平行四边形教案

时间:2023-05-29 11:17:46 教案 投诉 投稿

有关平行四边形教案模板合集6篇

  作为一名教学工作者,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编为大家整理的平行四边形教案6篇,欢迎阅读与收藏。

有关平行四边形教案模板合集6篇

平行四边形教案 篇1

  教学建议

  1。重点 平行四边形的判定定理

  重点分析 平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.

  2。难点 灵活运用判定定理证明平行四边形

  难点分析 平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.

  3。关于平行四边形判定的教法建议

  本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.

  1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.

  2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.

  3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.

  教学设计示例1

  [教学目标]

  通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力,数学教案-平行四边形的判定。

  [教学过程]

  一、准备题系列

  1。复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)

  2。小实验:有一块平行四喧形的'玻璃片,假如不小心碰碎了解部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?

  (让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查,初中数学教案《数学教案-平行四边形的判定》。对个别差生稍加点拨,最后请学生回答画图方法) 学生可能想到的画法有:⑴ 分别过A、C作DC、DA的平行线,两平行线相交于B; ⑵过C作DA的平行线,再在这平行线上截取CB=DA,连结BA;⑶ 分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB。

  还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出 连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。

  二、引入新课

  上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得 研究的问题“平行四边形的判定”(板书课题)。

  三、尝试议练

  1。要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。

  2。现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。

  自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)

  3。再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)

  完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)

  四、变式练习

  1。再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?

  阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?(应该用判定定理一) 2。变式题

  ⑴两组对角分别相等的四边形是不是平行四边形?为什么?(练习第1题)(口述证明,不要示书面证明)(问要不要添辅助线?)

  ⑵一组对边平行,一组对角相等的四边形是不是平行四边形?(教师补充)

  ⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?(引导学生在草稿纸上画图思考,然后回答不是平行四边形。因为边角不能证全等三角形)

  ⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?

  观察下图:

  平行四边形ABCD中,<A、<C的平行线分别交对边于E和F,求证:AE=FC(怎样证最简便?)

  五、课堂小结

  1。今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。

  2。这些平行四边形的判定方法中最基本的是哪一条?

  3。平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?

平行四边形教案 篇2

  教学目的

  1.引导学生观察长方形、正方形的边和角的特点,认识长方形、正方形的共性和各自的特点.

  2.会在方格纸上画长方形、正方形.

  3.初步认识平行四边形.

  教学重点

  掌握长方形、正方形的特征

  教学难点

  长方形、正方形的区别和联系

  教具、学具准备

  多媒体课件一套(如果没有,可用学具代替)、长方形、正方形纸片,实物图片,七巧板、直尺、三角板.

  教学过程

  一、创设情境,提出问题.

  出示8根小棒(6长、2短)

  1.小组活动:你能用这8根小棒摆一些图形吗?看哪一个小组摆的又快又多.

  2.交流:请各小组到投影上边摆边说有几种.

  3.设疑:图形之间有很多相同的和不同的地方,提出长方形和正方形,它们各有几条边,几个角?每个角是什么角?它们的边和角的特点都一样吗?这两种图形可不可以变成别的形状?这就是我们这节课要研究的内容.(出示课题)

  二、主动探索,研究问题.

  1.认识长方形.

  (1)独立探索,小组交流.从学具中拿出长方报纸片来,动手观察一下它的角和边,会发现什么?(与小组内其他同学交流.)

  (2)小组汇报:请小组各出一名代表发言,分别说一说通过研究发现了角和边有什么特点,并且说一说怎样想的或者是怎样做的.找几个组说一说.(如果有用折纸这一办法的,请他说明怎样做的,演示一下,并给予表扬)

  (3)辩论:长方形有什么特征呢?(小组讨论)

  (4)教师总结:刚才有的同学利用身边的学具量一量,有的同学用折纸这个方法发现长方形相对着的两条边相等,也就是说长方形有两组对边相等,长方形有四个角,四个角都是直角.【演示动画长方形、正方形】

  (5)学生之间交流长方形的特点.每个人都用纸折折看,再验证一下.

  2.认识正方形.

  (1)独立探索,小组交流.

  同学们,刚才你们自己动手研究了长方形的一些知识,那么正方形的角和边又有什么特点呢?试试看,相信你能行.

  (2)汇报交流:正方形有什么特征呢?(小组互相说)

  (3)教师总结.我们用了同样的方法,验证了正方形的`边和角的一些特点,也就是正方形的四条边都是相等的,一样长,四个角都是直角.(继续演示动画长方形、正方形)

  3.小组讨论:长方形、正方形的联系和区别【演示动画长方形、正方形的特征】.

  (1)师问:长方形与正方形有什么相同点和不同点吗?

  (2)教师总结:刚才我们研究了长方形和正方形的边角特点.发现它们都有四个角,而且四个角都是直角:它们都有四条边,但是长方形对边相等,正方形不仅对边相等,而且四条边都相等.

  (3)引导学生揭示四边形的概念.

  由四边形围成的图形就是四边形,长方形和正方形都是四边形.

  (4)初步练习:在钉子板上围一个正方形和一个长方形.

  4.平行四边形的初步认识.

  (1)出示:

  让学生自己观察发现,能找出什么图形,你想知道有关平行四边形的什么知识?

  (2)投影出示画在方格纸上的平行四边形.

  引导学生知道:它们有4个角,4条边.

  教师明确:这些图形也是由四条边围成的图形,我们把这样的四边形叫做平行四边形.

  教师说明:这些四边形相对的边之间的宽度总是保持一定的(用直尺演示出对边间的距离不变),我们就说它的对边是平行的,所以我们把这些图形叫做平行四边形.

  引导学生观察、讨论:借助方格来看一看平行四边形有什么特征?(以小组为单位,研究它的边和角的特点.)

  (3)小组研讨,汇报总结.

  平行四边形 角:4个

  边:四条 相对的边相等

  (4)利用学具摆2个不同的平行四边形.

  (5)学生拿出制作长方形(平行四边形)框的学具,用手拉它的一组相对的角.如图:

  讨论:平行四边形与长方形有哪些相同,有哪些不同?

  引导学生:平行四边形和长方形都有四条边,都是相对的边相等.长方形的四个角都是直角,而捏住长方形相对的两个角的顶点一拉,它就不是长方形了,是一个平行四边形.当平行四边形的角一个变成直角时,四个角就都变成直角,这时平行四边形就又变成了长方形了.【演示动画变化的图形】

  三、运用知识,解决问题.

  1.要求:利用手中的小三角形摆长方形、正方形、平行四边形.(4个小三角形)

  2.利用手中的七巧板摆一些漂亮的图形,再给它起个名字.

  四、看书质疑,全课总结.

  板书设计

  探究活动

  七巧板

  游戏目的

  帮助学生认识几何图形,培养空间关系的认识能力和想象能力.

  游戏准备

  学生每人准备各种各样的图形,如:三角形、长方形、正方形等.

  游戏过程

  1.学生按下面三个要求拼图:

  ①用任意两块图形拼成一个正方形;

  ②用任意三块图形拼成一个长方形;

  2.学生自由拼图,可以拼几何图形、建筑物或其他图案,在规定的时间里谁拼得的图形多,谁就是优胜者.

  注意事项

  等分长方形的奥秘

  活动内容

  让学生用折纸的办法把长方形平均分成两份.

  活动目标

  1.通过折、画、讨论、猜测、验证等形式的活动,使学生掌握用一条直线等分长方形的方法.培养学生创造性思维的能力和探索未知的方法.

  2.运用分组的活动形式,培养学生的合作精神和竞争意识.

  重点和难点

  通过教学,让学生感受并初步掌握实例分析综合思考提出猜测推理验证这种探索问题的方法.是本课教学的重点.如何探索出能等分长方形的直线的规律是本课教学的难点.

  活动准备

  1.教具:长方形纸若干张、教学课件.

  2.学具:直尺、小刀、水笔、大小相等的长方形纸片约10张.

  活动过程

  1.折一折,把长方形平均分成大小相等的两份.然后用直尺沿着折痕画出直线.试一试,你们能折几种?

  (1)请小组成员共同讨论,注意互相分工合作.

  (2)长方形纸片在信封里.

  (3)动手折纸时间为3分钟,比比看,哪组同学画得又快又对又多?

  2.反馈交流:指名上台汇报小组讨论探究的结果.分了几种?是哪几种?然后老师把把相应的折法张贴在黑板上.

  3.探索规律.

  师:这样的直线还有吗?还有几条呢?我们先不忙下结论,还是先来研究这些已经知道的直线有什么共同特点.

  (1)将你们小组等分的长方形纸片2张重叠,并把重叠的长方形纸片拿起来,对准强光处照一照,然后3张、4张逐渐重叠,你发现了什么?

  (2)课件显示各种等分长方形的直线相交于同一点的动态过程.

  (3)引导学生小结:等分长方形的直线都相交于长方形内的一点.

  游戏前,教师可借助磁性黑板等教具作些示范演拼.在学生自由拼图时,教师可在黑板上勾画一些图案,以启发学生思维.

平行四边形教案 篇3

  一、教学目标:

  1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。

  2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。

  3.培养学生发现问题、解决问题的能力及逻辑推理能力。

  二、重点、难点

  1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用。

  2.难点:运用平行四边形的性质进行有关的论证和计算。

  3.难点的突破方法:

  本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。

  学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。

  平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。

  为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。

  讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。

  新教材是先让学生用观察、度量和猜想的方法得到平行四边形的`对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。

  教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。

平行四边形教案 篇4

  教学目标

  1、知识目标

  (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

  (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

  2、能力目标

  (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

  (2)验证猜想结论,培养学生的论证和逻辑思维能力。

  (3)通过开放式教学,培养学生的创新意识和实践能力。

  3、非智力目标

  渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

  教学重点、难点

  重点:平行四边形的概念及其性质.

  难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

  平行四边形的概念及性质的灵活运用

  教学方法:讲解、分析、转化

  教学过程设计

  一、利用分类、特殊化的方法引出平行四边形的概念

  1.复习四边形的知识.

  (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

  (2)将四边形的边角按位置关系分为两类:

  教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

  2.教师提问:四边形中的两组对边按位置关系分为几种情况?

  引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

  3.对比引出平行四边形的概念.

  (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

  (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

  (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

  (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

  ①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

  ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

  练习1(投影)

  如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

  二、探索平行四边形的性质并证明

  1.探索性质.

  启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

  (3)对角线

  ⑤对角线互相平分(性质定理3)

  教师注意解释并强调对角线互相平分的含义及表示方法.

  2.利用化归的方法对性质逐一进行证明.

  (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

  (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

  (3)写出证明过程.

  3.关于“两条平行线间的平行线段和距离”的教学.

  (1)利用性质定理2

  导出推论:夹在两条平行线间的平行线段相等.

  ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

  ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

  ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

  练习2

  (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

  (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

  练习3

  在图4-15(d)中,

  ①点A与点C的距离是线段__的长;

  ②点A到直线l2的.距离是线段__的长;

  ③两条平行线l1与l2的距离是线段__或__的长;

  ④由推论可得:两条平行线间的距离__.

  三、平行四边形的定义及性质的应用

  1.计算.

  1填空.

  (1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

  (2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

  (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

  (4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

  (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

  2.证明.

  2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

  分析:

  (1)尽量利用平行四边形的定义和性质,避免证三角形全等.

  (2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

  3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

  着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

  4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

  分析:

  (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

  (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

  (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

  3.供选用例题.

  (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

  (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

  (3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

  四、师生共同小结

  1.平行四边形与四边形的关系.

  2.学习了平行四边形哪些方面的性质?

  3.两条平行线的距离是怎样定义的?有什么性质?

  五、作业

  课本第143页第2,3,4,5,6题.

  课堂教学设计说明

  本教学设计需2课时完成.

  这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

  平行四边形及其性质

  教学目标

  1、知识目标

  (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

  (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

  2、能力目标

  (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

  (2)验证猜想结论,培养学生的论证和逻辑思维能力。

  (3)通过开放式教学,培养学生的创新意识和实践能力。

  3、非智力目标

  渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

  教学重点、难点

  重点:平行四边形的概念及其性质.

  难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

  平行四边形的概念及性质的灵活运用

  教学方法:讲解、分析、转化

  教学过程设计

  一、利用分类、特殊化的方法引出平行四边形的概念

  1.复习四边形的知识.

  (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

  (2)将四边形的边角按位置关系分为两类:

  教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

  2.教师提问:四边形中的两组对边按位置关系分为几种情况?

  引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

  3.对比引出平行四边形的概念.

  (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

  (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

  (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

  (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

  ①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

  ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

  练习1(投影)

  如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

  二、探索平行四边形的性质并证明

  1.探索性质.

  启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

  (3)对角线

  ⑤对角线互相平分(性质定理3)

  教师注意解释并强调对角线互相平分的含义及表示方法.

  2.利用化归的方法对性质逐一进行证明.

  (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

  (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

  (3)写出证明过程.

  3.关于“两条平行线间的平行线段和距离”的教学.

  (1)利用性质定理2

  导出推论:夹在两条平行线间的平行线段相等.

  ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

  ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

  ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

  练习2

  (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

  (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

  练习3

  在图4-15(d)中,

  ①点A与点C的距离是线段__的长;

  ②点A到直线l2的距离是线段__的长;

  ③两条平行线l1与l2的距离是线段__或__的长;

  ④由推论可得:两条平行线间的距离__.

  三、平行四边形的定义及性质的应用

  1.计算.

  1填空.

  (1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

  (2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

  (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

  (4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

  (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

  2.证明.

  2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

  分析:

  (1)尽量利用平行四边形的定义和性质,避免证三角形全等.

  (2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

  3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

  着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

  4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

  分析:

  (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

  (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

  (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

  3.供选用例题.

  (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

  (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

  (3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

  四、师生共同小结

  1.平行四边形与四边形的关系.

  2.学习了平行四边形哪些方面的性质?

  3.两条平行线的距离是怎样定义的?有什么性质?

  五、作业

  课本第143页第2,3,4,5,6题.

  课堂教学设计说明

  本教学设计需2课时完成.

  这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

平行四边形教案 篇5

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:

  理解公式并正确计算平行四边形的面积.

  教学难点:

  理解平行四边形面积公式的'推导过程.

  学具准备:

  每个学生准备一个平行四边形。

  教学过程:

  一、导入新课。

  1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

  2.好,下面谁来说一说你找到了哪些学过的图形?

  3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、民主导学

  (一)、数方格法

  用展示台出示方格图

  1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2.这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

平行四边形教案 篇6

  一 教学目标:

   1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

  2.会综合运用平行四边形的判定方法和性质来解决问题.

  3.培养用类比、逆向联想及运动的思维方法来研究问题.

  二 重点、难点

  1.重点:平行四边形的判定方法及应用.

  2.难点:平行四边形的判定定理与性质定理的灵活应用.

  3.难点的突破方法:

  平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.

  (1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.

  (2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:

  ①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;

  ②本节课只介绍前两个判定方法.

  (3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.

  然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.

  在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.

  (4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.

  (5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.

  (6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.

  三 例题的意图分析

  本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的.性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.

  四 课堂引入

  1.欣赏图片、提出问题.

  展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?

  2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

  让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?

  从探究中得到:

  平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2 对角线互相平分的四边形是平行四边形

【平行四边形教案】相关文章:

平行四边形面积教案02-09

认识平行四边形教案03-05

平行四边形的面积教案03-17

《平行四边形的面积》教案01-02

平行四边形的面积教案03-31

数学平行四边形的面积教案02-28

数学《平行四边形的面积》教案02-14

平行四边形面积的计算教案03-03

《平行四边形面积的计算》教案09-14

平行四边形和梯形教案03-11