平行四边形教案范文汇总9篇
作为一名教师,常常需要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么什么样的教案才是好的呢?下面是小编帮大家整理的平行四边形教案9篇,仅供参考,大家一起来看看吧。
平行四边形教案 篇1
教学内容:人教版第九册 64 – 67页
说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。
教学重点:平行四边形面积的推导过程。
本课采用的教法:自学法 、 转化方法、小组合作法、实验法。
学法:1、自主学习法
2、小组合作探究学习法。
教学程序:
一、创设问题情景, 为新课作铺垫。
请同学们帮李师傅的一个忙,
求出下面的面积,你是怎样想的?3厘米
5厘米
二、突出学生主体地位,发展学生的创新思维。
首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?
有的同学说:长方形面积与平行四边形面积相等(数出来的')。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想
三、小组合作,培养学生的合作精神。
小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高
学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)
学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。
四例题独立完成,体现学生自己解决问题的能力。
例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。
板书设计:
长方形面积==长乘宽
平行四边形面积=底乘高
s= a h
平行四边形教案 篇2
教学目标
(一)教学知识点
1、能进一步理解掌握矩形、菱形、正方形的性质定理、判定定理。
2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。
(二)能力训练要求
1、经历探索、猜想、证明的过程,进一步发展推理论证能力。
2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。
3、体会证明过程中所运用的归纳概括以及转化等数学思想方法。
(三)情感与价值观要求
1、通过知识的`迁移、类比、转化,激发学生探索新知识的积极性和主动性。
2、体会数学与生活的联系。
教学重点:特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。
教学难点:特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。
教学方法:启问——交流式教学法。
教学过程
1、巧设现实情境,引入新课
[师]通过前几节内容的学习,我们进一步理解了平行四边形及特殊平行四边形的性质定理和判定定理。
这节课我们来应用它们证明和计算一些题。
2、讲授新课
[师]下面大家来猜一猜,想一想
依次连接任意四边形各边的中点可以得到一个平行四边形。那么,依次连接正方形各边的中点。(如图)能得到—个怎样的图形呢?先猜一猜,再证明。
平行四边形教案 篇3
课题:
认识三角形第1课时总第课时
教学目标:
1.通过动手操作和观察比较,认识三角形的特点,理解和掌握三角形的定义。
2.结合具体情境认识三角形的底和高,理解并掌握三角形高和底的含义,能在三角形内画出对应边上的高。
3.在学习活动中培养学生的空间思维能力,感受数学知识与生活的密切联系。
教学重点:认识三角形的基本特征。
教学难点:画三角形指定边上的高。
教学准备:课件
教学过程:
一、情境引入
1.课件出示教材第75页例题1情境图。
师:同学们,我们以前认识过三角形,仔细观察情境图,你能在图上找出三角形吗?
学生先说说哪里有三角形,再让学生在图上描出来。
提问:生活中哪些物体上也有三角形呢?
师生交流后说一说。
2.导入新课。
三角形在我们的生活中有着广泛的应用,它有什么特点呢?这节课我们就来深入探究三角形的相关知识。(板书课题)
二、交流共享
(一)认识三角形的定义
1.画三角形。
师:大家找了这么多三角形,能想办法画一个三角形吗?
学生用三角板在练习本上画出一个三角形。
2.观察三角形的特点。
(1)请同学们在小组内观察画出的三角形,想一想:三角形有什么特点?把你的想法在小组内交流。
(2)组织全班交流。
通过交流,引导学生得出三角形的以下特点:
①三角形有3条边,3个角。
②三角形的3条边都是线段。
③这3条线段要首尾相接地围起来。
3.认识三角形的定义。
教师指出:三条线段首尾相接围成的图形叫作三角形。
教师在黑板上画出一个三角形,引导学生观察这个三角形,说一说:三角形有几个顶点?分别指出三角形的3个顶点、3条边和3个角。
教师结合学生的'汇报,在三角形上标出“顶点”“角”“边”。
4.完成教材第75页“试一试”。
(1)出示题目,学生读题,说说各自对题目的理解。
(2)学生独立在教材的方格纸上画一画后,教师展示学生的画法。
(3)观察比较。
提问:观察图形,你有什么发现?
引导学生发现:不在同一条直线上的三个点都能画出一个三角形。
(二)认识三角形的高和底
1.课件出示教材第76页例题2人字梁图。
学生独立观察图。师提问:你能量出右图中人字梁的高度吗?
学生动手在教材上的人字梁图上量一量。
2.组织交流。
提问:你量的是哪条线段?它有什么特点?
指名学生结合投影图说一说。
明确:人字梁的高度是上面的顶点到它对边的距离;量的线段与人字梁的底边互相垂直;图中人字梁的高度是2厘米。
3.介绍三角形的高和底。
教师结合图进行介绍:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
强调:高要用虚线表示,并标上垂直符号。
在黑板上先画一个三角形,教师边示范边说:以这条边为底,现在要找它的高。
教师用三角板的直角边和它重合,(不断移动)说说它的垂线有多少条?(无数条)其中只有一条很特殊,你能说说是哪一条吗?(从对面的顶点画下来的这条垂线)用虚线画一画。
三、反馈完善
1.完成教材第76页“试一试”。
先让学生在教材的三角形上画出底边上的高,然后和同学交流画法。
提问:三角形一共有几条高?
引导学生得出:底和高是一对一对出现的,三角形有三条底,也就有三条高。
2.完成教材第76页“练一练”第1题。
这道题是加深学生对三角形特点的认识。
先让学生独立判断,再说说判断的理由。
3.课件出示:画出每个三角形底边上的高。
强调:第一个图形是直角三角形,直角三角形一条直角边是底,另一条直角边就是这条底上的高。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
第七单元三角形、平行四边形和梯形
课题:三角形三边的关系第2课时总第课时
教学目标:
1.通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。
2.引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。
3.培养学生积极的学习态度和乐于探究的数学情感。
教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。
教学难点:运用三角形三边的关系解决实际问题。
教学准备:课件
教学过程:
一、谈话引入
1.举例:生活中哪些物体的面是三角形的?
2.复习三角形的各部分名称。
提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?
引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……
3.导入新课。
三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题)
二、交流共享
1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?
2.操作交流。
(1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。
教师巡视,了解学生的操作情况。
(2)小组交流。
布置学生将各自的操作情况在四人小组内进行交流。
(3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?
平行四边形教案 篇4
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。
教学目标:
1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学过程:
一、情境激趣
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的.小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)
二、自主探究
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:平行四边形的面积=底×高
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
A.形状变了,面积没变。
B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、看书质疑
四、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
五、巩固运用
1.练习十五第1题,让学生独立完成后反馈答案。
2.你会计算下面平行四边形的面积吗?
3.你能想办法求出下面平行四边形的面积吗?
4.练习十五第3题。
六、全课小结(略)
平行四边形教案 篇5
教学目标设计:
1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。
2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。
3、培养初步的推理能力和合作意识,以及解决实际问题的能力。
教学重点:探究平行四边形的面积公式
教学难点:理解平行四边形的面积计算公式的推导过程
教学过程设计:
一、创设情境,激发矛盾
拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽
教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长
学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。
教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底
边长×邻边长吗?
今天这节课我们就来研究“平行四边形的面积”。教师板书课题。
学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的'洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?
二、另辟蹊径,探究新知
1、寻找根源,另辟蹊径
教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?
引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?
学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?
2、适时引导,自主探索
教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?
(1)学生操作
学生动手实践,寻求方法。
学情预设:学生可能会有三种方法出现。
第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。
第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。
(2)观察比较
刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?
(3)课件演示
是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。
3、公式推导,形成模型
既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?
先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。
A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?
B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?
C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)
学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:
长方形的面积 = 长 × 宽
平行四边形的面积 = 底 × 高
4、变化对比,加深理解
引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?
5、自学字母公式,体会作用
请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的
面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?
三、实践应用
1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)
2、看图口述平行四边形的面积。
3分米 2.5厘米
3、这个平行四边形的面积你会求吗?你是怎样想的?
4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?
平行四边形教案 篇6
教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。
教学重点:掌握平行四边形面积公式。
教学难点:平行四边形面积公式的推导过程。
教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。
教学过程():
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高
所以:平行四边形的面积=底×高
(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的`面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:
(1)、(微机显示例一)求平行四边形的面积
(2)、判断题(微机显示,强调高是底边上的高)
(3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)
(4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1
平行四边形教案 篇7
教学目标:
知识与技能
1.探索并掌握平行四边形、矩形、菱形、正方形的定义
2.掌握它们之间的区别与联系
过程与方法
在观察、操作的探索过程中,发展学生的合情推理能力。
教学重点:平行四边形的定义
教学难点:平行四边形、特殊平行四边形彼此之间的关系
教学过程:
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线。
强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
边角
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示四边形与特殊四边形的关系,如图.
3.对比引出平行四边形的概念.
(1)引导学生根据上图,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的'关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(特性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:
①∵ABCD,
∴AD//BC,AB//CD(平行四边形的定义)
②∵AD//BC,AB//CD,
∴四边形ABCD是平行四边形(平行四边形的定义)
二、讲授新课
议一议:
用教具演示如图,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.
1.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)。
注意:用定义判定一个四边形是矩形必须同时满足:①有一个角是直角②是平行四边形,两个条件缺一不可。
思考:
(1)如果把“平行四边形”换成“四边形”或去掉“有一个角是直角”能保证是矩形吗?
(2)增加条件行不行?如“有四个角是直角的平行四边形叫做矩形”可以吗?
引导学生思考后,进一步明确定义的内涵。
类比“平行四边形演变成矩形”而得到菱形。强调平行四边形增加一个特定条件“一组邻边相等”就得到菱形
可以发现:随着AB的运动,它仍然保持平行四边形的形状,但BC的长度却在不断地改变当BC恰好与AB相等时,就得到一种特殊的四边形———菱形。
2.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
想一想:平行四边形是否可能有一组邻边相等并且有一个角是直角呢?这时,平行四边形演变成什么图形?
学生思考后回答。师生共同总结得出:
3.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
试一试:正方形、、矩形、菱形与平行四边形之间存在“特殊”与“一般”的关系,正方形、、矩形、菱形之间也存在“特殊”与“一般”的关系,你能用一张图来表示它们之间的关系吗?把你设计的图和同学们讨论,并写下来。
引导学生思考后,进行小组讨论。归纳如下:
集合表示,突出关系
平行四边形
矩形正方形菱形
三、练习巩固概念P54
四、课堂小结:
师生共同总结本节课内容。
矩形
有一个角是直角,
平行四边形且有一组邻边相等正方形
菱形
五、课后作业
六、课后反思
平行四边形教案 篇8
一、实验目的
验证互成角度的两个力合成时的平行四边形定则.
二、实验原理
如果使F1、F2的共同作用效果与另一个力F′的作用效果相同(橡皮条在某一方向伸长一定的长度),那么根据F1、F2用平行四边形定则求出的合力F,应与F′在实验误差允许范围内大小相等、方向相同.
实验器材
方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔.
三、实验步骤
(一)、仪器的安装
1.用图钉把白纸钉在水平桌面上的方木板上.并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套.
(二)、操作与记录
2. 用两只弹簧测力计分别钩住细绳套,互成角度地 拉橡皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向.
3.只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向.
(三)、作图及分析
4.改变两个力F1与F2的大小和夹角,再重复实验两次.
5.用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示.
6.用刻度尺从O点按同样的标度沿记录的方向作出这只弹簧测力计的拉力F′的图示.
7.比较一下,力F′与用平行四边形定则求出的合力F在误差范围内大小和方向上是否相同.
四、注意事项
1.位置不变:在同一次实验中,使橡皮条拉长时结点的位置一定要相同.
2.角度合适:用两个弹簧测力计钩住细绳套互成角度地拉橡皮条时,其夹角不宜太小,也不宜太大,以60°~100°之间为宜.
3.尽量减少误差
(1)在合力不超出量程及在橡皮条弹性限度内的前提下,测量数据应尽量大一些.
(2)细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套方向画直线,应在细绳套两端画个投影点,去掉细绳套后,连直线确定力的方向.
4.统一标度:在同一次实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的图示稍大一些.
五、误差分析
本实验的误差除弹簧测力计本身的误差外,还主要来源于以下两个方面:
1.读数误差
减小读数误差的方法:弹簧测力计数据在允许的情况下,尽量大一些.读数时眼睛一定要正视,要按有效数字正确读数和记录.
2.作图误差
减小作图误差的方法:作图时两力的对边一定要平行,两个分力F1、F2间的夹角越大,用平行四边形作出的合力F的`误差ΔF就越大,所以实验中不要把F1、F2间的夹角取得太大。
例1、对实验原理误差分析及读数能力的考查:(1)某实验小组在探究合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧秤互成角度地拉橡皮条,另一次是用一个弹簧秤通过细绳拉橡皮条.实验对两次拉伸橡皮条的要求中,下列哪些说法是正确的_BD_______.(填字母代号)
A.将橡皮条拉伸相同长度即可
B.将橡皮条沿相同方向拉到相同长度
C.将弹簧秤都拉伸到相同刻度
D.将橡皮条和细绳的结点拉到相同位置
(2)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是__AD______.(填字母代号)
A.弹簧秤、细绳、橡皮条都应与木板平行
B.两细绳之间的夹角越大越好
C.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大
D.拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些
(3)弹簧测力计的指针如图所示,由图可知拉力的大小为__4.00____N.
例2对实验操作过程的考察: 某同学在家中尝试验证平行四边形定则,他找到三条相同的橡皮筋(遵循胡克定律)和若干小重物,以及刻度尺、三角板、铅笔、细绳、白纸、钉子,设计了如下实验:将两条橡皮筋的一端分别挂在墙上的两个钉子A、B上,另一端与第三条橡皮筋连接,结点为O,将第三条橡皮筋的另一端通过细绳挂一重物,如图所示
(1)为完成该实验,下述操作中必需的是___bcd _____.
a.测量细绳的长度
b.测量橡皮筋的原长
c.测量悬挂重物后橡皮筋的长度
d.记录悬挂重物后结点O的位置
(2)钉子位置固定,欲利用现有器材,改变条件再次验证,可采用的方法是________改变重物质量______.
例3:有同学利用如图2-3-4所示的装置来验证力的平行四边形定则:在竖直木板上铺有白纸,固定两个光滑的滑轮A和B,将绳子打一个结点O,每个钩码的重量相等,当系统达到平衡时,根据钩码个数读出三根绳子的拉力F1、F2和F3,回答下列问题:
(1)改变钩码个数,实验能完成的是 (BCD )
A.钩码的个数N1=N2=2,N3=4
B.钩码的个数N1=N3=3,N2=4
C.钩码的个数N1=N2=N3=4
D.钩码的个数N1=3,N2=4,N3=5
(2)在拆下钩码和绳子前,最重要的一个步骤是 ( A )
A.标记结点O的位置,并记录OA、OB、OC三段绳子的方向
B.量出OA、OB、OC三段绳子的长度
C.用量角器量出三段绳子之间的夹角
D.用天平测出钩码的质量
(3)在作图时,你认为图中____甲____是正确的.(填“甲”或“乙”)
当堂反馈:
1、“验证力的平行四边形定则”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳.图乙是在白纸上根据实验结果画出的图.
(1)如果没有操作失误,图乙中的F与F′两力中,方向一定沿AO方向的是___ F′_____.
(2)本实验采用的科学方法是__B______.
A.理想实验法 B.等效替代法 C.控制变量法 D.建立物理模型法
2、某同学做“验证力的平行四边形定则”实验时,主要步骤是:
A.在桌上放一块方木板,在方木板上铺一张白纸,用图钉把白纸钉在方木板上;
B.用图钉把橡皮条的一端固定在板上的A点,在橡皮条的另一端拴上两条细绳,细绳的另一端系着绳套;
C.用两个弹簧测力计分别钩住绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O.记录下O点的位置,读出两个弹簧测力计的示数;
D.按选好的标度,用铅笔和刻度尺作出两只弹簧测力计的拉力F1和F2的图示,并用平行四边形定则求出合力F;
E.只用一只弹簧测力计,通过细绳套拉橡皮条使其伸长,读出弹簧测力计的示数,记下细绳的方向,按同一标度作出这个力F′的图示;
F.比较F′和F的大小和方向,看它们是否相同,得出结论.
上述步骤中:(1)有重要遗漏的步骤的序号是__C______和____E____;
(2)遗漏的内容分别是________________________________________________________________________
平行四边形教案 篇9
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的'位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十五第1题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×hS=ah或S=ah
课后反思:
【平行四边形教案】相关文章:
《平行四边形的面积》教案01-02
平行四边形面积教案02-09
平行四边形的面积教案03-31
认识平行四边形教案03-05
平行四边形的面积教案03-17
《平行四边形面积的计算》教案09-14
数学《平行四边形的面积》教案02-14
精选平行四边形教案4篇05-12
平行四边形教案9篇05-19
精选平行四边形教案3篇05-16