已学过的图形。老师有一个小小的提示:应该沿哪里剪才能把它拼成我们已学过的图形。同桌合作。

  3、学生汇报验证过程。

  师:请你上台把这过程演示一遍。

  学生演示。

  师:我想问一下,你这一剪是随便剪的吗?

  生:不是,是沿高剪的。

  师:哦,这位同学是这样剪的。

  师:不错,谁还有不同的剪法?

  学生汇报。

  师:大家听明白了吗?这两个同学都是沿着平行四边形的一条高剪开,将平行四边形转化成一个长方形。看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。

  师:现在,我请一位同学用老师的教具把平行四边形转化的过程再演示一遍。谁来上台演示?

  师:大家边看边想:转化后的长方形和原来的平行四边形比,什么变了?什么不变?

  生:形状变了,面积没有变。

  师:面积没有变,也就是――(转化后长方形的面积与原来的平行四边形的面积相等。)

  师:非常正确!

  师:谢谢你开了个好头。接下来,请小组讨论:转化后,长方形的长和宽分别与原来的平行四边形的底和高有什么关系?

  师演示教具。

  生:转化后的长方形,长与原来的平行四边形的'底相等,宽与原来平行四边形的高相等。

  师:说得真好。那现在平行四边形的面积你们会算了吗?

  生:平行四边形的面积等于底乘高。

  师:不错。如果用S表示平行四边形的面积,用a 表示底,用h表示高,平行四边形的面积公式用字母怎样表示呢?

  学生说完,师完成板书:长方形的面积=长×宽

  平行四边形的面积=底×高

  用字母表示:S=a×h=ah

  师:同学们真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲

  请同学们打开数学书81页,把平行四边形的面积公式补充完整。这个面积公式适用于所有的平行四边形。

  师:刚才这三位同学都表现得很好。接下来,我再请一位同学来说说平行四边形的面积是怎样推导出来的,(出示课件)你会填吗?

  4、解决问题

  师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,我们再来看看原来同学们写的这几个结果哪一个才是正确的?那现在你们能为小熊、小兔俩解决问题了吗?

  生:能,小熊和小兔的菜地可以交换,因为这两块地的面积一样大。

  师:谢谢你们为小熊和小兔解决了交换菜地的问题。

  师:解决了小熊和小兔的问题,接下来老师要同学们算一算我们学校花坛的面积。

  出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?

  学生尝试练习,生上台板演。

  师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?

  生:底和高。

  师:不错,需要知道两个条件,就是底和高。只要知道它的一组底和高就能求面积了。

  三、巩固练习

  1、计算下列图形的面积。

  师:谁来说第1个图形的面积怎么求?第2个图形呢?刚才这两个图形的面积真是太容易算了,我们来一个稍为难点的图形,这个图形有点不一样。同学们有没有信心算出它的面积?(有)请同学们写到课堂作业上。

  生上台板演。

  师:同学们,算完了吗?我们来看看这位同学做对了没有?

  师:今后我们在求平行四边形的面积时,要看清楚它的底和高一定要相对应。不能张冠李戴。

  师:同学们,如果我给出底是12厘米相对应的高,你们还能用另外一种方法算出它的面积吗?(能)谁来说?

  2、课本82页第2题。

  师:接下来,请同学们做课本82页的第2题。你能想办法求出它的面积吗?你打算怎么做? 女生算第1个图形,男生算第2个图形。我们比一比

  学生上台展示。,

  3、考考你。

  师:比完了,接下来老师又要出题目考你们了。

  4、小小设计师。

  师:同学们,想不想当设计师。如果让你设计一个黑板报栏目,要求面积是24平方分米,那么底和高各是多少分米?(底和高都是整数)

  四、小结

  师:今天这节课的知识你们是怎样学会的呢?

  师:今天同学们学得很好。好在哪里呢?同学们不是等待,而是动脑筋,想办法。敢于把新问题转化成已有的知识来解决。

平行四边形教案 篇4

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  教学重点:运用所学知识解答有关平行四边形面积的应用题。

  教学过程:

  一、基本练习

  1.口算。(练习十六第4题)

  4.90.75.4+2.640.250.87-0.49

  530+2703.50.2542-98612

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  ⑴底12米,高7米;

  ⑵高13分米,第6分米;

  ⑶底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  ⑴生独立列式解答,集体订正。

  ⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:25078010000=1.95公顷,

  再求共收小麦多少千克:70001.95=13650千克

  ⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

  与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  1.6厘米

  2.5厘米

  ⑴你能找出图中的.两个平行四边形吗?

  ⑵他们的面积相等吗?为什么?

  ⑶生计算每个平行四边形的面积。

  ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。

  28平方米

  7米

  分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  练习十六第7题。

  四、作业

  练习十六第5、8、9、11题。

平行四边形教案 篇5

  教学目标设计:

  1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。

  2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。

  3、培养初步的推理能力和合作意识,以及解决实际问题的能力。

  教学重点:探究平行四边形的面积公式

  教学难点:理解平行四边形的面积计算公式的推导过程

  教学过程设计:

  一、创设情境,激发矛盾

  拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽

  教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长

  学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。

  教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底

  边长×邻边长吗?

  今天这节课我们就来研究“平行四边形的面积”。教师板书课题。

  学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?

  二、另辟蹊径,探究新知

  1、寻找根源,另辟蹊径

  教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?

  引导学生思考:原来是平行四边形的`面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?

  学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?

  2、适时引导,自主探索

  教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?

  (1)学生操作

  学生动手实践,寻求方法。

  学情预设:学生可能会有三种方法出现。

  第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。

  第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。

  (2)观察比较

  刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?

  (3)课件演示

  是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。

  3、公式推导,形成模型

  既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?

  先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。

  A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?

  B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)

  学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:

  长方形的面积 = 长 × 宽

  平行四边形的面积 = 底 × 高

  4、变化对比,加深理解

  引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?

  5、自学字母公式,体会作用

  请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的

  面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?

  三、实践应用

  1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)

  2、看图口述平行四边形的面积。

  3分米 2.5厘米

  3、这个平行四边形的面积你会求吗?你是怎样想的?

  4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?

平行四边形教案 篇6

  教学目的

  1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形;

  2.理解并掌握用二组对边分别相等的四边形是平行四 边形

  3.能运这两种方法来证明一个四边形是平行四边形。

  教学重点和难点

  重点:平行四边形的判定定理;

  难点:掌握平行四边形的性 质和判定的区别及熟练应用。

  教学过程

  (一)复习提问:

  1. 什么 叫平行四边形 ?平行四边形有什么性质?(学生口答,教师板书)

  2. 将 以上的性质定理,分别用命题形式 叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的逆命题是否成立?

  (二)新课

  一.平行四边形的判定:

  方法一(定义法):两组对边分别平行的四边形的.平边形。

  几何语言表达定义法:

  ∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边 分别互相平行,

  则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  方法二:两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,AD=BC

  求 证:四边ABCD是平行四边形。

  分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1)

  板书证明过程。

  小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

  判定一:二组对边分别相等的四边形是平行四边形

  ∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形

  练习:课本P103练习题第1题。

  例题讲解:

  例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。

  求证:

  分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。

  练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。

  求证:四边 形EFGH是平行四边形。

平行四边形教案 篇7

  【实验目的】

  验证互成角度的两个力合成时的平行四边形定则。

  【实验原理】

  等效法:使一个力F的作用效果和两个力F1、F2的作用效果都是让同一条一端固定的橡皮条伸长到某点,所以这一个力F就是两个力F1和F2的合力,作出F的图示,再根据平行四边形定则作出F1和F2的合力F的图示,比较F和F的大小和方向是否都相同。

  【实验器材】

  方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔。

  【实验步骤】

  ⑴用图钉把白纸钉在水平桌面上的方木板上,并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。

  ⑵用两只弹簧测力计分别钩住细绳套,互成角度地拉像皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。

  ⑶只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。

  ⑷用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示。

  ⑸用刻度尺从O点按同样的标度沿记录的方向作出只用一只弹簧测力计的拉力F的图示。

  ⑹比较一下,力F与用平行四边形定则求出的合力F的大小和方向是否相同。

  锦囊妙诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。

  交流与思考:每次实验都必须保证结点的位置保持不变,这体现了怎样的物理思想方法?若两次橡皮条的伸长长度相同,能否验证平行四边形定则?

  提示:每次实验保证结点位置保持不变,是为了使合力的作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法。由于力不仅有大小,还有方向,若两次橡皮条的伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则。

  【误差分析】

  ⑴用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这样两个测力计的水平分力的实际合力比由作图法得到的合力小。

  ⑵结点O的位置和两个测力计的方向画得不准,造成作图的误差。

  ⑶两个分力的起始夹角太大,如大于120,再重做两次实验,为保证结点O位置不变(即保证合力不变),则变化范围不大,因而测力计示数变化不显着,读数误差大。

  ⑷作图比例不恰当造成作图误差。

  交流与思考:实验时由作图法得到的合力F和单个测力计测量的实际合力F忘记标注而造成错乱,你如何加以区分?

  提示:由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F,不共线的合力表示由作图法得到的'合力F。

  【注意事项】

  ⑴不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置。

  ⑵使用弹簧秤前,应先调节零刻度,使用时不超量程,拉弹簧秤时,应使弹簧秤与木板平行。

  ⑶在同一次实验中,橡皮条伸长时的结点位置要相同。

  ⑷被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

  ⑸读数时应正对、平视刻度。

  ⑹两拉力F1和F2夹角不宜过小,作力的图示,标度要一致。

  交流与思考:如何设计实验探究两力合力随角度的变化规律?如何观察合力的变化规律?

  提示:保持两力的大小不变,改变两力之间的夹角,使两力的合力发生变化,可以通过观察结点的位置变化,判断合力大小的变化情况,结点离固定点越远,说明两力的合力越大。

  【正确使用弹簧秤】

  ⑴弹簧秤的选取方法是:将两只弹簧秤调零后互钩水平对拉,若两只弹簧在对拉过程中,读数相同,则可选;若读数不同,应另换弹簧,直至相同为止。

  ⑵弹簧秤不能在超出它的测量范围的情况下使用。

  ⑶使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差)。

  ⑷被测力的方向应与弹簧秤轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

  ⑸读数时应正对、平视刻度。

平行四边形教案 篇8

  一、内容和内容解析

  1.内容

  平行四边形对角线的性质.

  2.内容解析

  这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据.

  教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.

  基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.

  二、目标和目标解析

  1.目标

  (1)探究并掌握平行四边形对角线互相平分的性质.

  (2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

  2.目标解析

  达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.

  达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.

  三、教学问题诊断分析

  本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的.经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.

  基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算.

  四、教学过程设计

  引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.

  1. 引入要素 探究性质

  问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

  师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.

  设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.

  问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

  师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.

  你能证明上述猜想吗?

  教师操作投影仪,提出下面问题:

  图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.

  学生合作学习,交流自己的思路,并讨论不同的验证思路.

  教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

  △ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.

  师生归纳整理:

  定理:平行四边形的对角线互相平分.

  我们证明了平行四边形具有以下性质:

  (1)平行四边形的对边相等;

  (2)平行四边形的对角相等;

  (3)平行四边形的对角线互相平分.

  设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.

  2.例题解析 应用所学

  问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.

  师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.

  变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

  设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.

  3.课堂练习,巩固深化

  (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

  (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

  设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.

  4.反思与小结

  (1)我们学习了平行四边形的哪些性质?

  (2)结合本节的学习,谈谈研究平行四边形性质的思想方法.

  (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

  5.布置作业

  教科书P49页习题18.1 第3题;

  教科书第51页第14题.

平行四边形教案 篇9

  教学目的:

  1、深入了解平行四边形的不稳定性;

  2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)

  3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;

  4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。

  教学重点:

  平行四边形的性质和判定。

  教学难点:

  性质、判定定理的运用。

  教学程序:

  一、复习创情导入

  平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  二、授新

  1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:

  2、自学质疑:自学课本P79-82页,并提出疑难问题。

  3、分组讨论:讨论自学中不能解决的问题及学生提出问题。

  4、反馈归纳:根据预习和讨论的效果,进行点拨指导。

  5、尝试练习:完成习题,解答疑难。

  6、深化创新:平行四边形的`性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  7、推荐作业

  1、熟记“归纳整理的内容”;

  2、完成《练习卷》;

  3、预习:(1)矩形的定义?

  (2)矩形的性质定理1、2及其推论的内容是什么?

  (3)怎样证明?

  (4)例1的解答过程中,运用哪些性质?

  思考题

  1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?

  跟踪练习

  1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )

  2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。

  3、下列条件中,能够判断一个四边形是平行四边形的是( )

  (A)一组对角相等; (B)对角线相等;

  (C)两条邻边相等; (D)对角线互相平分。

  创新练习

  已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)

  达标练习

  1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。

  2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。

  综合应用练习

  1、下列条件中,能做出平行四边形的是( )

  (A)两边分别是4和5,一对角线为10;

  (B)一边为4,两条对角线分别为2和5;

  (C)一角为600,过此角的对角线为3,一边为4;

  (D)两条对角线分别为3和5,他们所夹的锐角为450。

  推荐作业

  1、熟记“判定定理3”;

  2、完成《练习卷》;

  3、预习:

  (1)“平行四边形的判定定理4”的内容 是什么?

  (2)怎样证明?还有没有其它证明方法?

  (3)例4、例5还有哪些证明方法?

【平行四边形教案】相关文章:

平行四边形的面积教案03-17

平行四边形的面积教案03-31

《平行四边形的面积》教案01-02

平行四边形面积教案02-09

认识平行四边形教案03-05

精选平行四边形教案3篇05-16

平行四边形教案3篇05-16

平行四边形教案9篇05-19

《平行四边形面积的计算》教案09-14

数学《平行四边形的面积》教案02-14