加法结合律教案

时间:2023-11-25 19:11:48 志升 教案 投诉 投稿

加法结合律教案(通用12篇)

  作为一名人民教师,通常需要用到教案来辅助教学,编写教案助于积累教学经验,不断提高教学质量。写教案需要注意哪些格式呢?以下是小编为大家整理的加法结合律教案,欢迎大家借鉴与参考,希望对大家有所帮助。

加法结合律教案(通用12篇)

  加法结合律教案 1

  教学目标:

  1.理解和掌握加法结合律,并应用加法结合律使计算简便。

  2.培养观察、归纳、概括的潜力。

  教学重点:

  理解并掌握加法结合律。

  教学难点:

  加法结合律的推导。

  教学过程:

  一、复习导入

  20+34=()+()

  36+()=64+()

  A+700=+

  二、新授

  1.出示准备题:

  37+26+63、37+(26+63)

  59+38+732和59+(38+732)

  讨论:比较两式题的异同。刚才的两个例子说明了什么?

  2.上述两题贴合猜想,可能是偶然。请同学们自己来找一找贴合猜想的式题。

  (学生自由举例,小组交流结果。汇报结果,找到许多式题贴合猜想。

  3.能证明猜想正确,还有我们身边的一些生活实例。

  请同学们用多种方法解决问题:李叔叔骑车旅行第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,这三天李叔叔一共骑了多少千米?

  三、小组展示

  1.学生先汇报

  A.口头列式:

  (88+104)+96

  88+(104+96)

  B.分别说说先求什么,再求什么?

  C.决定,得数会相同吗?(相同)

  D.计算结果。得出(88+104)+96=88+(104+96)

  2.提问:以上几个加法算式中,每个算式等号的左边和右边有什么相同和不同的`地方?

  3.用字母表示加法结合律。

  (1)谁能用符号(任意选3个符号)表示加法结合律?如:(□+△)+○=□+(△+○)

  (2)如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢?

  四、练习

  1.下面哪些等式贴合加法结合律?

  a+(20+9)=(a+20)+9

  15+(7+b)=(20+2)+b

  (10+20)+30+40=10+(20+30)+40

  2.简便计算。

  273+352+648

  64+36+81+19

  3.五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)

  板书设计:

  加法结合律

  37+26+63=37+(26+63)

  59+38+732=59+(38+732)

  (88+104)+96

  88+(104+96)

  加法结合律:(a+b)+c=a+(b+c)

  加法结合律教案 2

  教学目标

  1、使学生理解、掌握加法结合律.

  2、能够应用加法的交换律和结合律进行简便计算.

  教学重点

  对加法结合律的理解、掌握和应用.

  教学难点

  加法结合律的运用

  教学步骤

  一、铺垫孕伏

  1、什么叫加法交换律?用字母如何表示?

  2、根据运算定律在下面的()里填上适当的数.

  43+67=()+()35+()=65+()

  ()+18=19+()a+100=()+()

  3、下面各等式哪些贴合加法交换律?

  270+380=390+26020+50+80=20+80+50

  a+400=400+a140+60=60+140

  谈话引入:以上,我们运用了加法的好处及交换律解决了一些问题,那么关于加法还有没有其他的规律性知识?这些知识又有什么用途呢?这节课我们继续学习这方面的知识――加法结合律和简便运算.(板书课题)

  二、探究新知.

  (一)教学例3、观察下面每组的两个算式,它们有什么样的关系?

  (12+13)+14○12+(13+14)

  (320+150)+230○320+(150+230)

  1、教师提问:(1)上面等式两边算式有什么相同点?有什么不同点?

  相同点:都有三个加数,左右两边的三个数相同;

  不同点:加的顺序不同.

  (2)每组两个算式的结果怎样?用什么符号连接?每组算式说明什么?

  2、归纳加法的结合律.

  3、用字母表示加法结合律.

  如果用字母a、b、c分别表示3个加数,怎样用字母表示加法结合律呢?

  教师板书:(a+b)+c=a+(b+c)

  等号左边(a+b)+c表示先把前两个数相加,再同第三个数相加.

  等号右边a+(b+c)表示先把后两个数相加再用第一个数相加.

  a、b、c表示的数是什么范围的数?

  4、练习:根据运算定律在下面的□里填上适当的数.

  (25+68)+32=25+(□+□)

  130+(70+4)=(130+□)+□

  (二)教学简便算法.

  应用加法结合律我们能够改变一些数的运算顺序,但应用加法交换律更主要的一点是能够使一些计算简便.

  1、例4计算480+325+75

  教师提问:同学们想要计算480+325+75,怎样计算比较简便?为什么?应用了什么运算定律?(学生试算)

  教师板书:

  480+325+75

  =480+(325+75)

  =480+400

  =880

  2、例5计算325+480+75

  教师提问:这道题怎样算比较简便?为什么?应用了什么运算定律?(群众订正)

  325+480+75

  =325+75+480

  =(325+75)+480

  =400+480

  =880

  教师提示:哪一步能够省略?

  325+480+75

  =325+75+480

  =400+480

  =880

  3、比较例4、例5在应用运算定律方面的`不同.

  例4没有调换加数的位置,直接应用了加法结合律进行了简算;

  例5要使325与75相加,则务必先应用加法交换律将75交换到480的前面,再应用加法结合律简算.

  4、反馈练习:137+31+63,怎样计算比较简便?用了什么定律?

  5、想一想,过去哪些计算应用了加法的结合律?

  (在做口算加法时应用了加法结合律)

  如:36+48

  36+48=36+(40+8)=(36+40)+8=76+8=84

  教师说明:根据加法结合律不仅仅能够做口算加法,还使一些计算简便.简算时要注意数字特点.

  三、巩固发展.

  1、根据运算定律在下面的□填上适当的数.

  369+258+147=369+(□+147)

  (23+47)+56=23+(□+□)

  654+(97+a)=(654+□)+□

  2、下面哪些等式贴合加法结合律?

  a+(20+9)=(a+20)+9

  15+(7+b)=(20+2)+b

  10+20+30+40=10+(20+30)+40

  3、下面各题怎样算简便就怎样算.

  88+75+12

  6+2+7+4+8

  79+145+21

  14+9+2+11+6

  25+97+15+3

  7+39+43+61+8+32

  4、选取比较简便的方法填在括号里.

  (1)399+154+201=()

  ①399+(154+201)②(399+201)+154

  (2)374+268+126+432=()

  ①(374+126)+(268+432)②(374+126)+268+432

  四、全课小结.

  这天我们学习了哪些新知识?什么叫做加法结合律?与加法交换律有什么不同之处?

  五、布置作业.

  光明小学篮球队队员的身高分别是:160厘米、164厘米、158厘米、156厘米、162厘米.队员的平均身高是多少?

  六、板书设计

  加法结合律和简便算法

  例3观察下面每组的两个算式,它们有什么样的关系?

  例4计算480+325+75

  480+325+75

  480+(325+75)

  =480+400

  =880

  例5计算325+480+75

  325+480+75

  =325+75+480

  =(325+75)+480

  =400+480

  =880

  加法结合律教案 3

  教学目标:

  1、使学生探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展运用意识。

  2、学会用字母表示运算律,初步培养符号感和归纳、推理的能力。

  3、在数学活动中,增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

  教学重难点:

  理解并掌握运算律,并进行运算。

  教学方法:

  主动探索法

  教学用具:

  挂图、卡片

  教学过程:

  一、情景导入

  1、谈话:同学们喜欢玩吗?玩什么?(师生做游戏进入新课)

  2、出示情景图,仔细看图,读懂图中的信息。

  (1) 同桌间说信息,提加法问题。

  (2) 展示学习成果(师相机贴出问题卡)

  (3) 教师小结进入课题并板书:加法运算律

  二、探索加法交换律

  1、解决问题“跳绳的有多少人?”

  (1) 学生自练,展示学习成果。(指两名用不同方法计算的同学展示)

  (2) 说说自己的发现。(同桌交流,展示)

  (3) 师小结并板书28+17=17+28

  (4) 让学生举例(自练)展示教师相机板书

  2、讨论交流:

  A每组中的两个算式的异同。

  B这几组算式是不是都具有这样的特点?

  C说说自己发现的规律。(用自己的话或用自己喜欢的方式表示)

  D用字母a、b表示两个加数,怎样表示?(师生交流总结并板书)

  E a+b=b+a(说说字母各表示什么?)

  3、练习

  357+218(计算并验算)

  三、探索加法结合律

  (1) 出示问题二“参加活动的一共有多少人?”(学生自己练习,师巡视指用不同方法

  计算的同学上台板演)

  (2) 让学生观察比较得出结果,师板书:(28+17)+23=28+(17+23)

  交流自己的发现

  (3) 出示两组算式,观察并探索其中的规律。

  用学习例1的方法总结出加法结合律,说说其中的.字母及识字的含义。

  四、巩固理解运算律

  卡片出示课后“想想做做”中的练习题(自练,指名说)(同桌交流,展示)

  五、总结提高

  1、这节课我们学习了加法的哪两个运算律?说说自己的收获。

  2、教师小结:

  加法交换律和加法结合率都是加法运算中存在的规律,涉及到的数都是加数。加法交换率涉及到的加数只是交换了位置,和不变;加法结合率涉及到的加数位置不变,只是改变了运算顺序,和也不变。

  六、布置作业

  完成课后未完成的题目 板书

  运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

  加法结合律教案 4

  设计说明

  1.在不断的设疑中启发学生思考、自主探究、发现规律。

  问题是数学学习的根本,通过不断地设置问题,引导学生思考,使学生在比较中感知加法结合律的意义。接着通过验证、猜想,使学生发现加法结合律,并会用字母表示。

  2.注重发挥学生的主体地位,加深对知识的理解。

  《数学课程标准》指出:学生是数学学习活动的主体。本设计在探索的过程中引导学生通过观察、思考、抽象、概括、交流等活动,经历探究加法结合律的过程,初步感受应用加法结合律可以使计算简便,把学习的主动权交给学生,并在师生互动和生生互动中加深学生对新知的理解和应用,使学生真正体会到数学知识的价值所在。

  课前准备

  PPT课件

  教学过程

  ⊙形成疑问,提出问题

  1.观察、讨论。

  师:这里有两组算式,在○里填上适当的符号。

  (4+8)+6○4+(8+6)

  (19+82)+38○19+(82+38)

  师:观察这两组算式,它们有什么相同的地方?

  (学生在小组内讨论,相互说出自己的发现)

  2.交流发现。

  师:通过讨论,你发现了什么?(学生汇报)

  教师引导:

  (1)几个数相加?(三个,且加数相同)

  (2)分别先算了什么?(前两个数,后两个数)

  (3)结果如何?(得数相同)

  3.提出猜想。

  师:根据刚才的发现,请你猜想一下,加法中除了交换律外,可能还存在什么样的规律?

  (学生猜想:三个数相加,先把前两个数相加,再加上第三个数与先把后两个数相加,再加上第一个数所得的和是相等的)

  设计意图:学生通过计算给出的算式,发现两个算式的相同之处和不同之处,自觉地产生探索的欲望。

  ⊙验证猜想,总结规律

  1.验证猜想。

  (1)仿写算式,验证猜想。

  学生仿写算式,小组内交流,全班汇报。

  (2)举例验证。

  利用生活中的事例验证自己的.猜想。

  学生自由举例,小组内交流结果。

  2.明确加法结合律。

  三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再加上第一个数,所得的和是相等的,这就是加法结合律。

  3.用字母表示加法结合律。

  师:用语言来叙述加法结合律很不方便,能不能用简单的方法表示出加法结合律呢?

  如果用字母a、b、c分别表示三个加数,那么加法结合律应该怎样表示呢?

  (a+b)+c=a+(b+c)

  4.加法结合律的应用。

  (1)感知简便的计算方法。

  师:怎样应用加法结合律呢?下面我们就来试一试。

  课件出示练习:

  根据运算律在下面的□里填上适当的数。

  (25+68)+32=25+(□+□)

  130+(70+4)=(130+□)+□

  64+37+163=64+(□+□)

  (指名回答)

  师:这三个等式都是根据哪个运算律填写的?(学生讨论后汇报)

  师小结:应用加法结合律有时可以使一些计算简便。

  加法结合律教案 5

  教材分析:

  本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。

  “想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。

  教学目标:

  1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

  3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

  教学准备:配套课件。

  教学过程:

  一、课前谈话。

  有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。

  设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

  二、教学加法交换律。

  1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?

  你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?

  ②参加活动的女生一共有多少人?

  ③跳绳的男生和踢毽子的女生一共有多少人?

  ④参加活动的一共有多少人?

  设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。

  2、今天这节课,我们就一起来研究其中的这两个问题:

  在黑板上张贴:参加跳绳的一共有多少人?

  参加活动的一共有多少人?

  我们先来解决第一个问题:参加跳绳的一共有多少人?

  3、你们能马上口头列式并口算出结果吗?

  指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)

  为什么这两个算式的结果一样?

  4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28

  仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?

  5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

  6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?

  教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

  7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。

  8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的`就是加法交换律(板书:加法交换律),学生齐读一遍。

  小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。

  9、练习:

  完成想想做做第一题前面两小题。

  设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

  三、学习加法结合律。

  1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?

  2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。

  3、学生回答,教师有意识地板书:

  (28+17)+23=68(人)

  28+(17+23)

  (28+23)+17

  28+(23+17)

  (23+17)+28

  23+(17+28)

  让回答的同学说说这么列式是怎么思考的?

  下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)

  设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。

  4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

  (28+17)+23=28+(17+23)

  5、电脑出示:下面的Ο里能填上等号吗?

  (45+25)+13Ο45+(25+13)

  (36+18)+22Ο36+(18+22)

  学生回答,教师板书:(45+25)+13=45+(25+13)

  (36+18)+22=36+(18+22)

  6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。

  7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

  板书:(a+b)+c=a+(b+c)

  教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

  8、完成“想想做做”第1题的后面两个小题。

  设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

  四、巩固练习。

  1、完成“想想做做”第2题。

  第4小题引导学生发现是运用了加法交换律和加法结合律。

  2、完成“想想做做”第3题第1行。

  3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

  4、完成“想想做做”第4题。

  使学生初步感受应用加法运算律可以使计算简便。

  设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

  五、课堂总结。

  通过本节课的学习,你有什么新的收获?

  设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。

  板书设计: 运算律

  加法交换律 加法结合律

  28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)

  28+17=17+28 =45+23 =28+40

  (学生说的算式) =68(人) =68(人)

  (28+17)+23=28+(17+23)

  (45+25)+13=45+(25+13)

  (36+18)+22=36+(18+22)

  a+b=b+a (a+b)+c=a+(b+c)

  加法结合律教案 6

  设计说明

  本节课在教学设计上主要突出以下几点:

  1.加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后加法的第二个运算定律。学好加法结合律,对于加法的简便计算,提高运算速度和准确程度都有很大的帮助。创设连贯的生活情境,让学生体会到数学知识来源于生活。

  在生活情境下学习知识,可以使学生感受到数学知识在生活中应用的'广泛性。因此,加法结合律的教学同样在李叔叔骑车旅行的情境下进行,让学生根据笔记本上记录的三天行程的数据提出要解决的现实问题。在这一过程中,使学生充分感受到数学知识来源于生活。

  2.调动已有的学习经验,自主发现规律。

  因为本内容的学习是在刚刚学习了加法交换律的基础上进行的,所以引导学生迁移运算定律学习经验是学好本内容的基本策略。教学中,利用情境引导学生理解两种运算顺序的意义,在比较运算意义和计算结果的基础上得到等式,并请学生根据此等式的特点,举一些例子,对此类等式的特点展开讨论,然后初步小结得到加法结合律的内容。

  课前准备

  教师准备多媒体课件课堂活动卡

  学生准备学情检测卡

  教学过程

  ⊙复习导入

  1.根据加法交换律填空。

  20+34=()+20

  36+()=64+()

  a+700=()+()

  2.下面的算式哪些符合加法交换律?

  (1)230+270=300+200

  (2)60+80+40=60+40+80

  (3)48+d=d+48

  师:上节课我们学习了加法交换律,知道了两个数相加,交换加数的位置,和不变。那么加法还有没有其他运算定律呢?这些运算定律又有什么用途呢?这节课我们就来学习加法结合律。(板书课题:加法结合律)

  设计意图:通过复习加法交换律,唤起学生对已有知识的回顾,同时激发学生探究加法的另一个重要运算定律。

  加法结合律教案 7

  一、教学目标:

  1. 知识与技能目标:让学生理解加法结合律的概念,能够运用加法结合律进行计算。

  2. 过程与方法目标:通过探究活动和实际问题解决,培养学生的观察力、思考力和解决问题的'能力。

  3. 情感态度价值观目标:培养学生对数学学习的兴趣,增强学生的自信心。

  二、教学重点:

  加法结合律的概念及其应用。

  三、教学难点:

  理解加法结合律的实质,能够灵活运用加法结合律进行计算。

  四、教学过程:

  1. 导入新课:通过生活中的实例引出加法结合律的概念。

  2. 探究新知:引导学生通过实际操作和观察,发现加法结合律的规律。

  3. 应用新知:设计一些实际问题,让学生运用加法结合律进行计算,加深对加法结合律的理解。

  4. 小结:回顾本节课所学内容,强调加法结合律的重要性和应用范围。

  五、作业布置:

  1. 巩固练习:安排一些加法结合律的计算题,让学生课后进行练习。

  2. 拓展应用:鼓励学生在实际生活中寻找加法结合律的应用例子。

  加法结合律教案 8

  一、教学目标

  1. 知识与技能目标:

  (1)使学生掌握加法结合律的概念。

  (2)使学生能够灵活运用加法结合律进行计算。

  2. 过程与方法目标:

  (1)通过实例引入加法结合律,培养学生的观察力和思考力。

  (2)通过讲解、讨论、练习等方式,使学生深入理解加法结合律。

  3. 情感态度与价值观目标:

  (1)激发学生对数学的兴趣,培养学生的自信心。

  (2)培养学生的合作精神,学会与他人共同探讨问题。

  二、教学重点与难点

  1. 教学重点:

  (1)加法结合律的`概念。

  (2)加法结合律的应用。

  2. 教学难点:

  (1)如何让学生理解加法结合律。

  (2)如何让学生灵活运用加法结合律进行计算。

  三、教学过程

  1. 导入新课

  (1)通过实例引入加法结合律。例如:计算3+4+5和(3+4)+5的结果,引导学生发现两者相等。

  (2)让学生自己尝试解释这个现象,引出加法结合律的概念。

  2. 讲解加法结合律

  (1)给出加法结合律的一般形式:a+b+c=(a+b)+c。

  (2)通过实例让学生理解加法结合律的含义。例如:计算2+3+4和(2+3)+4的结果,让学生发现两者相等。

  (3)让学生自己尝试用加法结合律进行计算,加深对加法结合律的理解。

  3. 练习与讨论

  (1)让学生自主完成一些加法结合律的计算题,巩固所学知识。

  (2)分组讨论,让学生互相检查答案,发现问题并解决。

  (3)让学生分享自己的解题方法和心得,培养学生的合作精神。

  4. 拓展与应用

  (1)让学生尝试将加法结合律应用到实际生活中的问题中,如购物结账等。

  (2)让学生思考加法结合律与其他运算定律的关系,如交换律、分配律等。

  5. 总结与反思

  (1)让学生总结本节课所学的知识点,巩固记忆。

  (2)让学生反思自己在课堂上的表现,找出不足之处并改进。

  加法结合律教案 9

  一、教学目标

  1. 知识与技能目标:让学生理解和掌握加法结合律的概念和性质,能够运用加法结合律进行计算。

  2. 过程与方法目标:通过探究和讨论,培养学生发现和解决问题的能力,提高他们的逻辑思维能力。

  3. 情感态度与价值观目标:激发学生对数学学习的兴趣,培养他们勇于探索、敢于创新的精神。

  二、教学重点与难点

  1. 教学重点:加法结合律的概念和性质。

  2. 教学难点:如何运用加法结合律进行计算。

  三、教学过程

  1. 导入新课:通过举例,让学生观察三个数相加时,相加顺序的变化对结果的影响,引出加法结合律的.概念。

  2. 探究新知:让学生自己尝试找出三个数相加时的规律,然后引导他们总结出加法结合律的性质。

  3. 应用新知:给出一些例子,让学生运用加法结合律进行计算,检验他们是否真正掌握了加法结合律。

  4. 小结归纳:回顾本节课所学内容,强调加法结合律的概念和性质,提醒学生在实际计算中要注意运用加法结合律。

  四、作业布置

  1. 完成课本上的练习题。

  2. 自己找一些题目,运用加法结合律进行计算。

  加法结合律教案 10

  一、教学目标

  1. 知识与技能目标:

  (1)使学生掌握加法结合律的概念和性质。

  (2)使学生能够运用加法结合律进行简单的计算。

  2. 过程与方法目标:

  (1)通过实际问题引入加法结合律,培养学生的观察力和思考力。

  (2)通过举例、讲解、练习等方式,使学生深入理解加法结合律。

  3. 情感态度与价值观目标:

  (1)激发学生对数学的兴趣,培养学生的自信心。

  (2)培养学生的.合作精神,学会与他人共同探讨问题。

  二、教学重点与难点

  1. 教学重点:

  (1)加法结合律的概念和性质。

  (2)运用加法结合律进行简单的计算。

  2. 教学难点:

  (1)理解加法结合律的性质。

  (2)灵活运用加法结合律进行计算。

  三、教学过程

  1. 引入新课

  (1)通过实际问题引入加法结合律,例如:小明去超市买了3个苹果,每个苹果的价格是2元;小红去超市买了2个香蕉,每个香蕉的价格是3元。请问他们一共花了多少钱?

  (2)让学生尝试用不同的方法解决这个问题,引导学生发现加法结合律。

  2. 讲解新知识

  (1)定义加法结合律:对于任意的三个数a、b、c,有(a+b)+c=a+(b+c)。

  (2)让学生观察加法结合律的性质,例如:交换律、结合律等。

  (3)通过举例让学生深入理解加法结合律,例如:(1+2)+3=1+(2+3);4×(5+6)=4×5+4×6等。

  3. 练习与讨论

  (1)让学生自己动手计算一些简单的例子,巩固加法结合律的概念和性质。

  (2)分组讨论,让学生互相出题,检查对方是否正确运用加法结合律进行计算。

  (3)让学生总结加法结合律在解决实际问题中的应用,例如:购物、计算路程等。

  4. 课堂小结

  (1)回顾本节课所学的加法结合律的概念和性质。

  (2)让学生分享自己在学习和运用加法结合律过程中的心得体会。

  四、作业布置

  1. 让学生回家后复习本节课所学的内容,巩固加法结合律的概念和性质。

  2. 布置一些练习题,让学生运用加法结合律进行计算,提高学生的计算能力。

  加法结合律教案 11

  一、教学目标

  1. 知识与技能目标:学生能理解加法结合律的概念,并能运用加法结合律进行计算。

  2. 过程与方法目标:通过探究和实验,学生能体验加法结合律的发现过程,培养学生的观察能力和归纳能力。

  3. 情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。

  二、教学重点与难点

  1. 教学重点:加法结合律的概念及其应用。

  2. 教学难点:加法结合律的发现和验证。

  三、教学过程

  1. 导入新课:通过实际问题引入加法结合律,激发学生的学习兴趣。

  2. 新知探究:让学生通过自主探究和实验,发现加法结合律的`规律,并进行验证。

  3. 例题讲解:通过具体的例题,让学生掌握加法结合律的应用方法。

  4. 课堂练习:设计一些练习题,让学生进一步巩固加法结合律的知识。

  5. 小结与作业:对本节课的内容进行小结,布置课后作业。

  四、板书设计

  1. 加法结合律的定义:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  2. 加法结合律的表达式:(a+b)+c=a+(b+c)

  3. 例题解析:通过具体的例题,展示加法结合律的应用过程。

  加法结合律教案 12

  一、教学目标

  1. 知识与技能目标:

  (1)使学生掌握加法结合律的概念和性质。

  (2)使学生能够运用加法结合律进行简单的计算。

  2. 过程与方法目标:

  (1)通过实际问题引入加法结合律,激发学生的学习兴趣。

  (2)通过举例、讲解、练习等方式,帮助学生理解和掌握加法结合律。

  3. 情感态度与价值观目标:

  (1)培养学生良好的.学习习惯和合作精神。

  (2)培养学生对数学的兴趣和自信心。

  二、教学重点与难点

  1. 教学重点:

  (1)理解加法结合律的概念和性质。

  (2)运用加法结合律进行简单的计算。

  2. 教学难点:

  (1)理解加法结合律的性质。

  (2)灵活运用加法结合律进行计算。

  三、教学过程

  1. 引入新课

  (1)通过实际问题引入加法结合律,例如:小明去超市买了3个苹果、2个香蕉和4个橙子,一共花了多少钱?

  (2)让学生尝试用加法解决这个问题,引导学生发现加法结合律的规律。

  2. 讲解加法结合律的概念和性质

  (1)定义:对于任意的三个数a、b、c,有a+(b+c)=a+b+c。这就是加法结合律。

  (2)性质:加法结合律具有交换性、分配性和恒等性。

  3. 举例说明加法结合律的性质

  (1)交换性:a+(b+c)=a+b+c,那么(a+b)+c=a+(b+c)。例如:2+(3+4)=2+3+4,(2+3)+4=2+(3+4)。

  (2)分配性:a+(b+c)=a+b+c,那么a×(b+c)=a×b+a×c。例如:3×(4+5)=3×4+3×5,3×(4+5)=3×4+3×5。

  (3)恒等性:a+(b+c)=a+b+c,那么a+b+c=a+(b+c)。例如:6+7+8=6+(7+8),6+7+8=6+(7+8)。

  4. 运用加法结合律进行计算

  (1)让学生做一些简单的计算题,例如:2+3×4,5×6-7÷8等,引导学生运用加法结合律进行计算。

  (2)让学生自己设计一些计算题,然后相互出题、解答,提高学生的计算能力和运用加法结合律的能力。

  5. 总结与反思

  (1)让学生总结本节课所学的加法结合律的概念、性质和应用方法。

  (2)让学生反思自己在学习和运用加法结合律过程中遇到的问题和困难,以及解决问题的方法和经验。

【加法结合律教案】相关文章:

加法结合律教案11-17

《加法结合律》教学反思02-13

《加法结合律》教学反思9篇03-28

《加法结合律》教学反思(精选5篇)07-07

教案中班教案02-23

小班教案健康教案07-08

小鸡教案中班教案01-21

小班教案游戏教案01-13

语言故事教案中班教案11-08

安全教案 关于安全教案09-20