数学《完全平方公式》教案一等奖

时间:2024-01-23 08:19:04 教案 投诉 投稿
  • 相关推荐

数学《完全平方公式》教案一等奖

  作为一位无私奉献的人民教师,时常要开展教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?以下是小编整理的数学《完全平方公式》教案一等奖,欢迎大家借鉴与参考,希望对大家有所帮助。

数学《完全平方公式》教案一等奖

  教学目标:

  1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

  2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

  3、了解完全平方公式的几何背景,培养学生的数形结合意识。

  4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

  教学重点:

  1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;

  2、会用完全平方公式进行运算。

  教学难点:

  会用完全平方公式进行运算

  教学方法:

  探索讨论、归纳总结。

  教学过程:

  一、回顾与思考

  活动内容:复习已学过的平方差公式

  1、平方差公式:(a+b)(a—b)=a2—b2;

  公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

  右边是两数的平方差。

  2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

  二、情境引入

  活动内容:提出问题:

  一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

  用不同的形式表示实验田的总面积,并进行比较。

  三、初识完全平方公式

  活动内容:

  1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。

  2、引导学生利用几何图形来验证两数差的完全平方公式。

  3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

  结构特点:左边是二项式(两数和(差))的平方;

  右边是两数的平方和加上(减去)这两数乘积的两倍。

  语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。

  四、再识完全平方公式

  活动内容:例1用完全平方公式计算:

  (1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2

  2、总结口诀:首平方,尾平方,两倍乘积放,加减看前方,同加异减。

  五、巩固练习:

  1、下列各式中哪些可以运用完全平方公式计算。

  1、6完全平方公式:

  一、学习目标

  1、会推导完全平方公式,并能运用公式进行简单的计算。

  2、了解完全平方公式的几何背景

  二、学习重点:会用完全平方公式进行运算。

  三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。

  四、学习设计

  (一)预习准备

  (1)预习书p23—26

  (2)思考:和的平方等于平方的和吗?

  1、6《完全平方公式》习题

  1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。

  2、已知(a+b)2=24,(a—b)2=20,求:

  (1)ab的值是多少?

  (2)a2+b2的值是多少?

  3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。

  《1、6完全平方公式》课时练习

  1、(5—x2)2等于;

  答案:25—10x2+x4

  解析:解答:(5—x2)2=25—10x2+x4

  分析:根据完全平方公式与幂的乘方法则可完成此题。

  2、(x—2y)2等于;

  答案:x2—8xy+4y2

  解析:解答:(x—2y)2=x2—8xy+4y2

  分析:根据完全平方公式与积的乘方法则可完成此题。

  3、(3a—4b)2等于;

  答案:9a2—24ab+16b2

  解析:解答:(3a—4b)2=9a2—24ab+16b2

  分析:根据完全平方公式可完成此题。

【数学《完全平方公式》教案一等奖】相关文章:

完全平方公式数学教案08-30

《完全平方公式》教案02-15

《完全平方公式》教案15篇02-19

《完全平方公式》教学设计03-16

完全平方公式教学设计03-03

完全平方公式教学设计5篇06-08

《平方差公式》教案09-17

《平方根》教案03-03

乘法公式教案09-10

《平方根》教案范文08-25