平行四边形教案

时间:2023-05-26 11:09:30 教案 投诉 投稿

精选平行四边形教案集合八篇

  作为一位不辞辛劳的人民教师,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。教案要怎么写呢?下面是小编为大家收集的平行四边形教案8篇,欢迎大家分享。

精选平行四边形教案集合八篇

平行四边形教案 篇1

  教学内容:

  书本第43—45页的例题,“试一试”和“想想做做”。

  教学目标:

  1、使学生在具体的活动中认识平行四边形,知道它的基本特征,能正确判断平行四边形;认识平行四边形的高和底,能正确测量和画出它的高。

  2、使学生在观察、操作、比较、判断等活动中,经历探索平行四边形的基本特征的过程,进一步积累认识图形的经验,发展空间观念。

  3、使学生体会平行四边形在生活中的广泛应用,培养数学应用意识,增强认识平面图形的兴趣。

  教学重、难点:

  认识平行四边形的特征,画平行四边形的高。

  教学准备:

  课件、每组准备小棒、钉子板、方格纸、直尺、三角尺

  总课时:

  28课时

  教学过程:

  一、生活引入,形成表象

  1、教师出示生活情境图,提问:在这些图片中,都有一个共同的平面图形,是什么?(平行四边形)你能找到吗?

  指名学生指一指,课件演示。

  2、师:生活中,你还在哪些地方能看到平行四边形?

  二、合作交流,探究新知

  (一)探究平行四边形的特征

  1、小组合作,制作平行四边形

  师:你能想办法做出一个平行四边形吗?

  提出要求:每个同学在小组学具袋中,任选一种材料制作一个平行四边形,做完之后,再和小组内的同学说一说你的制作方法?

  汇报交流(让学生依次在投影上演示,并介绍制作过程)

  2、对比猜测平行四边形特征

  师:同学们用不同的方法制作了许多大小不一的平行四边形,那平行四边形有什么特征呢?谁来猜测一下?

  学生猜测,教师板书或板贴(并在后面打“?”)

  3、小组探究,验证平行四边形的特征

  师:同学们的猜测无外乎两个方面,一方面是平行四边形边的特点,一方面平行四边形角的特点。(教师同时板贴将学生的猜测进行归类)那么就请同学们拿出你们手中的平行四边形,小组合作,想办法验证黑板上的一点或几点猜测。

  学生小组活动,教师巡视指导。

  汇报交流总结:平行四边形两组对边分别平行且相等,两组对角分别相等,内角和是360度。

  4、判断巩固:想想做做第1题,并让学生说说第二图形不是平行四边形的原因。

  (二)自主学习,认识底、高

  1、出示一张平行四边形的图,提出:你能量出这个平行四边形上下两条边间的距离吗?拿出手中的'作业纸,先用虚线画出表示这组对边距离的线段,再测量。

  学生自己尝试后交流。教师指导明确“平行线之间的垂直线段就是平行线之间的距离”。指出这条垂直线段是这个平行四边形的一条高,这是它的底。标出高和底。

  2、教师平移此线段,提问是不是平行四边形这个底上的高?有多少条?

  3、什么是平行四边形的高?什么是它的底呢?打开书44页自学例题中的内容。

  指名汇报,通过自学,你知道了什么?

  4、出示试一试,你能量出下面每个平行四边形的高和底各是多少厘米吗?在书上完成。

  汇报后,师指最后一个图形的另外一组底,提问:如果以这条边作底,这个还是它的高吗?为什么?

  师小结:平行四边形有两组相对应的底和高。

  5、完成想想做做5,先指一指平行四边形的底,再画出这条底边上的高。如果有错误,让学生说说错在哪里。然后让学生说说做平行四边形的高需要注意些什么?(底和高要对应,高画成虚线,画上直角标记)

  问:这节课咱们研究了哪种平面图形?(板书课题:认识平行四边形)你学到了哪些知识?关于平行四边形你还想了解哪些知识?

  三、实践体验,深化特性

  1、想想做做4。师:你能把一张平行四边形纸剪成两部分,再拼成一个长方形吗?先自己试一试,再在小组里交流你是怎么剪拼的。

  指名汇报,你是怎样剪的?谁来看着这个长方形,说说它的特征是什么?

  2、想想做做6。刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?

  出示想想做做6的几个步骤。让学生一步步操作,最后小组里观察讨论:长方形和平行四边形的相同点与不同点。

  3、出示集合图,指出:如果把平行四边形看做一个整体的话,长方形只是其中的一小部分。长方形是特殊的平行四边形。

  4、小结。

  教师:出示平行四边形演示变化过程,让学生观察,平行四边形的形状改变了,但是什么没有改变?指出平行四边形不改变边长的情况下可以改变成不同形状的平行四边形,这就是平行四边形的不稳定性。请同学看书上P45页“你知道吗?”

  提问:说一说,生活中平行四边形的这种特点在哪些地方有应用?大家课后做个有心人,搜集相关的资料吧。

  四、全课总结师:通过这节课的学习你有哪些收获?

平行四边形教案 篇2

  一 教学目标:

   1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

  2.会综合运用平行四边形的判定方法和性质来解决问题.

  3.培养用类比、逆向联想及运动的思维方法来研究问题.

  二 重点、难点

  1.重点:平行四边形的判定方法及应用.

  2.难点:平行四边形的判定定理与性质定理的灵活应用.

  3.难点的突破方法:

  平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.

  (1)平行四边形的判定方法1、2都是平行四边形性质的`逆命题,它们的证明都可利用定义或前一个方法来证明.

  (2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:

  ①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;

  ②本节课只介绍前两个判定方法.

  (3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.

  然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.

  在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.

  (4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.

  (5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.

  (6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.

  三 例题的意图分析

  本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.

  四 课堂引入

  1.欣赏图片、提出问题.

  展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?

  2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

  让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?

  从探究中得到:

  平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2 对角线互相平分的四边形是平行四边形

平行四边形教案 篇3

  一、创设情境,呈现真实

  师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)

  师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)

  生活动后汇报如下:

  长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米

  (1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米

  (2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米

  二、否定错误猜想

  1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

  你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

  生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

  师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

  生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?

  2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?

  生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

  师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)

  生:(兴奋地)高!

  师:现在,你觉得平行四边形的面积与它的什么有关?

  生:我觉得平行四边形的面积与它的高有很大的关系。

  3、师:用什么办法可以比较它们的面积大小呢?

  生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

  师:变成长方形后,面积大小变了没有?

  生:没有

  师:那么要计算平行四边形的面积,应该怎么办?

  生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

  生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

  师:这位同学把“计算平行四边形的`面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

  三、归纳计算方法

  师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

  根据学生反馈情况进行课件演示,出现几种拼法(略)

  师:这几种剪拼方法有什么相同之处?

  生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

  生:在剪拼过程中,图形的形状变了,面积不变。

  师:为什么平行四边形的面积可以用“底乘高”来计算?

  生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

  师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

  生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

  师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。

  四、反思探究过程

  师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

平行四边形教案 篇4

  一、内容和内容解析

  1.内容

  平行四边形对角线的性质.

  2.内容解析

  这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据.

  教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.

  基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.

  二、目标和目标解析

  1.目标

  (1)探究并掌握平行四边形对角线互相平分的性质.

  (2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

  2.目标解析

  达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.

  达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.

  三、教学问题诊断分析

  本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.

  基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算.

  四、教学过程设计

  引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.

  1. 引入要素 探究性质

  问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

  师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.

  设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.

  问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

  师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.

  你能证明上述猜想吗?

  教师操作投影仪,提出下面问题:

  图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.

  学生合作学习,交流自己的思路,并讨论不同的验证思路.

  教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

  △ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.

  师生归纳整理:

  定理:平行四边形的对角线互相平分.

  我们证明了平行四边形具有以下性质:

  (1)平行四边形的对边相等;

  (2)平行四边形的对角相等;

  (3)平行四边形的'对角线互相平分.

  设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.

  2.例题解析 应用所学

  问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.

  师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.

  变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

  设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.

  3.课堂练习,巩固深化

  (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

  (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

  设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.

  4.反思与小结

  (1)我们学习了平行四边形的哪些性质?

  (2)结合本节的学习,谈谈研究平行四边形性质的思想方法.

  (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

  5.布置作业

  教科书P49页习题18.1 第3题;

  教科书第51页第14题.

平行四边形教案 篇5

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  3.培养同学们分析问题、解决问题的能力。

  教学重点:

  运用所学知识解答有关平行四边形面积的应用题。

  教具准备:

  卡片

  教学过程:

  一、基本练习

  1.口算。

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  (1)底12米,高7米;

  (2)高13分米,底6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:25078010000=1.95公顷,

  再求共收小麦多少千克:70001.95=13650千克

  (3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

  与(2)比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  (1)你能找出图中的两个平行四边形吗?

  (2)他们的面积相等吗?为什么?

  (3)生计算每个平行四边形的.面积。

  (4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.练习第10题:已知一个平行四边形的面积和底,求高。

  分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  第7题。

  四、小结

  本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?

平行四边形教案 篇6

  教学目标

  知识技能目标

  1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

  2.理解平行四 边形的这两种判定方法,并学会简单运用.

  过程与方法目标

  1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.

  2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

  情感态度价值观目标

  通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

  教学重点:

  平行四边形判定方法的探究、运用.

  教学难点:

  对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.

  教学过程

  第一环节 复习引入:

  ( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)

  问题1(多媒体展 示问题)

  1.平行四边形的定义是什么?它有什么作用?

  2.平 行四边形还有哪些性质?

  问题2

  有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?

  第二环节 探索活动(12分钟,学生动手探究,小组合作)

  活动1:

  工具:两根长度相等的笔,

  两条平行线(可利用横格线).

  动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?

  思考1.1:你能说明你所摆出的四边形是平行四边形吗?

  思考1.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.

  活动2

  工具:两根不同长度的细纸条.

  动手:能否用这两根细纸条在平面上

  摆出平行四边形?

  思考2.1:你能说明你们摆出的四边形是平行四边形吗?

  思考2.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形的性质:对角线互相平分的四边形是平行四边形

  第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)

  随堂练习:

  1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.

  (1)OA与OC,OB与OD相等吗?

  (2)四边形BFDE是平行四边形吗?

  (3)若点E,F在OA,OC的中点上,你能解决上述问题吗?

  2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?

  (让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)

  学生想到的画法有:

  (1)分别过A,C作BC,BA的`平行线,两平行线相交于D;

  (2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;

  (3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.

  第四环节 小结:(4分钟,学生回答问题)

  师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.

  第五环节 布置 作业:

  B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题

  A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?

  ② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?

平行四边形教案 篇7

  教学目标

  1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。

  3.对学生进行辩诈唯物主义观点的启蒙教育。

  教学重点

  理解公式并正确计算平行四边形的面积。

  教学难点

  理解平行四边形面积公式的推导过程。

  教学过程

  一、复习引入

  1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。

  2.观察老师出示的几个平行四边形,指出它的底和高。

  3.教师出示一个长方形和一个平行四边形。

  猜测:

  哪一个图形面积比较大?大多少平方厘米呢?

  师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)

  二、指导探究

  1.数方格方法

  (1)小组合作讨论:

  a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?

  b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?

  c.用数方格的方法,求出平行四边形的.面积?(不满一格的,都按半格计算)

  d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?

  (2)集体订正

  (3)请同学评价一下用数方格的方法求平行四边形的面积。

  (麻烦,有局限性)

  2.探索平行四边形面积的计算公式。

  (1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  (2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。

  (3)同学到前面演示转化的方法。

  (4)教师演示课件并组织学生讨论:

  ①平行四边形和转化后的长方形有什么关系?

  ②怎样计算平行四边形的面积?为什么?

  ③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?

  3、应用

  例1一块平行四边形钢板,它的面积是多少?(得数保留整数)

  4.83.517(平方米)

  答:它的面积约是17平方米。

  三、质疑小结

  今天你学到了哪些知识?怎样计算平行四边形面积?

  四、巩固练习

  1、列式并计算面积

  ①底厘米,高厘米,

  ②底米,高米,

  ③底分米,高分米

  2、说出下面每个平行四边形的底和高,计算它们的面积。

  3、应用题

  有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)

  4、量出你手里平行四边形学具的底和高,并计算出它的面积。

平行四边形教案 篇8

  【实验目的】

  验证互成角度的两个力合成时的平行四边形定则。

  【实验原理】

  等效法:使一个力F的作用效果和两个力F1、F2的作用效果都是让同一条一端固定的橡皮条伸长到某点,所以这一个力F就是两个力F1和F2的合力,作出F的图示,再根据平行四边形定则作出F1和F2的合力F的图示,比较F和F的大小和方向是否都相同。

  【实验器材】

  方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔。

  【实验步骤】

  ⑴用图钉把白纸钉在水平桌面上的方木板上,并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。

  ⑵用两只弹簧测力计分别钩住细绳套,互成角度地拉像皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。

  ⑶只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。

  ⑷用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示。

  ⑸用刻度尺从O点按同样的标度沿记录的方向作出只用一只弹簧测力计的拉力F的图示。

  ⑹比较一下,力F与用平行四边形定则求出的合力F的大小和方向是否相同。

  锦囊妙诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。

  交流与思考:每次实验都必须保证结点的位置保持不变,这体现了怎样的物理思想方法?若两次橡皮条的伸长长度相同,能否验证平行四边形定则?

  提示:每次实验保证结点位置保持不变,是为了使合力的作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法。由于力不仅有大小,还有方向,若两次橡皮条的伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则。

  【误差分析】

  ⑴用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这样两个测力计的水平分力的实际合力比由作图法得到的合力小。

  ⑵结点O的位置和两个测力计的方向画得不准,造成作图的误差。

  ⑶两个分力的起始夹角太大,如大于120,再重做两次实验,为保证结点O位置不变(即保证合力不变),则变化范围不大,因而测力计示数变化不显着,读数误差大。

  ⑷作图比例不恰当造成作图误差。

  交流与思考:实验时由作图法得到的合力F和单个测力计测量的实际合力F忘记标注而造成错乱,你如何加以区分?

  提示:由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F,不共线的合力表示由作图法得到的合力F。

  【注意事项】

  ⑴不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的`位置。

  ⑵使用弹簧秤前,应先调节零刻度,使用时不超量程,拉弹簧秤时,应使弹簧秤与木板平行。

  ⑶在同一次实验中,橡皮条伸长时的结点位置要相同。

  ⑷被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

  ⑸读数时应正对、平视刻度。

  ⑹两拉力F1和F2夹角不宜过小,作力的图示,标度要一致。

  交流与思考:如何设计实验探究两力合力随角度的变化规律?如何观察合力的变化规律?

  提示:保持两力的大小不变,改变两力之间的夹角,使两力的合力发生变化,可以通过观察结点的位置变化,判断合力大小的变化情况,结点离固定点越远,说明两力的合力越大。

  【正确使用弹簧秤】

  ⑴弹簧秤的选取方法是:将两只弹簧秤调零后互钩水平对拉,若两只弹簧在对拉过程中,读数相同,则可选;若读数不同,应另换弹簧,直至相同为止。

  ⑵弹簧秤不能在超出它的测量范围的情况下使用。

  ⑶使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差)。

  ⑷被测力的方向应与弹簧秤轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

  ⑸读数时应正对、平视刻度。

【平行四边形教案】相关文章:

《平行四边形的面积》教案01-02

平行四边形面积教案02-09

平行四边形的面积教案03-31

认识平行四边形教案03-05

平行四边形的面积教案03-17

《平行四边形面积的计算》教案09-14

数学《平行四边形的面积》教案02-14

精选平行四边形教案4篇05-12

平行四边形教案9篇05-19

精选平行四边形教案3篇05-16